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We investigate the influence of grain boundaries (GBs), line defects (LDs), and chirality on

thermal transport in graphene using non-equilibrium Green’s functions. At room temperature, the

ballistic thermal conductance is �4.2GW m�2 K�1, and single GBs or LDs yield transmission

from 50% to 80% of this value. LDs with carbon atom octagon defects have lower thermal

transmission than that of GBs with pentagon and heptagon defects. We apply our findings to study

the thermal conductivity of polycrystalline graphene for practical applications, and find that the

type and size of GBs play an important role when grain sizes are smaller than a few hundred

nanometers.VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4776667]

Graphene is a promising material for applications as

transparent electronics on flexible substrates,1 or for high

current density interconnects on common Si substrates.2

Both in such practical contexts and from a fundamental point

of view, it is important to understand its thermal properties

in order to address any arising thermal challenges.3 For

instance, exfoliated and suspended (monocrystalline) gra-

phene has very high in-plane thermal conductivity,3–5 com-

parable to or higher than that of diamond (2000–4000W

m�1 K�1). However, graphene grown by chemical vapor

deposition (CVD) is more likely to be used for large-scale

applications or interconnects,1,2 but it is polycrystalline with

grain boundaries (GBs)6 and line defects (LDs)7 which, like

any imperfections,8 can lower thermal conductivity.9 Previ-

ous studies have examined heat flow across graphene GBs

using non-equilibrium molecular dynamics (MD) simula-

tions.10,11 These enable the atomistic study of heat flow and

the extraction of thermal conductivity based on computed

temperature gradients,12 taking into account anharmonic

effects. However, the MD technique itself is based on classi-

cal equations of motion and may not capture quantum

aspects of thermal transport, overestimating thermal con-

ductance when operating temperatures are well below the

Debye temperature, which is the case for graphene (HD �
2100K).3,5

In this study, we calculate the thermal conductance across

GBs and LDs in graphene and in graphene nanoribbons

(GNRs) using the non-equilibrium Green’s function (NEGF)

method,13 and compare our results with other studies and ex-

perimental data. We also find that chirality can have a signifi-

cant impact on heat flow along GNRs, with some chiralities

exhibiting thermal conductance significantly lower than that

of armchair and zigzag structures, even without taking into

account edge roughness effects. Then, we compute the ther-

mal conductance in GNRs with GBs and LDs. Finally, using

our calculated GB transmission, we estimate the thermal

conductivity of polycrystalline graphene depending on grain

size for practical applications.

Figure 1 shows the different GBs and LD types consid-

ered in this work, obtained by using mirror reflection of

GNRs with different chiralities. After establishing the struc-

ture of a GNR bisected by one GB, we find the minimum

energy configuration using the MD simulator LAMMPS14

with optimized Tersoff potentials proposed by Lindsay and

Broido, shown to improve the accuracy of thermal calcula-

tions.15We use periodic boundary conditions during this min-

imization such that the resulting structure is less affected by

GNR edges and is closer to the original unperturbed graphene

lattice. The first GB shown in Fig. 1(a) is obtained with

the GNR elementary cell lattice vector (1,4), i.e., r¼ 4 � n
þ 1 �m, where n and m are the basis vectors of the graphene

lattice, as shown in Fig. 1(e); we call this particular GB

“grain-4.” We obtain additional GBs denoted “grain-7” and

“grain-10” through a similar technique with the elementary

cell lattice vectors (1,7) and (1,10), respectively, as shown in

Figs. 1(b) and 1(c). The LD shown in Fig. 1(d) has an arm-

chair lattice on either side of the defect. The considered GBs

consist of heptagons and pentagons along with ordinary

carbon hexagons, while the LD consists of octagons and

pentagons, all being consistent with recent experimental

observations.6,8,16

The thermal conductance per unit cross-sectional area

along a GNR can be written using a Landauer-like approach

as13

G00ðTÞ ¼
1

sW

ð1

0

df ðxÞ

dT
NðxÞ�hx

dx

2p
; (1)

where W is the ribbon width, s¼ 3.35 Å is the graphene

“thickness,” f(x) is the Bose-Einstein occupation factor,

N(x) is the transmission function of phonons with frequency

x, and T is the lattice temperature. The transmission function

N(x)¼MmTGB is the product of the number of modes and

the transmission coefficient of the GB or LD, if one is pres-

ent.17 (In the ballistic case without a GB or LD, the transmis-

sion coefficient TGB¼ 1.)
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We calculate the transmission function using NEGF13

with the force constant matrix based on the same optimized

inter-atomic potentials15 used for energy minimization when

defining our structures. NEGF is a widely used method to

calculate the phonon transmission properties of nanoscale

carbon structures.18 The force constant matrix is found as

kij¼ @2E/@ui@uj, where E is the potential energy of the lattice

and ui is the displacement of the ith degree of freedom.13 In

order to find the transmission function N(x), we need to cal-

culate the Green’s functions of semi-infinite GNRs to the left

and right of the GB, which are found using force constant

matrices at the GNR leads with the decimation technique.19

We add a small imaginary part (0.1%) to the phonon fre-

quency to achieve the convergence of the decimation tech-

nique. However, the sensitivity of the transmission function

to the exact value of this imaginary part of frequency is

weak. The equations used to calculate the Green’s functions

of the structure coupled to the electrodes and final transmis-

sion are standard and can be found elsewhere,13,18 but for

completeness are also reproduced in the supplement.20

GNRs with GBs should be longer than 10 nm in length, oth-

erwise the stress induced by the GB affects the lattice at the

GNR end, thereby affecting the Green’s functions of a pris-

tine semi-infinite GNRs. The typical size of our simulated

structures with GBs is approximately 11 nm in length and

6 nm in width. Although phonon-phonon scattering can be

included in such a methodology,21 we neglect it here in order

to decrease computational burden, which can be justified

because the intrinsic phonon mean free path at room temper-

ature in pristine graphene3 is �600 nm in suspended samples

and �100 nm in substrate-supported samples, both being

much larger than our structure size.

First, we use periodic boundary conditions in the trans-

verse direction (y-axis in Fig. 1) to define a force constant

matrix of the system, which is related to phonon propagation

in the infinite graphene sheet. The corresponding phonon dis-

persion is shown in Fig. 2(a). We simulate a pristine GNR

with no defects (“nd” subscript) to ensure that the thermal

conductance does not depend on chirality in this case of peri-

odic boundary conditions as shown in Fig. 2(b). The trans-

mission would be different if boundary conditions in the

transverse direction were not periodic, which we will discuss

later. We can see the significant contribution of out-of-plane

flexural modes (Z-modes) at phonon energies below 50meV,

while in-plane modes (longitudinal L, and transverse T) are

more important at higher energies. We simulated all struc-

tures using two different widths (�4 nm and �6.5 nm) to

ensure that the phonon transmission scales linearly with

width, then used the wider samples (�6.5 nm) in our

analysis.

Figure 2(c) shows the phonon transmission function of

structures with the three GBs and LD from Fig. 1. We find

that the grain-4, grain-7, and grain-10 GBs have almost iden-

tical phonon transmission, and the LD exhibits the lowest

transmission almost across the entire phonon spectrum. As

the transmission is determined by the atomistic structure of

the defect, the numerical results indicate that the prevalence

of C-atom octagons has a greater effect on weakening ther-

mal transport across the LD, than do the pentagons and hep-

tagons in the other three GBs (see Fig. 1). In order to

confirm this structural effect, we evaluated the average cohe-

sion energy (Ecoh) of carbon atoms at the GB and LD boun-

daries and found that for LD it is �7.4 eV while for GBs it is

in the range �7.63 to �7.77 eV, with the equilibrium value

in pristine graphene being Ecoh¼�7.97 eV (also see Table

IV in Ref. 15). Higher deviation from the equilibrium energy

implies a greater change in the force tensor, which leads to a

greater change in transmission properties.

Having calculated the transmission functions, we can

now obtain the thermal conductance by integrating Eq. (1) as

shown in Fig. 3. The conductances of GBs and LD have dif-

ferent temperature dependencies because of their different

FIG. 1. Examined graphene GBs constructed using mirror reflection of

GNRs with different chiralities: (a) grain-4, (b) grain-7, (c) grain-10, and (d)

LD. (e) Example for the chirality of the GNR underlying grain-4.

FIG. 2. Phonon transmission along graphene structures with periodic bound-

ary conditions in the transverse direction (also see Fig. 1). (a) Computed dis-

persion showing phonon energy �hx vs. wave vector q. L, T, and Z labels

correspond to longitudinal, transverse, and out-of-plane phonon displace-

ments. A and O labels are for acoustic and optical phonons, respectively. (b)

Corresponding transmission function (i.e., number of modes per width)

across pristine graphene of chiralities from Fig. 1. Individual chiralities are

not labeled because all display the same transmission spectrum. The subset

of out-of-plane ZA and ZO modes is shown separately. (c) Computed trans-

port across grains from Fig. 1, revealing that transmission depends on the

grain structure. Grain-4 (g-4) and grain-7 (g-7) have similar transmission,

grain-10 (g-10) exhibits lower transmission, and LD has the worst

transmission.
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transmission spectra. While at �100K the thermal conduc-

tances of all defects are very close (within 10%), at �300K

the difference is notable. The conductance of GBs is simi-

lar22 and reaches �80% of the pristine graphene conductance

at 300K; on the other hand the thermal conductance across

the LD is lower, being �50% that of pristine graphene at

room temperature. Figure 3(b) displays each GB and LD

conductance as a fraction of the non-defective (nd), pristine

graphene conductance (G00
nd).

The conductances of defective structures in our calcula-

tions are in the range G00 ¼ 2–3GW m�2 K�1 at room tem-

perature. The ballistic conductance of pristine graphene is

estimated to be around G00
nd � 4.2GW m�2 K�1. (This value

of the ballistic conductance can differ by 5–15% if other

phonon dispersion parameters are used.23,24) The thermal

boundary conductance (TBC) owed to the defects alone

is estimated as TBC¼ 1=ð1=G00 � 1=G00
ndÞ, in the range of 3–

8GW m�2 K�1 at room temperature. These values are sig-

nificantly lower than those obtained through MD simulations

(>15GW m�2 K�1).10,11 While MD simulations are excel-

lent tools to understand relative changes in thermal proper-

ties due to atomistic modifications,11,25 they tend to

overestimate the absolute value of the TBC due to their

semi-classical treatment, in particular at temperatures well

below the Debye temperature HD, because of their inability

to incorporate Bose-Einstein statistics.3,5 Another difference

between MD simulations and the NEGF approach is that MD

simulations do take into account anharmonic phonon interac-

tions, which are not captured in NEGF.

The Dulong-Petit classical limit3,26 of our NEGF model

is obtained at very high temperature (T > HD), where thermal

conductances saturate at �11GW m�2 K�1 for pristine gra-

phene, �7GW m�2 K�1 for GBs, and �5GW m�2 K�1 for

the LD. The corresponding TBC values for GBs and LDs are

19 and 9GW m�2 K�1, respectively. The former, high-

temperature NEGF estimate of the GB TBC, is in better agree-

ment with the MD results of Bagri et al.10 (15 to 45GW m�2

K�1) and those of Cao et al.11 (�20GW m�2 K�1). However,

the range of MD TBC results10,11 remains higher than the

high-temperature NEGF ones, suggesting that anharmonic

interactions and multi-phonon processes (captured by MD)

can enhance interfacial thermal transport.27

We now calculate the same structures without periodic

boundary conditions in the transverse direction, which may

be more representative of GBs across very narrow GNRs.

Figure 4(a) shows that the ballistic thermal conductance

along a zigzag GNR almost matches that of graphene with

periodic boundary conditions, and the thermal conductance

along an armchair GNR is lower, which was also demon-

strated by other studies.28 We find that GNRs with chiralities

different from zigzag and armchair can have notably lower

phonon transmission. We note that this reduction of phonon

transmission shown in Fig. 4(a) is not due to the edge rough-

ness scattering, but due to the reduction in number of modes

(Mm) because phonon transmission in our simulations exhib-

its linear dependence on sample width.

It is interesting that the GNR with elementary lattice

cell vector (1,10) has a structure very similar to a zigzag

GNR (with angle between two orientations being only 4.6�),

but almost 40% lower thermal conductance at 300K because

some phonon modes are eliminated as a result of omitting

periodic boundary conditions in the transverse direction.

This result is different from that obtained for thermal con-

ductivity with relaxation time calculations29 where an arm-

chair GNR had the lowest thermal conductivity, and this

difference may be due to the angular dependence of the scat-

tering relaxation time.

FIG. 3. (a) Thermal conductance vs. temperature across various defects

(GBs and LD) corresponding to Fig. 1. Calculations are performed using

periodic boundary conditions in the transverse direction (width 6.5 nm)

based on transmission spectra of Fig. 2. The upper limit of ballistic conduct-

ance in graphene with no defects (G00
nd) is displayed for comparison.

(b) Thermal conductance vs. temperature along graphene with a defect, nor-

malized by the ballistic conductance of the same case with no defects (G00
nd).

At room temperature, the grain-4 and grain-7 GB structures show the largest

thermal conductance (�80% of pristine graphene), and the LD the lowest

(�50% of pristine graphene).

FIG. 4. Thermal properties of structures calculated without using periodic

boundary conditions in the transverse direction. (a) Ballistic thermal con-

ductance in pristine GNRs of the chirality indicated, see Fig. 1. (b) Phonon

transmission in GNRs with a GB or LD normalized by transmission of the

same GNRs without defects (TGB) as a function of phonon energy, �hx.

(c) Thermal conductance vs. temperature along GNRs with a defect, normal-

ized by the ballistic conductance of the same GNRs with no defects (G00
nd).
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We now turn to how GBs will affect thermal transport in

GNRs without periodic boundary conditions in the transverse

direction. The lattice structure is exactly the same as in the

case of periodic boundary conditions and the difference lies

in the definition of the force constant matrices. In order to

perform a more meaningful analysis and to observe relative

changes, we plot the ratio of phonon transmission in a GNR

with a defect to the phonon transmission of a pristine GNR

as it is shown in Fig. 4(b). We can see that the difference in

the normalized conductance between GBs and LD shown in

Fig. 4(c) was smaller here than it was in the case of periodic

boundary conditions in the transverse direction shown in

Fig. 3. Overall, the absence of periodic modes causes both

lower thermal conductance in pristine GNRs and smaller

transmission through defects, which indicates that periodic

modes (which do not exist in realistic, narrow GNRs) are

transmitted more effectively through GBs.

Before concluding, we wish to calculate the thermal

conductivity in realistic polycrystalline graphene intercon-

nects using the transmissions of GBs we just obtained with

non-periodic boundary conditions in the transverse direction.

The thermal conductivity determined by each polarization

[longitudinal acoustic (LA), transverse acoustic (TA), or

flexural acoustic (ZA)] is

j ¼
1

2

ð

xmax

0

sðxÞgðxÞ
dx

dq

� �2
df ðxÞ

dT
�hx dx; (2)

where the 1=2 factor is due to the two-dimensional wave vec-

tor q, s(x) is the relaxation time, and g(x) is the density of

states numerically evaluated using the phonon dispersion

given by the optimized Tersoff potentials.15

The phonon relaxation times can be estimated using

Matthiessen’s rule as s(x)�1¼ su
�1 þ ss

�1 þ sGB
�1, where

su(x) is the phonon-phonon umklapp scattering time, ss(x)

is the scattering with a substrate, and sGB(x) is the relaxation

time due to GB scattering. Although the relaxation time

approximation (RTA) for umklapp scattering might not lead

to the most accurate results,30 it gives us a reasonable esti-

mate for thermal conductivity at 300K, the case we will dis-

cuss here. The treatment of umklapp scattering for the ZA

modes can be complicated, but it was suggested that the ZA

modes are strongly affected by the substrate31 so we neglect

their umklapp scattering and use only GB and substrate scat-

tering for the ZA modes. We use tabulated substrate scatter-

ing times calculated for a SiO2 substrate.
31

The dependence of the thermal conductivity of sup-

ported monocrystalline graphene on temperature is shown in

Fig. 5(a) and compared with experimental data.31 In accord-

ance with Boltzmann transport equation (BTE) simula-

tions,31 the main contribution comes from TA and LA

modes because the ZA modes are suppressed by substrate

scattering. To describe GB scattering, we use the relaxation

time approach similar to the Mayadas model32

sGB ¼
@x

@q

� ��1

‘G
TGBðxÞ

1� TGBðxÞ
; (3)

where ‘G is the average grain size and TGB is the transmission

coefficient of GBs shown in Fig. 4(b). In our NEGF model, we

can only separate the in-plane transmission from the out-of-

plane transmission [see Fig. 2(b)] and cannot separate the LA

and TA modes; therefore, we will consider the transmission

coefficient TGB to be the same for both LA and TAmodes.

After performing the integration of Eq. (2) we obtain the

thermal conductivity of supported polycrystalline graphene

at room temperature,33 which we plot as a function of grain

size ‘G in Fig. 5(b). We find that LDs cause the strongest

degradation of thermal conductivity, which is due to their

lower phonon transmission as shown earlier. We also find

that the thermal conductivity is not significantly degraded at

room temperature if polycrystalline graphene grain sizes are

several microns or larger. However, the thermal conductivity

is lower if the average grain size is smaller than several hun-

dred nanometers, becoming comparable to the phonon mean

free path in supported graphene (�100 nm) at room

temperature.3

In conclusion, we have calculated the thermal conduct-

ance of several GBs and LD in graphene using non-

equilibrium Green’s functions, and found that “not all defects

are created equal” from a thermal transport point of view. We

have identified ballistic transport limits, and shown that GNRs

with chirality different from armchair and zigzag exhibit

�30% lower thermal conductance. Single GBs lying across

such GNRs decrease the thermal conductance by another

30%–40% compared to pristine GNRs of corresponding chiral-

ity. Importantly, all our calculations obey ballistic thermal

transport limits. Finally, we estimated the dependence of ther-

mal conductivity in substrate-supported CVD graphene on

grain type and grain size, finding that GBs play an important

role when grain sizes become comparable to or smaller than

several hundred nanometers. Such findings are important for

future applications of CVD-grown graphene, especially on

flexible substrates which typically have very low thermal

conductivity.

We acknowledge financial support from the Nanoelec-

tronics Research Initiative (NRI), National Science

FIG. 5. (a) Simulation results (without GBs, lines) fitted against experimen-

tal data (Ref. 31, symbols) for thermal conductivity of monocrystalline gra-

phene on SiO2 substrate. (b) Corresponding thermal conductivity of

polycrystalline graphene as a function of average grain size ‘G, calculated
using the thermal conductance of GBs from Fig. 4. The thermal conductivity

depends on defect type (GB or LD) and becomes strongly affected when

grain sizes are below dimensions a few times the intrinsic phonon mean free

path in substrate-supported graphene (�100 nm at room temperature) (also

see Ref. 3).
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