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Abstract A quasi-static homogeneous drained triaxial com-
pression test on cohesionless sand under constant lateral pres-
sure was simulated using a three-dimensional DEM model.
Grain roughness was modelled by means of symmetric clus-
ters composed of rigid spheres imitating irregular particle
shapes. The effect of grain roughness on shear strength, dilat-
ancy, kinetic, elastic and dissipated energies was numerically
analyzed. Some numerical results were compared with avail-
able experimental results.

Keywords Triaxial test · Granular material · Discrete
element method · Grain roughness · Energy · Dissipation

1 Introduction

Granular materials consist of grains in contact and of sur-
rounding voids, which change their arrangement depending
on environmental factors and initial density. Their microme-
chanical and fabric behaviour is inherently discontinuous,
heterogeneous and non-linear. To describe their behaviour,
two main approaches are used: continuum and discrete ones.
The first ones perform simulations at the global scale using
the finite element method on the basis of e.g. elasto-plastic
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and hypoplastic constitutive models enhanced by a charac-
teristic length of micro-structure to describe strain locali-
zation (e.g. [7,13,38–41]). In turn, the latter ones perform
simulations at the grain scale, i.e. each grain is modelled
individually (e.g. [2,4,16,24,30,31,42]). Their advantages
are that they directly model micro-structure and can be used
to comprehensively study the mechanism of the initiation,
growth and formation of shear zones at the micro-level which
strongly affect macro-properties of granular matter. The dis-
advantages are: high computational cost, inability to model
grain shape accurately and difficulty to validate it experimen-
tally as the inertial and damping effects lose their meaning in
quasi-static problems. However, they become more and more
popular nowadays for modelling granular materials due to an
increasing speed of computers and a connection possibility
to the finite element method [33].

A large number of tests and simulations reveal that irregu-
larly shaped grains strongly affect the quasi-static mechanical
behaviour of granular materials ([26,34]). To resemble the
real grain shape (roughness), two main approaches are usu-
ally used: 1) contact moments between rigid spheres or disks
are assumed ([5,16,18,21,28,44]) or 2) clusters of com-
bined discrete elements that form irregularly-shaped grains
are introduced [12,25,26,29,35,48].

The concept of the total and stored elastic energy in
soil mechanics was already discussed in the literature (see
[8] and references therein). In the case of metals the elas-
tic energy is divided into fully recoverable and stored or
hidden portions. During unloading the recoverable part is
released but the hidden energy remains stored in the material
in the unloaded state as it represents the energy of residual
microstresses at the grain and crystalline lattice levels. In
soils and especially in granular materials the process of full
unloading releases totally the grain interaction and related
elastic energy. However, the partial unloading with the
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remained hydrostatic pressure can be considered and then
the division into recoverable and stored elastic energies can
be assumed. The free energy of a representative soil element
can then be decomposed into elastic strain and irreversible
(plastic) strain dependent portions � = �e(εe) + �p(ε p)

[9]. Here the first term represents the elastic strain dependent
energy for a granular aggregate when only elastic grain defor-
mation occurs with no sliding at contact interfaces and the
second term represents the stored energy due to contact slip
and sliding. It is not clear whether the concept of separation
of energies is valid for granular materials since it is difficult
to execute an elastic loading or unloading process for which
the contact force interaction would occur only along normal
directions to contact interfaces. In our study the evolution of
the total elastic energy will be analyzed during the continuing
deformation process without separation into recoverable and
stored terms.

The objective of this paper is to present numerical anal-
yses of quasi-static homogeneous true triaxial compression
tests carried out to determine the macroscopic behaviour of
sand specimens composed of discrete elements in the form of
clusters. A three-dimensional discrete model YADE devel-
oped at University of Grenoble was used [21,22]. The par-
ticle breakage was not considered. The discrete simulation
results were compared with the corresponding experimental
data from drained axisymmetric triaxial compression tests
performed by [45] at Karlsruhe University with real sand.
The intention of our studies was to calculate the effect of
the grain roughness (shape) on the shear strength, dilatancy,
elastic and dissipated energies of real sand (so-called Kar-
lsruhe sand), which had the same initial void ratio, mean
grain diameter and grain distribution. A special attention
was paid to the energy transformation in sand and its elastic
and dissipative characteristics, playing a fundamental role
in the granular matter behaviour [1,2,37,46]. The energy
and dissipation results were compared with the similar ones
from simplified two-dimensional simulations of biaxial com-
pression with round particles performed by [23] and by
[6]. In addition, the original own method was introduced
to generate different grain shapes in the form of clusters of
spheres.

2 Discrete model

The discrete element method (DEM) is widely used to model
a range of processes across many industries [2,10,14,19,
23,32,42,47]. To simulate the behaviour of sand, a three-
dimensional spherical discrete model YADE was devel-
oped at University of Grenoble [21,22] by taking advan-
tage of the so-called soft-particle approach (i.e. the model
allows for particle deformation which is modelled as an
overlap of particles). A dynamic behaviour of the discrete

Fig. 1 Tangential and normal contact model [21,36]

system is solved numerically using a force-displacement
Lagrangian approach and tracks the positions, velocities,
and accelerations of each particle individually. It uses an
explicit finite difference algorithm assuming that veloci-
ties and accelerations are constant in each time step. To
calculate forces acting in particle-particle or particle-wall
contacts, a particle interaction model is assumed in which
the forces are typically subdivided into normal and tangen-
tial components. The total forces acting on each particle
are summed. Next, the problem is reduced to the integra-
tion of Newton’s equations of motion for both translational
and rotational degrees of freedom. As the results, accel-
erations of each particle are obtained. The time step is
incremented and accelerations are integrated over time to
determine updated particle velocities and positions. To main-
tain the numerical stability of the method and to obtain
a quick convergence to a quasi-static state of equilibrium
of the assembly of particles, damping forces are intro-
duced [10].

The interaction force vector �F representing the action
between two spherical discrete elements in contact is decom-
posed into a normal and tangential vector, respectively. A
linear elasticity is chosen in our contact model. The normal
and tangential forces are linked to the displacements through
the normal stiffness Kn and the tangential stiffness Ks

(Fig. 1a, b)

�Fn = KnU �N , (1)
�Fs = �Fs + Ks� �Xs, (2)

where U is the penetration depth between elements,
→
N

denotes the normal vector at the contact point and � �Xs is the
incremental tangential displacement. The tangential force �Fs

is obtained by summing its increments. The stiffness parame-
ters are calculated with the aid of the modulus of elasticity of
the grain contact Ec and two neighbouring grain radii RA and
RB (to determine the normal stiffness Kn) and with the aid
of the modulus of elasticity Ec and Poisson’s ratio νc of the
grain contact and two neighbouring grain radii RA and RB

(to determine the tangential stiffness Ks), respectively [36]

Kn = Ec

2RA RB

RA + RB

and Ks = νc Ec

2RA RB

RA + RB

. (3)
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Fig. 2 Experimental results of
axisymmetric triaxial tests by
[45] with Karlsruhe sand (mean
grain diameter d50 = 0.5 mm):
relationship between σ1/σc and
ε1, and between εv and ε1 at
different confining pressures σc:
a initially very dense
(eo = 0.53) sand, b initially
loose sand (eo = 0.80)
(σ1—vertical normal stress,
ε1—vertical normal strain,
εv—volumetric strain)

If the grain radius RA = RB = R, the stiffness parameters
are equal to: Kn = Ec R and Ks = νc Ec R (thus Ks/Kn =

νc), respectively. The frictional sliding starts at the contact
point if the contact forces �Fs and �Fn satisfy the frictional
Mohr–Coulomb equation (Fig. 1a)

∥

∥

∥

�Fs

∥

∥

∥

−
∥

∥

∥

�Fn

∥

∥

∥

tanµ ≤ 0 (4)

with µ as the inter-particle friction angle (tension is not
allowed). No forces are transmitted when grains are sepa-
rated. The assumed tangential and normal contact relation-
ships in the discrete model are demonstrated in Fig. 1a, b,
respectively (the unloading is purely elastic). The elastic
parameters Kn and Ks play a major role only in the elas-
tic response of granulates. The normal stiffness modulus Kn

is related to the average modulus of elasticity of granular
material E and the Poisson ratio ν. The ratio Ks/Kn = νc

depends on the Poisson’s ratio ν (the relationship is approx-
imately linear, i.e. E R ≈ Kn/5, ν ≈ νc/2, cf. [5]). A choice
of a linear elastic normal contact (Fig. 1b) is not in agreement
with a non-linear Hertz interaction law between two adjacent
elastic spheres with Fn ∼ U 3/2 which is the exact elastic
solution [15,27]. Therefore the elastic constants of the grain
contact in our model with irregularly-shaped grains do not
correspond to the elastic constants of the spheres’ material in
the Hertz law (thus Kn in Eq. 3 is several times larger than the
mean normal stiffness of the spherical grain material). The
elastic contact moduli are specified from the experimental
data of a triaxial compression sand test, as described later in
the text.

To dissipate the excessive kinetic energy in the discrete
system, a simple local non-viscous damping scheme was
adopted, proposed by [11], which assumes a decrease of
forces which increase particle velocities by using the damp-
ing parameter α

�Fk
damped = �Fk−α · sgn(�vk)

∣

∣

∣

�Fk
∣

∣

∣

, (5)

where �Fk is the kth component of the residual force vec-
tor and �vk is the kth component of the translational velocity
[36]. A positive damping coefficient α is smaller than 1 (sgn
(•) returns the sign of the kth component of velocity). The
equations are separately applied to each k-th component of
a 3D vector x, y and z. Note that the effect of damping is
insignificant in quasi-static calculations.

The following 3 main local material parameters are needed
for discrete simulations:Ec, νc and µ. In addition, the parti-
cle radius R, particle density ρ and damping parameter α

are required. The material parameters can be calibrated with
corresponding axisymmetric triaxial laboratory test results
on Karlsruhe sand by [20] and [45], Fig. 2. The index proper-
ties of Karlsruhe quartz sand are: mean grain diameter d50 =

0.50 mm, grain size among 0.08–1.8 mm, uniformity coeffi-
cient U = 2, maximum specific weight γ max

d = 17.4 kN/m3,
minimum void ratio emin = 0.53, minimum specific weight
γ min

d = 14.6 kN/m3 and maximum void ratio emax = 0.84.
The sand grains are classified as sub-rounded/sub-angular.

In numerical simulations, a cubical sand specimen of 10×

10 × 10 cm3 was used. A simplified linear grain distribution
curve was used for Karlsruhe sand (grain range among 2.5–
7.5 mm, Fig. 3). To save the computation time, discrete sim-
ulations showing the capabilities of DEM were carried out
with d50 = 5 mm (Fig. 3) instead of d50 = 0.5 mm. The test
was modelled using confining smooth rigid wall elements
(without inducing shear localization). The top and bottom
boundaries moved vertically as loading platens under strain-
controlled conditions to simulate the confining pressure p.
The loading speed was slow enough (10 mm/s) to ensure the
test was conducted under quasi-static conditions.

Different methods can be used to model irregularly-
shaped grains [3,12,17,25,26]. In our method, each gran-
ular assembly was prepared by putting clusters of spheres
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Fig. 3 Simplified linear grain distribution curve (d50 = 5.0 mm) used
in discrete simulations to simulate Karlsruhe sand

of a random radius according to the grain distribution curve
by Fig. 3 (without gravity) into a cubical container with 6
external walls which had a regular cubical grid with a particle
distance of 10 mm. The initial configuration of the specimen
was thus isotropic. In order to obtain a desired initial density
owing to grain overlapping, the inter-particle friction coeffi-
cient µ was varied between 0 and 30◦ to exactly reproduce the
target initial sand volumetric weight. During dynamic com-
pression to the desired confining pressure σc, grains bounced
against each other and moved in random directions, thus their
initial ordered arrangement became random. The assembly
was then allowed to settle to a state where the kinetic energy
was negligible and the friction coefficient was set to µ = 30◦.
The isotropic assembly was then subjected to the boundary
driven triaxial compression. In general, arbitrary symmetric
and non-symmetric shapes can be obtained with the different
aspect, angularity and convexity index.

Figure 4 presents 12 different symmetric clusters of
spheres used in discrete calculations. To generate e.g. clusters
of 2 spheres (shapes ‘b–f’ of Fig. 4), the distance between
spheres was set to be between 0 and −0.33d. In turn, the clus-
ters of 4 and 6 spheres (shapes ‘g, h’ of Fig. 4) were made
from 4 or 6 symmetrically placed spheres being tangential to
the central point of the cluster. The discs (shape ‘l’ of Fig. 4)
were created from 12 clumps of the type ‘i’ rotated around
the main disc axis. Some shape indexes for the grain clusters
of Fig. 4 are given in Table 1. The aspect index was defined as
the ratio between the maximum and minimum cluster diam-
eter, the convexity index ‘1’ as the ratio between the smallest
sphere volume encompassing the cluster and the cluster vol-
ume, and the convexity index ‘2’ as the ratio between the
smallest convex volume encompassing the cluster and the
cluster volume.

In the case of the cluster of 2 spheres without the overlap
(shape ‘f’ of Fig. 4), 26,300 clusters were composed of 52,600
spheres. In turn, 28,250 clusters were used with 197,750
spheres to model simple ellipsoids (shape ‘i’ of Fig. 4) and

14,500 clusters were used with 594,500 spheres to model
disks (shape ‘l’ of Fig. 4). The computation time was 1 day
(spheres), 2 days (cluster of 2 spheres), 4 days (ellipsoids)
and 10 days (discs) using PC 3 GHz.

3 Discrete results of homogeneous triaxial compression

test

The following discrete material parameters were used in sim-
ulations: Ec=300 MPa, υc=0.3, µ= 30◦, ρ=25.5 kN/m3,

α = 0.08 and d50 = 5.0 mm to match experimental results for
real sand of Fig. 2.

3.1 Effect of grain roughness on strength and volume
changes

Figure 5 shows the calculated evolution of the vertical normal
stress σ1 and overall void ratio e versus vertical normal strain
ε1 for different clusters of spheres of Fig. 4 during triaxial
compression with initially dense sand (eo = 0.53, d50 =

5 mm) under confining pressure of σc = 200 kPa.
Similarly as in the real experiment (Fig. 2), the initially

dense specimens exhibits initially elasticity, hardening (con-
nected first to contractancy and then dilatancy), reaches a
peak at about of ε1 = 2−3.5 %, gradually softens and dilates
reaching at large vertical strain of 25–30 % the same value
of the vertical normal stress with the specimen deforming at
constant volume, i.e. a critical state is always reached. Thus,
the particle shape is not essential for the global critical inter-
nal friction angle (except of the case with single spheres).
The both mobilized strength and dilatancy increase in gen-
eral with increasing grain roughness and rolling resistance
combined with an increase of the sphere number. Thus, the
irregularly shaped particles provide obviously higher internal
friction angles and have less tendency to rotate than perfect
circular particles. The global maximum mobilized internal
friction angle increases from φmax = 28◦ (spheres) up to
φmax = 48.9◦ (ellipsoids ‘k’ of Fig. 4), respectively (Fig. 6).
In turn, the global residual internal friction angle increases
from φcr = 25◦ (spheres ‘a’ of Fig. 4) up to φcr = 32◦ (disks
‘l’ and ellipsoids ‘j’ of Fig. 4), respectively (Fig. 5). The mate-
rial dilatancy (volume increase) is the smallest with spheres
and the highest with clumps ‘f–k’ of Fig. 4, respectively. The
global elastic modulus is similar independently of the grain
roughness (E = 70 MPa with ν = 0.25). The granular system
shows small fluctuations in the residual phase. In general, the
increase of the maximum internal friction angle is not directly
connected with increasing three shape indexes above 1 of
Table 1. Thus, the determination of the key geometrical grain
parameter controlling the mechanical response (strength and
volume changes) requires further investigations.
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Fig. 4 Twelve different grain shapes (a–l) created by symmetric clusters of spheres used in discrete simulations (d—grain diameter)

Figure 6 shows a direct comparison between different
granular clusters composed of 2 ellipsoids (shape ‘j’ of
Fig. 4), 2 spheres (shape ‘d’ of Fig. 4) and 6 spheres (shape ‘h’
of Fig. 4) and experimental axisymmetric triaxial compres-
sion results [45] on initially dense Karlsruhe sand (eo = 0.53)
at confining pressure of σc = 200 kPa.

The both experimental curves (global axial normal stress
versus global axial strain and global volumetric strain versus
global axial strain up to ε1 = 12 % of Fig. 2) are satis-
factorily reproduced. The calculated global maximum inter-
nal friction angle φmax ≈ 43◦ (calculated with principal
stresses from the Mohr’s equation) is slightly higher than the
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Table 1 Some shape indexes
for grain clusters of Fig. 4 Cluster shape of Fig. 4

according to increasing
maximum internal friction
angle of Fig. 5

Aspect index Convexity index ‘1’ Convexity index ‘2’

k) 1.0 2.35 1.20

g) 2.0 2.26 1.15

f) 2.0 3.99 1.25

h) 1.0 1.67 1.14

j) 2.0 2.95 1.05

e) 1.875 3.32 1.17

l) 2.0 2.08 1.03

d) 1.75 2.81 1.11

c) 1.625 2.37 1.07

i) 2.0 4.15 1.04

b) 1.5 2.01 1.04

a) sphere 1.0 1.00 1.00

Fig. 5 Effect of particle roughness on vertical normal stress σ1 versus vertical normal strain ε1 (a) and void ratio e versus vertical normal strain
ε1 (b) during homogeneous triaxial compression test for different grain shapes of Fig. 4 (eo = 0.53, σc = 200 kPa, d50 = 5.0 mm)
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Fig. 6 Effect of some clusters
of spheres of Fig. 4 on vertical
normal stress σ1 versus vertical
normal strain ε1 (a) and
volumetric strain εv versus
vertical normal strain ε1 (b)
from discrete simulations
(Ec = 0.3 GPa, υc = 0.3,
µ = 30◦) compared to
experiments of Fig. 2 during
homogeneous triaxial
compression test
(eo = 0.53, σc =
200 kPa, d50 = 5.0 mm): curve
a for grain shape ‘j’, curve b for
grain shape ‘h’, curve c for grain
shape ‘d’, curve d for
experiment

experimental value of φ = 42◦ (Fig. 2). The softening rate
is similar. However, the calculated strain ε1 = 3 % is about
twice too small. It might be improved by decreasing the mod-
ulus of elasticity of the grain contact [5,43] or by introducing
a non-linear contact model by Hertz–Mindlin–Deresiewicz
(based on our preliminary calculations). The calculated dilat-
ancy angles of ψ = 30◦ − 40◦ match well the experimental
outcome of ψ = 28.5◦ (Fig. 2). The calculated global resid-
ual internal friction angle is 30◦ − 34◦.

The numerical effect of initial void ratio eo and lateral
pressure σc on the sand behaviour using clusters of 6 spheres
‘h’ is described in Figs. 7 and 8. A decrease of initial void ratio
causes an increase of the global maximum internal friction
angle: φmax = 31.0◦ at ε1 = 20 % (eo = 0.74), φmax =

41.7◦ at ε1 = 3 % (eo = 0.54) and φmax = 46.9◦ at
ε1 = 2.5 % (eo = 0.46). The residual internal friction angle

is always the same φcr = 31.0◦ independently of eo. Initially
dense sand undergoes initial contractancy and then dilat-
ancy, and initially loose sand is subjected to contractancy
only. The global maximum φmax and residual φcr internal
friction angle slightly decrease with increasing lateral pres-
sure for initially dense material: φmax = 42.2◦, φcr = 29.1◦,

ψ = 47.5◦(σc = 300 kPa), φmax = 41.9◦, φcr = 30.6◦, ψ =

46.4◦(σc = 200 kPa) and φmax = 40.3◦, φcr = 30.5◦, ψ =

32.0◦(σc = 100 kPa). The material dilatancy is similar.

3.2 Effect of grain roughness on elastic and dissipated
energies

In a granular system there exist 3 main energies: elastic
energy, kinetic energy and dissipated energy. In addition,
the numerical dissipation also exists (see Eq. 5). The elastic
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Fig. 7 Numerical effect of initial void ratio eo on stress–strain curve and volumetric strain εv versus ε1 during triaxial compression test using
clusters composed of 6 spheres (σc = 200 kPa): a eo = 0.46, b eo = 0.54, c eo = 0.74

Fig. 8 Numerical effect of confining pressure σc on stress-strain curve and volumetric strain εv versus ε1 during triaxial compression test using
clusters composed of 6 spheres ‘h’ (eo = 0.53): a σc = 100 kPa, b σc = 200 kPa c σc = 300 kPa

internal energy stored at contacts between grains Ee is
expressed in terms of work of elastic contact tangential forces
Fs on tangential elastic displacements Ut and of contact nor-
mal forces Fn on penetration depths U . In general, the elastic
internal energy is expressed as follows (here N—the contact
number)

Ee =

N
∑

1

(

|Fe
s |2

2Ks

+
|Fn|

2

2Kn

)

. (6)

The kinetic energy Ec of grains is caused by their translation
and rotation

Ec =

N
∑

1

(

1

2
mv2 +

1

2
I

•

ω2
)

, (7)

where m is the mass and I denotes the moment of inertia of
a particle (v—transitional velocity,

•
ω—rotational velocity).

Due to quasi-static conditions, the effect of the kinetic energy
Ec is negligible (smaller than 1 % of the elastic energy).

The dissipated energy Dp is expressed in terms of work
of tangential (shear) forces on related sliding displacements
(see Fig. 1a)

Dp =

N
∑

1

(

F
pl

s U
slip
s

)

. (8)

In addition, the numerical dissipation Dn is specified during
translation (see Eq. 5).

The total accumulated energy E = Ee + Ec + Dp + Dn is
equal to the external boundary work W done on the assem-
bly by 6 external forces on displacements of 6 rigid external
walls

W =

6
∑

1

F �u. (9)
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Fig. 9 Calculated evolution of: (a) total energy E, (b) plastic dissipa-
tion Dp , (c) elastic energy in normal direction En

c , (d) elastic energy in
tangential direction E s

c , (e) numerical non-viscous damping Dn during

homogeneous triaxial compression test for: (a) clusters of 2 spheres,
(b) clusters of 6 spheres (eo = 0.53, σc = 200 kPa, d50 = 5.0 mm) ((I)
wide view, (II) zoom)

Fig. 10 Calculated evolution of: (a) external energy derivative δE with
respect to vertical normal strain ε1(δE/δε1), (b) elastic internal energy
derivative δEe/δε1 and (c) plastic dissipation derivative δDp/δε1 dur-

ing homogeneous triaxial compression test: (a) clusters of 2 spheres,
(b) clusters of 6 spheres (eo = 0.53, σc = 200 kPa, d50 = 5.0 mm)
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Fig. 11 Calculated initial evolution of elastic internal energy deriv-
ative δEe during homogeneous triaxial compression test (dotted line)
with respect to vertical normal strain ε1 as δEe/δε1 = f(ε1) (curve b

describes evolution of volumetric strain εv = f(ε1)) (a) and with respect
to vertical normal strain as δEe/δε1 = f(εv) (b) (clusters of 2 spheres,
eo = 0.53, σc = 200 kPa, d50 = 5.0 mm)

Figure 9 shows the calculated effect of the grain roughness
on the total accumulated energy E , elastic internally stored
energy at contacts Ee, frictional dissipation Dp and numer-
ical damping Dn in an initially dense sand (eo = 0.53, p =

200 kPa, d50 = 5.0 mm). The systems of clusters of 2 spheres
(shape ‘d’ of Figs. 4) and 6 spheres (shape ‘h’ of Fig. 4) were
compared. In turn, the evolution of the external energy deriv-
ative δE , elastic internal energy derivative δEe and plastic
dissipation derivative δDp with respect to the vertical nor-
mal strain ε1 is demonstrated in Fig. 10. Figure 11 shows
the initial evolution of the elastic internal energy derivative
δEe with respect to the vertical normal strain ε1(δEe/δε1)
for clusters of 2 spheres. Finally, Fig. 12 demonstrates the
evolution of the kinetic energy of granular systems.

Fig. 12 Calculated evolution of kinetic energy Ec during homoge-
neous triaxial compression test: (a) clusters of 2 spheres, (b) clusters
of 6 spheres (eo = 0.53, σc = 200 kPa, d50 = 5.0 mm), (a) rotational
kinetic energy, (b) translational kinetic energy

There exists a roughly linear relationship between the
total energy and plastic damping against the vertical nor-
mal strain (Fig. 9). The plastic dissipation during frictional
sliding is equal to 50 % of the total energy at ε1 = 3 % (cor-
responding to the maximum vertical stress). At the resid-
ual state of ε1 = 30 %, it is already equal to 88 % of the
total energy. The numerical damping is equal always to
6 % of the total energy. The evolution of the total elastic
internal energy (and its components) is similar to the evo-
lution of the shear strength; however the maximum value
is at ε1 = 5% (Fig. 6). At the beginning of deformation
at ε1 < 1 % (when the specimen is in the elastic range),
the total energy is almost fully converted into the elastic
energy. The derivative δEe of the elastic internal work with
respect to ε1(δEe/δε1) is initially positive (Fig. 10). It rapidly
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approaches zero, then becomes negative (since Ee = f (ε1)

diminishes, Fig. 9II) at about ε1 = 5 % (Fig. 10) and after-
wards slightly increases approaching an asymptote at zero
(since Ee = f (ε1) reaches a residual state, Fig. 9II). Beyond
strains of ε1 = 5 %, almost the entire input work is dissipated
due to plastic deformation and numerical damping (the exter-
nal energy rate and dissipation rate are equal δW ∼= δD).
The energies and fluctuations of the energy rates increase
with increasing grain roughness. The elastic energy decreases
during a dilative deformation process only at ε1 > 1 %
(Fig. 11).

The elastic internal work is 80 % at ε1 = 1 %, 40 % at
ε1 = 3 and 5 % at ε1 = 30% of the total energy, respectively.
The residual elastic internal work is performed by contact
normal forces in 70 % and contact tangential forces in 30 %.
Thus, the largest internal work is performed by the contact
normal forces (due to the lack of the plastic deformation).
The elastic energy ratio is the same at the residual state.

The evolution curves in Fig. 9 are qualitatively similar
to those demonstrated by [6]. In turn, the evolution curves
in Fig. 10 are slightly different in the initial phase only than
those shown by [23], who used periodic boundary conditions
(instead of walls). The calculated energy quantities are dif-
ferent than in analyses by [6] using the software of PFC2D,
wherein e.g. the calculated elastic energy was significantly
higher: 90 % (at ε1 = 3 %) and 20 % (at ε1 = 5 %) of the
total energy (probably due to the lack of the third dimension).

The kinetic energy is very small due to the quasi-
static loading of the granular system (Fig. 12). A release
of the elastic energy drives grains to move. At the elas-
tic stage, the kinetic energy is close to zero. The transla-
tional kinetic energy increases up to ε1=5 − 7 % and then
slightly decreases. The rotational kinetic energy continu-
ously increases (slightly). The kinetic energy show fluctu-
ations at the residual phase (2 spheres) or already after the
peak (6 spheres) which correspond to the evolution of the
elastic energy and damping rate. The fluctuations increase
with the grain roughness. The transitional kinetic energy is
2–5 times higher than the rotational one.

4 Conclusions and future work

The numerical simulations of a homogeneous triaxial
compression test show that a discrete model is capable to
reproduce the most important macroscopic properties of
cohesionless granular materials without it being necessary
to describe the granular structure perfectly. Comparing the
numerical simulations with the experimental axisymmetric
triaxial tests conducted for different initial void ratios and
confining pressures shows that the discrete model is able to
realistically predict the experimental results for real cohe-
sionless sand.

The following detailed conclusions can be also drawn:

• The model is capable of closely reproducing the behav-
iour of cohesionless soils in the elastic, contraction and
dilatancy phase and at the critical state. At large strains,
the granular specimen reaches always a critical state inde-
pendently of its initial density. The higher the confining
pressure, the smaller are both the global friction and dilat-
ancy.

• The sand grain roughness can be modelled by irregularly-
shaped grains which may cause an increase of the strength
and volume changes.

• At the elastic stage, the boundary external work is mainly
converted into the elastic energy. At the residual state, the
almost total external boundary work is dissipated by plas-
tic deformation.

• The evolution of the elastic energy is inherently related to
the dilation effect. In fact, the dilation reduces the normal
contact forces and also the number of contact points. As
the major contribution to the elastic energy is related to
the normal forces, the elastic energy decreases during the
dilative deformation process and tends to a steady state
corresponding to a critical state condition.

• The kinetic energy shows fluctuations which correspond
to the evolution of the elastic energy and damping rate.
The fluctuations increase with the grain roughness and
can appear already in the softening phase if the grains are
rough enough. The transitional kinetic energy is higher
than the rotational one.

Our research will be continued. The discrete simulations
will be carried with sand during biaxial compression out by
taking into account shear localization. The local phenom-
ena occurring in a shear zone (such as buckling of granular
columns, vortices, force chain cycles, periodic alternating
dilatancy and contractancy) will be carefully studied.
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