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	e aim of present work is focused on the evaluation of elastic and thermal properties of unidirectional 
ber-reinforced polymer
composites with di�erent volume fractions of 
ber up to 0.7 usingmicromechanical approach. Twoways for calculating thematerial
properties, that is, analytical and numerical approaches, were presented. In numerical approach, 
nite element analysis was used
to evaluate the elastic modulus and thermal conductivity of composite from the constituent material properties. 	e 
nite element
model based on three-dimensional micromechanical representative volume element (RVE) with a square and hexagonal packing
geometrywas implemented by using 
nite element codeANSYS. Circular cross section of 
ber and square cross section of 
berwere
considered to develop RVE. 	e periodic boundary conditions are applied to the RVE to calculate elastic modulus of composite.
	e steady state heat transfer simulations were performed in thermal analysis to calculate thermal conductivity of composite. In
analytical approach, the elastic modulus is calculated by rule of mixture, Halpin-Tsai model, and periodic microstructure.	ermal
conductivity is calculated analytically by using rule of mixture, the Chawla model, and the Hashin model. 	e material properties
obtained using 
nite element techniques were compared with di�erent analytical methods and good agreement was achieved. 	e
results are a�ected by a number of parameters such as volume fraction of the 
bers, geometry of 
ber, and RVE.

1. Introduction

	ere has been a considerable increase in the use of 
ber com-
posite materials in various industries like aerospace, auto-
motive, infrastructures, and sporting goods due to their spe-
ci
c properties like strength, sti�ness, toughness, high cor-
rosion resistance, high wear resistance, high chemical resis-
tance, and reduced cost. 	ese materials can take advantage
of di�erent properties of their constituents, microstructure,
and interaction between constituents in order to improve
the mechanical behavior of parts made from them. 	e
mechanics of 
ber-reinforced composites are complex due
to their anisotropic and heterogeneous characteristics. 	e
evaluation of e�ective mechanical and thermal properties of
compositematerials is of paramount importance in engineer-
ing design and application. Generally, two approaches are

considered in obtaining the global properties of composites:
(a) macromechanical analysis and (b) micromechanical
analysis. Inmacromechanical analysis the compositematerial
is considered as a homogeneous orthotropic continuum. In
micromechanical analysis the study of composite material is
at the 
ber and matrix level. Typically the unit cell technique
combined with the known material properties of 
ber and
matrix is used to determine the overall behavior of the
composite [1]. A number of methods have been developed to
predict and to simulate the mechanical and thermal behav-
ior of composites. Basic analytical approaches have been
reported [2–4] to predict the composite materials properties,
for example, strength, sti�ness, and thermal conductivity.
Prediction of boron and aluminium composite properties
from a representative volume element (RVE) with square and
hexagonal geometry has been reported [5]. Micromechanical
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analysis of unidirectional 
ber-reinforced composites with
square and hexagonal unit cells has been reported [6, 7] to
evaluate the e�ective material properties.

Patnaik et al. [8] studied the micromechanical and ther-
mal characteristics of glass-
ber-reinforced polymer com-
posites. 	e experimental results were in good agreement
with 
nite element model based on representative area ele-
ment approach. Melro et al. [9] predict the inelastic defor-
mation and fracture of randomly distributed unidirectional

ber-reinforced polymer composite materials with di�erent
RVEs. Several researchers made their signi
cant contribu-
tion in studying thermal characteristics of 
ber composites.
Springer and Tsai [10] studied the composite thermal con-
ductivities of unidirectional composites and expressions are
obtained for predicting these conductivities in the directions
along the 
laments and normal to them. Islam and Pramila
[11] predict the e�ective transverse thermal conductivity of

ber-reinforced composites by using 
nite element method.
Square and circular cross section 
bers were used for perfect
bonding at 
ber-matrix interface and with interfacial barrier
by using four di�erent sets of thermal boundary conditions.
Al-Sulaiman et al. [12] predict the thermal conductivity of the
constituents of 
ber-reinforced composite laminates using
three empirical formulas. Grove [13] computed transverse
thermal conductivity in continuous unidirectional 
ber com-
posite materials using 
nite element and spatial statistical
techniques for a range of 
ber volume fractions up to 0.5.
Lu [14] used boundary collocation scheme for calculation of
transverse e�ective thermal conductivity of 2-dimensional
periodic arrays of long circular and square cylinders with
square array and long circular cylinders with hexagonal array
for a complete range of 
ber volume fractions.

Although a great deal of work has already been done on

ber-reinforced polymer composites with circular cross-sec-
tion of 
ber, square cross section of 
ber with di�erent RVE
models using 
nite element analysis is hardly been reported.
To this end, the objective of the present work is developing a
three-dimensional micromechanical RVE with a square and
hexagonal packing geometry with circular and square 
ber
cross sections. A numerical homogenization technique based
on the 
nite element analysis was used to evaluate the elastic
modulus and thermal conductivity of composite. 	e 
nite
element results are compared with the analytical methods.
	e aim is to demonstrate applicability of homogenization
technique by using 
nite element method to predict material
characteristics in advance.

2. Materials and Methods

In this present investigation, unidirectional glass 
ber as rein-
forcement phase and epoxy asmatrix phase for the composite
material were considered. 	e 
ber and matrix materials are
considered as isotropic and homogeneous. 	e properties
of the constituent materials are as shown in Table 1. In a
real unidirectional 
ber-reinforced composite, the 
bers are
arranged randomly and it is di�cult to model random 
ber
arrangement.

For this analysis, circular and square cross section 
ber
composite material is considered. 	e schematic diagram of

Table 1:Mechanical and thermal properties of the constituentmate-
rials [8, 9].

Properties Glass 
ber Epoxy matrix

Density (g/cm3) 2.5 1.15

Young’s modulus (GPa) 73 3.76

Poisson’s ratio 0.2 0.39

Shear modulus (GPa) 30.42 1.28

	ermal conductivity (W/mk) 1.3 0.363

the unidirectional 
ber composite where the 
bers are
arranged in the square and hexagonal array is shown in
Figure 1. By varying the volume fraction of 
ber from 0.1 to
0.7 the elastic and thermal properties of composite material
are determined.

2.1. Constitutive Equations for Fiber Composite Material. 	e
most general form of the anisotropic constitutive equations
for homogeneous and elastic composite materials is given by
Hook’s law as shown in (1) [15]. Consider
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�1�2�3�4�5�6

}}}}}}}}}}}}}}}}}

≡
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(1)

where ��� and ��� are normal and shear components of stress,
respectively, ��� and ��� are the normal and shear components
of strain, respectively, and ��� is the symmetric sti�ness
matrix with 21 independent, elastic constants. According to
their behaviour, composites may be characterized as gen-
erally anisotropic, monoclinic, orthotropic, and transversely
isotropic. In present work, transversely isotropic characteris-
tics have been considered for the 
ber-reinforced composite.
A transversely isotropic material is to be a material whose
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Figure 1: Arrangement of 
bers in (a) square array with circular 
bers, (b) hexagonal array with circular 
bers, (c) square array with square

bers, and (d) hexagonal array with square 
bers.

e�ective properties are isotropic in one of its planes and the
sti�ness tensor is represented in
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�1�2�3�4�5�6

}}}}}}}}}}}}}}}

=
[[[[[[[[
[

�11 �12 �12 0 0 0�12 �22 �23 0 0 0�12 �23 �22 0 0 0
0 0 0 1
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0 0 0 0 �66 00 0 0 0 0 �66

]]]]]]]]
]
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(2)

Once the components of the transversely isotropic sti�ness
tensor � are known, the elastic properties of homogenized
material can be computed by (3) [16]. Consider

�1 = �11 − 2�212(�22 + �23) ,

�2 = [�11 (�22 + �23) − 2�
2
12] (�22 − �23)

(�11�22 − �212) ,

]12 = �12(�22 + �23) ,

�23 = 12 (�22 − �23) ,

(3)

where �1, �2, ]12, and �23 are longitudinal modulus, trans-
verse modulus in plane Poisson’s ratio, and in plane shear
modulus, respectively.

2.2. Generation of RVE. For simplicity reasons, most micro-
mechanical models assume a periodic arrangement of 
bers
for which a RVE or unit cell can be isolated. 	e RVE has
the same elastic constants and 
ber volume fraction as the
composite. 	e periodic 
ber sequences commonly used
are the square array and the hexagonal array. For a square
packing RVE as shown in Figures 2(a) and 2(c) themaximum
theoretically achievable 
ber volume fraction is 78.54%. For
square RVE the diameter of 
ber is calculated by

�� = �1 (�/4) �
2
�

�1�2�3 , (4)

where �� is volume fraction of 
ber; �1, �2, and �3 are the
length of square RVE; and �� is the diameter of 
ber. For the
hexagonal packing RVE as shown in Figures 2(b) and 2(d)
the maximum theoretically achievable 
ber volume fraction
is 90.69%. Obviously, with a hexagonal packing geometry a
composite can be made more compact than with a square
packing geometry. For hexagonal RVE the diameter of 
ber
is calculated by

�� = 2�1 (�/4) �
2
�

�1�2�3 , (5)

where �3 = �2 tan(60∘) and �2 = 4�1.
3. Finite Element Modeling

In order to evaluate the e�ective properties of composite, the

nite element so�ware package ANSYS is used.	e program
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Figure 2: RVE (a) square RVE with circular 
ber, (b) hexagonal RVE with circular 
ber, (c) square RVE with square 
ber, and (d) hexagonal
RVE with square 
ber.

is written inAPDL (ANSYSProgrammingDesign Language),
which is delivered by the so�ware and it makes the handling
much more comfortable. For simpli
cation, there are many
assumptions considered for the present analysis such as

bers which are arranged in a particular pattern (square and
hexagonal) in a matrix. 	e composite is free of voids and
other irregularities, all 
bers are uniformly distributed in the
matrix and perfectly aligned, and the interface between the

ber and matrix is perfectly debonded. In the study of the
micromechanics of 
ber-reinforcedmaterials, it is convenient
to use an orthogonal coordinate system that has one axis
aligned with the 
ber direction. 	e axis 1 is aligned with the

ber direction, the axis 2 is in the plane of the RVE and is
perpendicular to the 
bers, and the axis 3 is perpendicular to
the plane of the RVE and is also perpendicular to the 
bers as
shown in Figure 2.Dimensions considered for the analysis are�1 = 1.0×10−5m, �2 = 1.0×10−5m, and �3 = 1.0×10−5m for
square RVE. For hexagonal RVE �1 = 1.0 × 10−5m, �2 and �3
are calculated by using (5).	e radius of 
bers corresponds to
volume fractions ranging from 0.1 to 0.7. 	ree-dimensional
structural solid element SOLID186 is used to determine

elastic properties and is de
ned by 20 nodes having three
degrees of freedom at each node. 	ey are translations in the
nodal 1, 2, and 3 directions. For thermal conductivity a three-
dimensional quadratic brick element SOLID90 is used for
discretization of the constituents and is de
ned by 20 nodes
with a single degree of freedom (temperature) at each node.
	e meshed model of square and hexagonal RVE at 0.4 of

ber volume fraction is shown in Figure 3.

3.1. Boundary Conditions for Evaluation of Elastic Properties.
Compositematerials can be represented as a periodic array of
the RVEs. 	erefore, the periodic boundary conditions must
be applied to the RVE models. 	is implies that each RVE
in the composite has the same deformation mode and there
is no separation or overlap between the neighboring RVEs
a�er deformation [17, 18]. 	e resumed boundary conditions
applied are given in Table 2. Note that  , �, and ! are
the displacements along 1, 2, and 3 directions, respectively,
applied on the AEDH, BFCG, ABCD, EFGH, DHGC, and
AEFB faces as shown in Figure 2. A�er applying boundary
conditions and the displacement constant, the corresponding
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Table 2: Boundary conditions along the 1, 2, and 3 directions of the RVE.

Load Constraint
1-direction faces 2-direction faces 3-direction faces

AEDH BFCG ABCD EFGH DHGC AEFB

Load 11

U 0 �1
V 0 0

W 0 0

Load 22

U 0 0

V 0 �2
W 0 0

Load 33

U 0 0

V 0 0

W 0 �3

(a) (b)

(c) (d)

Figure 3: Meshed model of (a) square RVE with circular 
ber, (b) hexagonal RVE with circular 
ber, (c) square RVE with square 
ber, and
(d) hexagonal RVE with square 
ber.
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Figure 4: Counter of stress in (a) square RVE with circular 
ber, (b) hexagonal RVE with circular 
ber, (c) square RVE with square 
ber, and
(d) hexagonal RVE with square 
ber.

engineering constants are calculated as follows in terms of
corresponding stresses and strains shown in (6):

��� = 1
� ∫	 ��� ��,

��� = 1
� ∫	 ��� ��,

(6)

where � and � are the average stresses and average strains
and� is the volume of the RVE.	e elastic properties can be
calculated by using the constitutive equations of the material
properties as the ratio of corresponding average stresses and
average strains as shown in (3). Figures 4 and 5 show the
counter of stress and strain in square and hexagonal RVE at
0.4 of volume fraction.

3.2. Boundary Conditions for Evaluation of 
ermal Con-
ductivity. 	e steady state heat transfer simulations are per-
formed by using 
nite element analysis to predict thermal
conductivity of composite along the longitudinal and trans-
verse direction.	e thermal boundary conditions considered
in the present analysis are shown in Figure 2. One wall
(BFGC) is kept isothermal at elevated temperature, while
the corresponding wall (AEHD) is subjected 100 Kelvin to
maintain temperature di�erence for the calculation of longi-
tudinal thermal conductivity. All other surfaces are subjected
to insulation boundary conditions. One wall (ABCD) is kept
isothermal at elevated temperature, while the corresponding
wall (EFGH) is subjected 100 Kelvin to maintain temperature
di�erence for the calculation of transverse thermal conduc-
tivity. All other surfaces are subjected to insulation boundary
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Figure 5: Counter of strain in (a) square RVE with circular 
ber, (b) hexagonal RVE with circular 
ber, (c) square RVE with square 
ber, and
(d) hexagonal RVE with square 
ber.

conditions. Using these temperature gradients the heat �ux
was obtained from ANSYS so�ware.

	e e�ective thermal conductivity is established from the
fundamental heat conduction law, found by Fourier’s, which
states that the heat �ux is proportional to the temperature
gradient [19]:

# = −$�%�& , (7)

where �%/�& is temperature gradient between two isother-

mal surfaces, # is the heat �ux W/m2, and ' is the thermal
conductivity. 	e temperature distribution in square and
hexagonal RVE along longitudinal and transverse direction
at 0.4 of volume fraction of 
ber is shown in Figures 6 and 7.

4. Analytical Methods

In order to validate the 
nite element results, three well-
existing analytical methods such as rule of mixture, semiem-
pirical model, and periodic microstructuremodels have been
used for the current study.

4.1. Rule of Mixture Model. 	e well-known models that
have been proposed and used to evaluate the properties of
unidirectional composites are the Voigt and Reuss models
which are also known as the rule of mixture model and
the inverse rule of mixture model. 	e rule of mixture
is the mathematical expressions which give the property
of the composite in terms of the properties, quantity, and
arrangement of its constituents. 	e longitudinal property of
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Figure 6: Longitudinal temperature distribution in (a) square RVE with circular 
ber, (b) hexagonal RVE with circular 
ber, (c) square RVE
with square 
ber, and (d) hexagonal RVE with square 
ber.

the composite is calculated by using rule of mixture as shown
in

*1 = *��� + *
�
, (8)

where *1 is the property of composite in longitudinal direc-

tion. *� and *
 are the material properties of 
ber and epoxy

matrix.�� and�
 are the volume fractions of 
ber and epoxy

matrix.	e transverse modulus of composite is calculated by
using rule of mixture as shown in

1
*2 =

��
*� +

�
*
 , (9)

where *2 is the property of composite in transverse direction.

4.2. Halpin-Tsai Model. 	emost useful semiempirical mod-
els are those by Halpin and Tsai. Halpin and Tsai developed

their models as simple equations by curve 
tting to results
that are based on elasticity.	ematerial properties calculated
in longitudinal direction by using Halpin-Tsai model are the
same as those in rule ofmixtures. For the transverse direction,
the material property of composite is calculated by

*2*
 =
1 + -3��
1 − 3�� , (10)

where 3 = ((*�/*
) − 1)/((*�/*
) + -).
Halpin and Tsai found that the value 5 = 2 gave

an excellent 
t to the 
nite di�erence elasticity solution of
Adams andDoner [20] for the transversemodulus of a square
array of circular 
bers.

4.3. Periodic Microstructure. If the composite has periodic
microstructure, then Fourier series can be used to estimate
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Figure 7: Transverse temperature distribution in (a) square RVE with circular 
ber, (b) hexagonal RVE with circular 
ber, (c) square RVE
with square 
ber, and (d) hexagonal RVE with square 
ber.

all the components of the sti�ness tensor of the composite.
Explicit formulas for a composite reinforced by long circular
cylindrical 
bers were discussed in [21].

4.4. 
ermal Conductivity Models. 	ermal conductivity
obtained by 
nite element analysis, comparing with three
well-existing analytical methods such as rule of mixture, the
Chawla model, and the Hashin model [22], has been used for
the current study.

5. Results and Discussion

5.1. E
ect of Volume Fraction on Elastic Properties. 	e lon-
gitudinal modulus is the response of composite during the
application of load parallel to the 
ber direction. It can be
de
ned as the ratio of longitudinal stress to the longitudinal

strain. Figure 8 shows the e�ect of 
ber content on the
longitudinal modulus of composites using rule of mixtures,
Halpin-Tsai model, periodic microstructure, and 
nite ele-
ment analysis with square and hexagonal RVE with circular
and square 
ber geometry. It can be observed from the 
gure
that the longitudinal modulus increases with the increase
in volume fraction of 
ber and there is a good agreement
between 
nite element results and analytical methods.	is is
because the sti�ness of the composite increases with increase
in volume fraction of 
ber.

	e transverse modulus is the response of composite
during the application of load perpendicular to the 
ber
direction. It can be de
ned as the ratio of transverse stress
to the transverse strain. 	e e�ect of 
ber volume fraction
on transverse modulus of composites using 
nite element
analysis and three analytical methods is graphically shown
in Figure 9. As expected, it is clear from the 
gure that
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Figure 8: Longitudinal modulus validation with di�erent volume
fraction of 
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Figure 9: Transversemodulus validationwith di�erent volume frac-
tion of 
ber.

the transverse modulus increases with increase in 
ber vol-
ume fraction. 	e transverse modulus evaluated by 
nite
element analysis with hexagonal RVE is more close to the
Halpin-Tsai model and periodic microstructure as compared
to the results obtained from rule ofmixture and 
nite element
analysis with square RVE.

Figure 10 shows the e�ect of 
ber volume fraction on the
in-plane Poisson’s ratio of composite. It is evident from the

gure that the major Poisson’s ratio decreases with increase
in the volume fraction of 
ber due to increase in material
resistance. 	e 
nite element results are in good agreement
with analytical methods.

In-plane shear modulus of composite is the ratio of shear
stress to the shear strain in longitudinal direction. Figure 11
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Figure 10: In-plane Poisson’s ratio validation with di�erent volume
fraction of 
ber.
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Figure 11: In-plane shear modulus validation with di�erent volume
fraction of 
ber.

shows the e�ect of 
ber volume fraction on the in-plane
shear modulus of composite. It is clear from the 
gure that
the shear modulus increases with increases in 
ber volume
fraction. Also, it can be observed that there is a good agree-
ment between results obtained from 
nite element analysis
and hexagonal RVE with Halpin-Tsai model and periodic
microstructure as compared to rule of mixture and 
nite
element analysis with square RVE.

5.2. E
ect of Volume Fraction on
ermal Conductivity. Lon-
gitudinal thermal conductivity of composite is the property
of a material to conduct heat in parallel to the direction
of the 
bers. Figure 12 shows the e�ect of 
ber content on
the longitudinal thermal conductivity using rule of mixture,
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Figure 12: Longitudinal thermal conductivity validation with dif-
ferent volume fraction of 
ber.
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Figure 13: Transverse thermal conductivity validationwith di�erent
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theChawlamodel, theHashinmodel, and 
nite element anal-
ysis. Finite element results match well the analytical methods
and increases in linear manner with the increase in volume
fraction since the 
ber thermal conductivity dominates the
matrix thermal conductivity.

Transverse thermal conductivity of composite is the prop-
erty of a material to conduct heat, in the direction perpendic-
ular to the 
bers. Figure 13 shows the e�ect of 
ber content on
the transverse thermal conductivity using analytical methods
and 
nite element analysis.

It is clear from the 
gure that the transverse thermal
conductivity increases with increases in 
ber volume frac-
tion. 	e transverse thermal conductivity evaluated by 
nite

element analysis with hexagonal RVE is more close to the
Hashin model as compared to the results obtained from rule
of mixture and the Chawla model.

6. Conclusions

In this work, themicromechanical approach has been studied
to evaluate the elastic and thermal properties of unidirec-
tional 
ber-reinforced polymer composites with di�erent
volume fractions of 
ber up to 0.7. 	e material properties
obtained by 
nite element techniques were compared with
di�erent analytical methods. 	e following conclusions can
be drawn.

(1) 	e 
nite element model based on three-dimensional
RVE with a square and hexagonal packing geometry
was successfully implemented by using 
nite element
code ANSYS to calculate elastic and thermal proper-
ties.

(2) It has been observed that longitudinal modulus and
in-plane Poisson’s ratio predicted by the 
nite element
analysis agree well with all the existing analytical
predictions. Transverse modulus and in-plane shear
modulus predicted by the 
nite element analysis with
hexagonal RVE is more close to the periodic micro-
structure model as compared to 
nite element analy-
sis with square RVE and other analytical methods.

(3) It has been observed that longitudinal thermal con-
ductivity predicted by the finite element analysis agrees
well with all analytical methods. Transverse thermal
conductivity predicted by the 
nite element analy-
sis with hexagonal array is more close to the Hashin
model as compared to rule of mixture and Chawla
model.

(4) In 
nite element analysis the elastic properties and
thermal conductivity of 
ber-reinforced composites
are a�ected by a number of parameters such as cross
section 
ber, 
ber geometry of RVE, and volume
fraction of the 
bers.
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