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Abstract

We manifest a significant influence of field direction and polarity on surface wetting,
when the latter is tuned by application of an external electric field. Thermodynamics of

field-induced filling of hydrocarbon-like nanopores with water is studied by open

ensemble molecular simulation. Increased field strength consistently results in water-
filling and electrostriction in hydrophobic nanopore. A threshold field commensurate

with surface charge density of about one elementary charge per 10 nm2 suffices to render
prototypical paraffin surfaces hydrophilic. When field is applied in the direction

perpendicular to the confining walls, the competition between orientational polarization

and angle preferences of interfacial water molecules relative to the walls results in
asymmetric wettability of opposing surfaces (Janus interface). Reduction of surface free

energy observed upon alignment of confinement walls with field direction suggests a

novel mechanism whereby the applied electric field can operate selectively on water-
filled nanotubes while empty ones remain unaffected.
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I.  INTRODUCTION

Most hydrophilic solutes derive their affinity for water from attractive interactions

between ionized or polar groups of the solute with dipoles and quadrupoles of water molecules1,2.

Application of external voltage across a solid/liquid interface can produce a similar effect as

water dipoles interact favorably with the external field reducing interfacial free energy. This

phenomenon is exploited in a variety of applications from microfluidics to electrospray

ionization and ink-jet printing3-6 to electrical control of optical devices7,8. The advent of micro-

and nanoporous materials and nanotubes9,10 sparked renewed interest in wetting techniques

including electro-wetting11,12, as high surface-to-volume ratio makes these media especially

difficult to permeate with water. Electro-wetting has also been discussed in context of water

permeation through ion channels13.

Macroscopic electro-capillarity experiments are relatively well described within

continuum approximations where water is treated as a structureless medium of constant

permittivity ε=εrεo. Macroscopic relations pertinent to electrowetting in a planar confinement

(Section S.I. in Supporting Information) predict reduction in (cosine of) contact angle, increase

in pressure and density, and reduction in threshold pore-width of capillary evaporation to be

proportional to the applied electric field squared. Assumptions underlying the continuum picture

are, however, no longer valid at nanoscale where molecular structure of the liquid, including

orientational preferences of surface molecules14,15, becomes important and the fraction of

molecules in the boundary layer of the liquid represent an increasingly significant constituency16.

Further, the macroscopic concept of surface energies and surface forces becomes ambiguous at

molecular resolution.
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To overcome experimental and conceptual limitations that preclude predicting surface

tension or contact angle in the nanoscale regime, and to extract molecular level insights from the

response of the interfacial-liquid to the external field, we use molecular simulations. We consider

a broad range of electric fields including typical field strengths in ion-channels and

membranes17,18, 10-2V A


-1
 ≤  Eo ≤0.4 V A


-1 [E~O(10-2) V A


-1]. Here, E denotes the actual

(dielectrically screened) field and Eo the applied field inside an empty confinement. The above

field strengths suffice to secure a noticeable alignment of aqueous molecules with the field,

revealing the heretofore-neglected influence of field direction relative to liquid surfaces. This

allows us to study the combined field effect comprising

a) the “bulk” term (increasing with the volume of confined water interacting with the field),

which is the primary cause of field-assisted spreading of water into confinement, and

b) pure surface effects reflecting the coupling between the orientational bias for molecules at

interfaces and molecular alignment along the direction of electric field.

       The latter phenomenon is reflected in notable surface tension dependence on the direction

of electric field as demonstrated by our simulations. Atomistic signatures such as the orientation

of water dipoles at surfaces are examined, and they can potentially be compared with second

harmonic generation experiments.

A number of molecular studies concerned with the role of electric field on

thermodynamics, structure and dielectric behavior of water in nano-sized apolar confinements

have been reported recently13,19-23. Electric field applied parallel to the solid surface invariably

increased the wettability of the confinement. Recent simulation of water confined between

mesoscopic graphene platelets immersed in a bulk, field-free reservoir, however, showed weakly

asymmetric water density depletion in the intervening region upon application of a perpendicular
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electric field between the plates22. This contradicts the qualitative predictions of continuum

theories (Summarized in Section S.I. of Supporting Information). Our systematic results confirm

a general increase in water density in confinement under exposure to electric field.

Neither of the reported studies paid explicit attention to the possible role of field

direction. The observed20,22,24 alignment of water molecules in the direction of the applied field,

however, can couple22 with known anisotropy14,15,25-29 of interfacial water. This suggests that the

angle between the direction of the applied field and water/solid surfaces can also play a

significant role in field-induced wetting of nanoscaled hydrophobic confinements. To elucidate

the energetics of the phenomenon on the molecular level, we use open ensemble simulations of

water in apolar confinement under varied electric fields, maintaining equilibrium with field-free

bulk reservoir of water. We determine the apparent wall/liquid interfacial free energy change as a

function of the strength of external field and its direction and compare the observed effects with

(smaller) changes seen at the water/vapor interface at similar conditions. While model pore

material is strongly hydrophobic, with simulated contact angle θc close to 135o 30, we find that

spontaneous evaporation, observed30-33 in narrow confinements in the absence of the field, can be

prevented when the electric field is applied. Interestingly, electrostriction is stronger and

crossover to wetting behavior is observed at weaker field strength when the field is directed

laterally along the confinement walls. In a perpendicular field, the wetting ability differs for the

two walls as field-preferred molecular orientations relative to the solid surfaces at opposite walls

differ by 180o. By carefully tuning the field strength, the positively charged wall can turn

hydrophilic while the other wall remains hydrophobic, a behavior associated with a Janus

interface34. The observed influence of field direction is consistent with orientational preferences

that maximize water hydrogen bonding.
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II. MODEL SPECIFICATIONS

Our model system consists of a pair of parallel hydrophobic plates separated by distance

D , varying within the range from 0.9 to ~ 4 nm. Intervening water is described using the

extended simple point charge model (SPC/E)35. Because we are interested in the possibility of

electro-wetting in strongly hydrophobic systems, conducive to capillary evaporation in field-free

cases30,33, we describe the interaction of a water molecule with either of the walls, uw(z), by the

integrated Lennard-Jones (9-3) potential with parameters roughly corresponding to the

hydrocarbon-water potential14,15,30,33 (θ c=135 ±5o 30). A detailed description of surface-water

potential and pertinent interaction parameters are given in Section S.II of Supporting

Information.

As shown in previous works, the given wall/water interaction leads to spontaneous water-

to-vapor transition in the slit when D is sufficiently small30,33. For given (hydrophobic) wall

material, evaporation is kinetically viable over accessible simulation times [O (107) passes] for D

below ~ 1.3 nm, slightly above three monolayers of water. Metastable liquid persists in initially

water-filled slits at bigger separations33,36-38. Capillary evaporation39 precludes systematic studies

in narrower pores. The present system is comparatively more conducive to water depletion than

is the graphite-like confinement (contact angle close to 90o) studied in ref.22 and is well suited to

verify the occurrence of eventual density depression in an electric field observed in that work22.

In addition to intermolecular and water/wall interactions, the system Hamiltonian

includes interactions between the partial charges on water molecules35 and the external field

   

E =−∇ψ , where  ψ is the electrostatic potential. Since we only consider fields along direction z,

perpendicular to confinement walls, or x, parallel to the walls, we use a simplified notation

 E⊥ and  E to denote the field along either of the two directions. Listed values of  E⊥ or  E pertain
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to the applied electric field 0≤  |Eo| ≤0.4 V A


-1 (without the contribution from water polarization).

The median value of the above range of field strengths, 0.2 V A


-1, corresponds to the unscreened

field next to an extended electrified interface with surface charge density of one elementary

(proton) charge per 9 nm2 and is about an order of magnitude weaker than unscreened fields

around common ions. Our calculations to this strong field regime complement previous studies

of related effects in the bulk24,40,41 and at interfaces19-23,42 by pertinent wetting energetics; to

establish connection with these works requires including fields that are of comparable, or at least

not essentially smaller strengths than those used in refs13,19-24,40. While it is useful to specify

model conditions in terms of unscreened field Eo, the actual electric field, E, is vastly reduced

through the polarization of the medium, i.e. water 20,43, varying within 0≤  |E| ≤ ~ 0.04 V A


-1.  To

put this in better perspective, we note only local fields exceeding ~1V A


-1 have been found 44

capable to visibly polarize aqueous molecules in simulations using a polarizable force field for

water45.

Other model details are the same as described earlier33,46. Focusing on the qualitative

picture of the system, apart from a few test calculations employing two-dimensional lattice sums

in lateral directions to match Ewald sum results, we use lateral periodic conditions with

water/water interactions subject to a smooth spherical cutoff; the form of the cutoff was the same

as given in ref.15 where this choice has been rationalized by systematic comparison with

alternative types of periodic conditions. The smooth cutoff takes place between 2.96 and 3.16

diameters of a water molecule, making the range of interaction essentially identical to that

employed in water contact angle calculations in droplet geometry47. No truncation is applied to

water/wall interactions.
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III. SIMULATION

To describe the equilibrium between confined water exposed to electric field, and field-

free bulk phase, we use Grand Canonical Monte Carlo algorithm described earlier31,33,46.

Configurations are therefore generated using Metropolis acceptance criteria for molecular

moves, additions and deletions of molecules, and collective moves of confined water slab

relative to the walls33. The thermodynamic state of bulk SPC/E water was determined by setting

excess chemical potential µex/kBT=-12.1, a value chosen to obtain bulk pressure P=0 ±15 atm, as

determined in separate simulations for the bulk phase. Temperature T = 298K was presumed in

all cases.

Typical system dimensions Lxy and L z=D used in simulation calculations of

interfacial free energy, σ,  were 2.1 and 1.64-2.7 nm, respectively. This corresponded to between

160-200 water molecules at the smaller, and 310-350 molecules at the larger wall separation; the

number of molecules varied with the strength of the applied electric field and concomitant

electrostriction. To secure numerical accuracy in σ        of  ±  3mN m -1, individual runs required

O(109) attempted configurations, primarily due to low acceptances of particle insertions. To keep

computations within practical limits, spherical cutoff combined with laterally periodic conditions

was employed in most of the calculations, while we used the MMM2D48 method to calculate the

two-dimensional lattice sum (essentially equivalent to Ewald sum49) in a limited number of runs

to evaluate possible finite-size effects associated with selected system size and boundary

conditions.

IV.  NEW APPROACH TO WETTING FREE ENERGIES IN A NANOPORE

The work associated with spreading of bulk water (at constant chemical potential µ,  and

temperature Τ), into a planar confinement with given wall-wall distance D is best characterized in
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terms of the grand potential Ω (Asl), where Asl is the solid/liquid contact area (comprising wet

areas on both confinement walls), and V = AslD/2  is the liquid-occupied volume in the

confinement. The change in Ω  corresponding to an increase in the contact area of dAsl can be

determined as the sum of changes associated with two steps: 1) water slab deformation

increasing the wetted area Asl by dAsl at constant volume. Conservation of volume implies

simultaneous reduction in D such that dlnD = - dlnAsl, and 2) subsequent increase in D restoring

the original slit width. During the second step, Asl is kept constant. In the first step, performed at

fixed volume and amount of the liquid, dΩ 1=
  
−
1
2
(P
⊥
AsldD+ P


DdAsl )  

   
=
D

2
(P
⊥
− P


)dAsl =Δγ ' dAsl ,

where we include contributions from surface (water/wall) forces in P αβ and   Δγ ' .

   Δγ' = (P⊥ −P)d / 2  is replacing Δγ  = γsl - γsv in a process where increase in contact area is

associated with reduction in confinement wall-wall separation D. During the second step, a small

amount of   the  liquid  is  allowed to enter the pore as pore width D is returned to the initial

value while Asl is kept constant. During  this  step, volume is increased by dV = dA*D/2   and

dΩ 2 = - ( P⊥ -Pb) dA*D/2. For ambient pressure, Pb = O (1 atm), volume work on the bulk phase

can be neglected. No work is associated with mass transfer between the bulk (b) and confined (c)

phases because of equal chemical potentials, µb=µc=µ. Work per unit area of the solid/liquid

interface, σ, is:

                                          
    
σ =
∂Ω

∂A
=
∂Ω1

∂A
+
∂Ω2

∂A
=Δγ '−

P⊥D
2

=−
PD
2

           (1)

and  P  denotes the slab average of  
P (z) where z is the distance from pore mid-plane. When an

electric field is present, σ  also includes     electrical work, Wel, (See Section S.I of Supporting

Information) which pertains to the total slab and not to the surfaces alone. Note that, for systems
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of finite width, Δγ’ also includes the contribution of solvation pressure acting between

confinement walls. At nanoscale separations, both Δγ’ and  P⊥ depend on D. The apparent

interfacial tension σ, corresponding to water spreading into the confinement at fixed separation

D, on the other hand, can be almost independent of D when the electric field is turned off. In

field-free systems, for large wall-wall separations,  P⊥ → 0 , with σ   and Δγ’ both approaching the

single-wall value Δγ = γsl - γsv.

To study the variation of water surface tension, γlv, under the influence of the field, we

also performed closed ensemble (NVT) simulations of an unconfined water slab occupying a

layer along the midplane of the simulation cell. The initial slab configuration was prepared in a

field-free confined system of widths between 2.7 and 4 nm. In subsequent simulation, no walls

were present and the liquid was in contact with its own vapor filling the remainder of the cell;

hence the standard relation    γlv = (P⊥ −P)D / 2  was employed in these cases. Calculation of

pressure tensor components is described in Section S.I. of the Supporting Information.

V. RESULTS AND DISCUSSION

V.1 Electrostriction in a narrow confinement

According to macroscopic thermodynamics, electrostriction or increase in liquid density

in applied electric field is proportional to the compressibility of the liquid (eq S.3 in Supporting

Information). As compressibility of liquid water, κ~4.6.10-4 MPa-1, is very low, we observe only

small density changes of O (1%) in the bulk aqueous phase in the strongest field we consider.

Water adjacent to non-polar interfaces, however, behaves very differently. With local density of

water in the immediate vicinity of a hydrophobic surface slightly depleted, the liquid becomes
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much more compressible33,50-52. Under electric field, higher compressibility translates into

stronger electrostriction. In Fig. 1 we present our results for relative increase in average water

density in a planar pore for two widths, D=1.64 and 2.7 nm when the system is placed into

external fields of strengths  0≤|E0 |≤ 0.4VA
-1

o

with field directions perpendicular or parallel to the

walls. Quite surprisingly, electrostriction is much stronger in the parallel field, an interesting and

new observation to which we will return shortly.

The inset in Fig. 1 shows the field strength dependence of the reduced compressibility

κr=ρkTκ, determined from number density fluctuations: κr =(<N2>-<N>2)/<N>, in a pore with

D=2.7 nm. High compressibility of confined water can be attributed to increased fluctuations in

number densities in the immediate vicinity of the walls. As field strength is increased, these

 

Figure 1 Relative increase in average liquid density as a function of applied electric field Eo in bulk water

(black) and hydrocarbon-like confinements of width 1.64 nm (blue) or 2.7 nm (magenta) for

perpendicular (open) or parallel (filled symbols) direction of the field. Inset: Reduced isothermal

compressibilities of water, κr=ρkTκ , in the 2.7 nm confinement for field applied in parallel (filled) or

perpendicular direction (empty symbols). Bulk reduced compressibility of water is ~0.065.
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fluctuations become suppressed as liquid is packed into the pore. This explains the saturation

trend observed in the main graph at strong fields Eo.

Compared to bulk electrostriction, the relative density increase for two confinement sizes is quite

dramatic.  The  ~ 13%  density  increase  in  the 1.64 nm confinement with parallel field

Eo = 0.28 V A


-1 conforms with 12% density increase in identical field inside a cylindrical ion

channel of width 1.4 nm, the reported system20 in the literature most similar to any of our cases.

Our data also agree qualitatively with increased prevalence of water-filled states for nanotubes

exposed to fields of similar strength21. Although we use strongly hydrophobic walls conducive to

water expulsion33, we observe no instances of field-induced density depression such as reported

recently22 for planar graphene confinements under the field applied across the confinement.

Moreover, for the hydrocarbon confinement we consider, we show that the applied field can

prevent capillary evaporation at small inter-plate separations below kinetic threshold distance33,36

(threshold of spinodal decomposition) of about 1.3 nm where water consistently evaporates in

the absence of the field. For example, for field strengths Eo = 0.12, 0.24, and 0.36 V  A


-1
,

evaporation is suppressed by the field at separations D ≥  0.12, 0.11, and 0.092 nm, respectively.

In our model calculations for a variety of conditions, electrostriction and field-stabilization of

liquid state (relative to vapor), both known in bulk water generally apply and are reinforced in

the confinement53. A number of theoretical studies reported on electrofreezing in bulk and

confined aqueous phases24,40-42,54-58. In these works, the formation of simulated ice was observed

either at higher field strengths55,56 or lower temperatures24,40 than used here, or was assisted by

nucleation on strongly polar confinement walls42,57,58. No instances of freezing have been

observed in our model system at ambient temperature, comparatively weak fields and strongly

hydrophobic (hydrocarbon-like) confinement.
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Pressure variation in electric field

Upon an increase in the strength of the field the amount of confined liquid (in equilibrium

with field-free bulk phase) will increase until the elevated pressure balances chemical potentials

inside and outside of the confinement. In Fig. 2, we show the observed field-induced change in

the pressure on the confinement walls,  Pzz ≡ P⊥ , at two confinement widths, and compare it to the

pressure in field-exposed bulk phase, all at fixed chemical potential. In accordance with

macroscopic predictions, pressure monotonically increases withthe field.

Density and orientation profiles of water in the confinement in electric field

A very interesting feature emerges upon comparison between electrostriction results for

fields of different directions. As shown in Fig. 1, in the narrow confinements we study, the

overall electrostriction is much stronger when the field is aligned with confinement walls than

for perpendicular fields of equal strength. Because of its asymmetry and anisotropic hydrogen

Figure 2 Pressure increase with increasing strength of applied electric field in bulk aqueous phase

(dashed line) or in a planar confinement of varied widths D as a function of the strength of the electric

field applied in directions parallel (solid) or perpendicular (open symbols) to confinement walls.
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bond interactions, water has long been known for orientation bias at interfaces27 with

approximately parallel dipole alignment favored14,15,28  as it minimizes the loss of hydrogen bonds

on the surface. This bias exists only in the surface layer, hence the influence of the direction of

the field becomes relatively more important as the pore width is reduced and the fraction of

surface molecules gets larger.

For perpendicular field, the molecular asymmetry and orientational preferences of surface

molecules result in distinction between incoming and outgoing field. This means that structures

and energetics at the two surfaces, symmetric in the absence of the field, will differ when the

field is sufficiently strong to align water molecules noticeably in its direction, i.e. the product

E µ  ( µ  is the dipole moment of  water ) is not much smaller than the thermal energy kBT22. At

ambient conditions this implies E ≥~5.10-3 V A


-1 (Eo ~ Eε = O(0.1 V A


-1). In Fig. 3a, we compare

density profiles of water oxygens across a pore of width D=2.7 nm at zero field and for fields of

strength Eo=0.2 V A


-1 applied in parallel and perpendicular directions. In parallel field, wetting is

enhanced at both walls. Contact layer peaks in density profiles are strongly increased and shifted

closer to the walls consistent with increased pressure in the pore. In perpendicular field,

however, the profile is very asymmetric, with strongly enhanced wetting on the left wall, where

the field orients water oxygens toward the wall and hydrogens into the liquid phase. Despite the

strongly elevated pressure in the confinement (P~5.102 bar), water density on the opposite wall

remains almost unchanged. In the absence of electric field, orientational bias emerges as

interfacial water molecules tend to optimize hydrogen bonding14,15,27,28. The interplay between

this effect and alignment with electric field results in the asymmetric wettability at opposing

walls in the perpendicular field. Within a range of field strengths, including the situation depicted
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in Fig. 3a, the properties of opposing surfaces can be tuned to form the so called Janus interface59

consisting of parallel surfaces of opposite, hydrophilic and hydrophobic characters. 

Figure 3 (a) Density profile of confined water in a hydrocarbon-like confinement of width D=2.7 nm in

the absence of electric field (black), and in perpendicular (red) and parallel (blue lines) field of strength

0.2    V A−1
o

, with  the  orientation  of  water  molecules  favored  by   the  applied  perpendicular  field. 3 (b)
Average number of hydrogen bonds per molecule of water, <nHB>, as a function of the distance from pore

midplane, z. 3 (c) Orientational polarization of aqueous molecules measured in terms of the average

dipole component in the direction of applied field E0 =0 or 0.2    V A−1
o

 ,  µ⊥ / | µ |  or 
  
µ / | µ |  as a function

of molecular position relative to the walls. Included is spontaneous polarization normal to walls in the

absence of external field.
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To verify the connection with hydrogen bonding, in Fig. 3b we show profiles of average

numbers of hydrogen bonds per water molecule, <nHB(z)> for confined water in the absence of

the electric field and for perpendicular or parallel fields of strength 0.2 V A


-1. On the whole,

hydrogen bonding is somewhat enhanced in the presence of the field in agreement with

predictions from a recent theoretical analysis41. For perpendicular field, our results reveal a

notable increase in hydrogen bonding at the (positively charged) wall, at which the field brings

oxygen atoms closer, and hydrogens further from the walls. The difference of ~0.25 hydrogen

bonds corresponds to an average energy difference of close to 2 kT per molecule for molecules at

opposite walls. In the perpendicular electric field, only wetting on one of the walls is

significantly enhanced; the overall density increase in the parallel field is therefore almost twice

that observed in perpendicular field of equal strength.

While the incentive for wetting derives from field interactions with molecules at the

surfaces and in the slab interior16, only surface molecules are subject to the sign preference

discussed above. Accordingly, the discrimination with respect to field direction should not

depend on the width of the confinement, an expectation borne out by our results for two pore

widths (Fig. 4a). From a practical point of view, the field direction should be regarded as one of

the determinant factors in designing electro-wetting techniques in nanopores where interfacial

molecules represent a significant fraction of the total amount of the liquid.

V.2 Surface energetics

V.2.1 Energy dependence on the applied field

In agreement with structural results, average energies per molecule (available in Section

S.IV of Supporting Information), are significantly lower in nanopores in which the direction of
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electrical field is parallel with the walls. Hydrogen bonding profiles presented in Fig. 3b confirm

that parallel water-wall alignment preserves a high fraction of hydrogen bonds and can do so

without competing with the effects of applied field. In perpendicular fields, as a result of field-

induced shift in orientational distributions, hydrogen bonding is enhanced on one wall but

somewhat weakened on the other. These results show there is significant anisotropy in molecular

responses to the applied field43 at the walls. Clearly, the parallel component of the interfacial

liquid permittivity,   ε  will exceed the average value of the normal component,   ε⊥ . Because of

orientational restrictions imposed by hydrogen-bonding, the normal component will depend on

field polarity. Significant reduction in   ε⊥  is expected for field direction orienting aqueous

dipoles toward the adjacent confinement wall. Simulated polarization profiles shown in Fig. 3c

confirm this expectation.

V.2.2 Interfacial tensions in electric field

To characterize our model system and test the algorithms, we first performed simulations

for field-free aqueous slabs and confinements. These reference data are collected in section S.V

of Supporting Information. All results for field-exposed systems are presented in Fig. 4. The top

two curves in Fig 4a illustrate the effect of the field on water surface tension (squares) calculated

for a semi-infinite liquid slab of thickness corresponding to approximately seven layers of water

molecules, a width chosen to match the thickness of the water film in the wider of the two

confined geometries we consider. To preserve the free liquid/vapor interface, the sampling for

this geometry had to be carried out within a closed (N,V,T) ensemble. Any increase in the area of

the liquid/vapor interface takes place as a result of slab thinning at constant volume. Here, the
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system comprises coexisting vapor and liquid, however both phases are exposed to the field and

the chemical potential will deviate from its value in the field-free bulk phase.

In both normal and parallel fields, liquid/vapor surface tension γ lv decreases with

increasing field strength. This decrease (only weakly dependent on field direction) is interpreted

as resulting from comparatively stronger interaction of water dipoles with the applied field at

liquid/vapor surfaces43.

Our main results are described by the remaining four curves in Fig. 4a showing

solid/liquid wetting surface free energies (eq 1) for both the narrower (D=1.64 nm, circles) and

wider (D=2.7 nm, diamonds) confinements in perpendicular (open symbols) and parallel field

(solid symbols). Compared to liquid/vapor surface tensions wetting of the solid confinement

reveals much stronger field dependence. Here, water spreading on the surfaces is associated with

transfer from the field-free bulk phase into the field-exposed confinement. Unlike the process of

slab deformation used in the calculation of γlv, where the amount of water exposed to the field is

constant, here the energetic incentive for wetting comes from the increase in the number of water

molecules interacting with the field. Since the field permeates the entire aqueous slab,

σ  comprises both surface and volume effects and the influence of the field is stronger at

increased D. Change in sign of σ   signifies the field-induced transition from drying to wetting

behavior. In the inset of Fig. 4a, showing the crossover region, σ  is presented as a function of the

surface charge density, qs, capable of producing the given unscreened field strength Eo. For

paraffin-like wall material considered in our examples, the minimum interfacial charge densities

that suffice to switch model walls from hydrophobic (σ  > 0) to hydrophilic (σ < 0) vary over the

range corresponding to one elementary charge, eo, per ~7.6-12.5 nm2.



18

Figure 4 (a) Surface tension, γlv, of water in semi-infinite aqueous slab of width corresponding to

approximately seven molecular layers in contact with vapor (squares), or wetting surface free energy of

hydrocarbon/water interface, σ, in confinement of width 1.64 nm (circles) or 2.7 nm (diamonds) as a

function of the strength of electric field, Eo, applied in perpendicular (empty) or parallel direction (solid

symbols) relative to the surfaces. Red dotted lines separate drying (top) and wetting (bottom) regimes.

The inset shows surface charge densities, qs, (in units of elementary charge, eo, per nm2) corresponding to

unscreened field strengths Eo,. 4 (b) Hypothetical contact angle   cosθeff =−σ / γlv , illustrating wetting

energetics in parallel (solid) or perpendicular (empty symbols) electric field in a hydrocarbon-like

confinement. Blue squares correspond to σ=0.  Inset: comparison of simulation results with low-field

prediction (black dashed line).
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The strong dependence of σ     on field direction, revealed by significant differences

between the results for the perpendicular and parallel fields (Fig. 4), demonstrates the importance

of surface layer effects. Although the net field effect is stronger in a wider pore, the role of field

direction is relatively more important in the narrower of the two confinements.

As shown in Fig. 3, when the electric field is perpendicular to the walls (Fig. 3a), surface

structure and thermodynamics on individual walls strongly depend on field polarity. The data in

Fig. 4a, showing the influence of field strength on σ   in the perpendicular field, pertain to the

two-wall average directly accessible from simulation. The average σ corresponds to work

associated with simultaneous wetting of both confinement walls as the pore is filled with water.

Confinement wettability can be formally characterized in terms of thermodynamic contact

angle60  θeff, with   cosθeff =−σ / γlv . Based on macroscopic predictions  ( eqs S.1-2 of Supporting

Information), when the dependence of γlv on E is weak,  cosθeff should vary approximately

linearly with field squared. Fig. 4b compares the dependences of  cosθeff on E2
 for the two field

directions. Here, we approximated γlv by the value calculated for electric field of given strength

and direction normal to that experienced by the walls. The inset in Fig. 4b shows the initial slope

of the curve  cosθeff (E2) for the parallel field to be close to the weak field prediction. Smaller

initial slope in perpendicular field reflects the conflict between optimal water molecule/wall

orientation and alignment with the field. Square symbols in Fig. 4b mark drying-to-wetting

transition points (σ=0) where cosθeff equals zero irrespective of approximate γlv.

In the perpendicular field, due to the orientational asymmetry of water, at each wall the

value of σ will be different.  This means that for field strengths which produce an average value

of σ   = 0 in our simulation, in fact σ        < 0 at the positively charged wall, and σ   > 0 at the
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negatively charged wall.  Therefore, the positive wall should be wetting, and the negative wall

drying.  This situation, known as a Janus interface, shows very interesting behaviour

experimentally34.  Our results suggest that a Janus interface can be produced by applying a

perpendicular field E0~0.2 V/Å across the confinement, without modifying the surface itself.

VI. CONCLUDING REMARKS

In polar solvents like water, introduction of surface charges or the presence of applied

electric field is typically associated with increased wettability. The phenomenon is relatively

well understood in macroscopic systems amenable to conventional experiments and continuum

description of system thermodynamics. Increasing interest in nanoporous materials, micro- and

nanofluidics, and trans-membrane transport invite studies of electro-wetting in materials where

characteristic length-scales become comparable to molecular dimensions. At the nanoscale

regime, surface effects depend on molecular events best accessible by molecular simulations. We

describe the field-induced transition from strongly hydrophobic to strongly hydrophilic behavior

in the simulated, hydrocarbon-like planar confinements in equilibrium with the field-free bulk

phase. The crossover between hydrophobic and hydrophilic regimes is quantified in terms of

surface free energies associated with liquid spreading into confinement.

In view of the increased compressibility of the confined liquid, electrostriction effects in

confinement are an order of magnitude stronger than in bulk water. Surface energies and wetting

free energies appear to follow qualitative predictions from macroscopic thermodynamics.

Specifically, we do not reproduce the field-induced water depletion in a confinement reported22

in a recent study of electric field effects on water between graphite-like plates. Strong field is

found to stabilize the liquid phase where spontaneous evaporation of water from a narrow

confinement takes place in the absence of the field30,33.
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In contrast to observations in macroscopic systems, we demonstrate a pronounced effect

of field direction on water affinity to the interface. In order to optimize hydrogen bonding, angle

distributions of water molecules relative to the walls are biased against orientations with both

hydrogen atoms pointing toward the wall. Consequently, field effects are weakened in the

perpendicular field. Here, on one of the walls the field tends to orient interfacial molecules in the

unfavorable direction, resulting in different wettabilities of opposing confinement walls. In view

of incomplete screening, the field effect on wetting of a nanoscale confinement increases with

the width of the pore. The differences in surface free energy, attributed to field direction,

however, are virtually independent of confinement width and hence comparatively more

important in narrow confinements where surface molecules represent a more significant fraction

of the confined liquid. Field direction and polarity is therefore an important determinant of

electro-wetting effects in a nanoporous material. Conversely, for fixed field direction and freely

rotating nanotubes, surface energetics will favor water-filled tube alignment with electric field

suggesting a novel mechanism to address structural order in a nanomaterial through controlled

molecular or supramolecular charge distribution.
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