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Abstract 

Membrane based separation system is considered as a promising technology to purify 
water, owing to its simplicity and efficiency in operation. However, the application is 
limited by membrane fouling, which can lead to the declination of water flux and 
premature failure of membrane. The fouling can be controlled through membrane surface 
modification by blending hydrophilic materials during the casting solution preparation. 
Polyethersulfone (PES) membrane is naturally hydrophobic due to lack of oxygen 
functional group, which limits its application in the filtration of water. Therefore, 
modification of PES-based membranes is required. In this work, modification of the PES 
membrane was carried out by incorporating carbon-based nanomaterials (graphene 
oxide (GO)) and a well-known organic polymer (polyvinylpyrrolidone (PVP)). The effect 
of each additive toward the hydrophilicity of composite PES membrane was then 
investigated. GO was synthesized using modified Hummers method due to its simpler 
and shorter process. Each additive was added during the casting solution preparation 
and the amount added was varied from 0.5 to 1.0 wt%. The resultant composite PES 
membranes were characterized using XRD, FTIR and TGA prior to hydrophilicity and 
pure water flux (PWF) measurement. It was observed that the additives (PVP and GO) 
have significantly affected the membranes hydrophilicity, resulting in lower contact angle 
and higher pure water flux. The highest value of PWF (230 L/m2.h) with lowest contact 
angle (42 °) were observed for PES-1.0GOPVP membrane due to high amount of GO 
and PVP. Improved PWF performance of composite PES-1.0GOPVP membrane was 
attributed to the better dispersibility of the PVP and GO and increased surface 
hydrophilicity of the modified composite membranes. This study indicated that PVP and 
GO are effective modifiers to enhance the performance of PES membrane. 

Keywords: Graphene oxide, polyvinylpyrollidone, hydrophilicity, pure water flux, 
composite PES membrane 
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INTRODUCTION 

Membranes are thin and porous sheets of material that are able to 

separate contaminants from water when a driving force is applied. It is 

increasingly utilized for drinking water and wastewater treatment. The 

commonly used membranes in separation processes are ultrafiltration 

(UF) and microfiltration (MF) membranes that are made of ceramic and 

polymeric materials (Jamaly et al.,  2015). The advantages of 

membrane technology are that it can work without addition of 

chemicals, easy to operate, high efficiency, energy and space saving 

and easy to scale up. Despite the many attractive advantages of 

membrane, some of the main drawbacks such as low permeation or 

rejection and fouling difficulties may limit its widespread application. 

It is also less robust and incapable of self-cleaning. Thus, chemical 

treatments are required to prolong membrane life (Thuyavan et al., 

2016). 

Polyethersulfone (PES) is used extensively in the membrane 

preparation due to its unique and excellent properties such as chemical 

resistance, good thermal stability, and high mechanical strength, 

enabling it to be broadly used for preparation of microfiltration (MF), 

ultrafiltration (UF) and gas separation membranes (Ghasem et al., 

2012). However, Jin et al. (2013) stated that low flux and weak 

antifouling capability resulted from PES’s poor hydrophilic property 
have  limited the wide applications of PES membrane in wastewater 

treatment.  This is proved by Rastegarpanah & Mortaheb (2016), where 

they showed that PES membrane exhibits partial hydrophilic 

characteristics and cannot be functional directly in the membrane 

distillation due to the occurrence of etheric bonds in the PES chains. 
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Kiran et al. (2015) also concluded that PES membranes have 

limitations as the inherent hydrophobic property that leads to fouling 

due to lack of oxygen functional group in PES structure. Thus, PES 

membrane needs to be modified. Blending the membrane with more 

hydrophilic nanomaterials has been revealed to combat this matter and 

since then, a number of hydrophilic nanomaterials has been 

investigated (Subramaniam et al., 2017). The blending of these 

additives is not only significantly improved the membrane 

hydrophilicity,  but surface roughness, surface charge, and the pore size 

of membranes are also improved (Safarpour et al. 2015). As the final 

properties of membranes are relied on the properties of additives added 

into the membrane polymer matrix, it is important to understand the 

effects of additive types and concentrations, molecular weights of 

additives, and solvents used during the membrane fabrication towards 

the final performance of PES composite membrane (Prince, 2015). 

Chang et al. (2014) verified that the additives with the good water 

solubility can modify in/on membranes by hydrogen bonding. The 

addition of nanoparticles additives can also improve the final properties 

of the membranes such as the increase of permeability, selectivity, 

strength, and hydrophilicity (Yong et al., 2013). 

Polyvinylpyrrolidone (PVP) is a hydrophilic polymer with no 

hydroxide group or ionic charged group. It has been widely used as a  

modifier for the alteration of PES membrane through the blending 

method (Zhao et al., 2011). The advantages of PVP are high chemical 

stability, nontoxicity and excellent solubility in many polar solvents 

(Chen et al., 2015). PVP also possesses good water solubility and 

hydrophilicity that suitable as pore-forming reagent to control the 

microstructure of membranes. PVP also can functions as anti-

biofouling modifier in order to enhance the surface hydrophilicity and 

thus, reducing fouling. Wang et al. (2009) agreed that PVP gives effect 

on membrane flux and rejection. Their results indicated that with the up 

to 23% as compared to pristine PES. Chang et al., (2014) proved that 

the incorporation of PVP with presence of GO can optimize membrane 

performance due to the formation of hydrogen bonds between GO and 

PVP.  

Graphene oxide (GO) is a two-dimensional carbon material that 

received tremendous attentions owing to its fantastic chemical 

properties (Yu et al., 2013). GO exhibits similar properties as graphene 

but differs by having many oxygen-containing functional groups, for 

instance, epoxy, hydroxyl, carbonyl and carboxyl groups, on the edges 

and basal planes of the sheet. The hydrophilic groups enable stable 

dispersions of GO sheets in aqueous media, which provide a facile 

processing and stacking of these sheets. In addition, these functional 

groups allow reactive modifications of GO, by which one can readily 

control the microstructures and chemical properties of GO membranes, 

as well as develop GO-based hybrid membranes (Liu et al., 2015). GO 

can be produced via either Brodie, Staudenmaier or Hummers method, 

or via various modifications of these techniques (for example, the 

Hummer’s modified method). However, modified Hummers method is 
usually preferred due to its simpler and shorter process (Hegab & Zou, 

2015). According to Chen et al. (2015), GO can be well dispersed in 

the PVP matrix, thus boosting its performance and characteristic.  

The amount of nanomaterials added in the membranes is known to 

significantly affect the final membrane properties. High concentration 

of nanomaterials can lead to a reversible decrease of membrane pore 

size. So, the amount of additives needs to be controlled at optimum 

level to prevent this scenario from happening (Kaminska et al., 2015). 

In this work, polyvinylpyrrolidone (PVP) and graphene oxide (GO) 

were used as additives and the concentrations inside the casting solution 

were varied to understand their effects towards the properties and 

hydrophilicity of composite PES membrane.  

EXPERIMENTAL 

Materials 
Graphite powders (MW=12.01 g/mol, COMAK) were used as raw 

material to synthesis GO. H2SO4 (98%, R&M Chemicals), NaNO3 

(84.99 g/mol, SYSTERM), KMnO4 (158.05 g/mol, R&M Chemicals), 

H2O2 (30%, Merck), HCl (brand)) were used as received during the 

oxidation and exfoliation of GO. PES (MW= 22,000 g/mol) and N, N 

Dimethylacetamide (DMAc) were purchased from Merck USA and 

used as a polymer and solvent in the preparation of solution cast 

membrane. Polyvinylpyrrolidone (PVP) from Fisher Scientific UK was 

used to enhance water hydrophilicity. Deionized water (DI) water was 

used during sample preparation and pure water flux (PWF) 

measurement. 

Synthesis of graphene oxide (GO) 
GO was prepared by using modified Hummer’s method (Aditya 

Kiran et al., 2016). First, 5 g of graphite powder and 2.5 g of sodium 

hydroxide were added into 200 mL of concentrated sulphuric acid and 

stirred for 1 h. Then, 30 g of potassium permanganate was added into 

the beaker and the solution was stirred for another 4 h at temperature 

below 15 ºC. The mixture was then continuously stirred for 20 h at room 

temperature. Next, the mixture was slowly heated to 70 ºC for 2 h and 

90 ºC for another 1 hour with addition of 100 mL of distilled water. 

H2O2 was then used to stop the reaction. The solution was then washed 

using HCl solution for several times, followed by centrifugation. The 

GO was then dried for 24 h at 60-70 ºC to form thin film GO. Finally, 

the dried GO film was purified using acetone, followed by vacuum 

filtration and drying at 60 ºC for 12 h. 

Composite membrane fabrication 
The PES-GO and PES-GOPVP membranes were fabricated via 

phase inversion (immersion precipitation) method. The casting solution 

was prepared by using PES and DMAc as polymer and solvent, 

respectively. GO and PVP were used as hydrophilic modifiers/additives 

to improve performance of membrane. The addition of additives onto 

the PES membranes was carried out using blending technique. PES 

membrane was prepared and used as a control experiment. The 

membrane fabrication was further illustrated in  Fig. 1.

 Table 1 shows the formulation of composite PES membranes pre-

pared in this work using GO and PVP additives.  

Fig. 1 Schematic diagram for preparation of composite PES-GO and 
PES-GOPVP membranes. 

Table 1 Composite membrane composition. 

Membrane 
PES 

(wt %) 
DMAc 
(wt %) 

GO 
(wt %) 

PVP 
(wt %) 

PES 17 83 - - 
PES-0.5GO 17 82.5 0.5 - 
PES-0.5PVP 17 82.5 - 0.5- 
PES-0.5GOPVP 17 82 0.5 0.5 
PES-1.0GO 17 82.0 1.0 - 
PES-1.0PVP 17 82.0 - 1.0 
PES-1.0GOPVP 17 81 1.0 1.0 

Characterization of GO and composite PES membrane 
X-Ray diffraction, XRD (Rigaku) analysis was first carried out to 

confirm the formation of graphene oxide from graphite. The 

measurement was performed in scanning range of 40 Kv, 40 mA, 5-80 

° with 2 °/min of scanning rate. The functional groups of GO were 

http://www.foxitsoftware.com/shopping


Junaidi et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 15, No. 3 (2019) 361-366  

363 

observed using Fourier Transform Infrared (FTIR, Perkin Elmer). The 

spectra were recorded in the wavelength range of 500-4000 cm-1. The 

samples were then characterized using thermogravimetric analysis 

(TGA) under N2 atmosphere at a temperature range between 50 °C to 

1000 °C, with a heating rate of 10 °C/ min. The morphology of the 

membrane was then observed by using Scanning Electron Microscope, 

SEM (Hitachi, S-3400N). The hydrophilic behavior of membranes was 

tested using water contact angle goniometer (AST Product INC, VCA-

3000s).  

Pure water flux (PWF) test was then conducted to determine the 

permeation of water. The test was carried for at room temperature and 

3 bar. The flux was then calculated by using equation (1). 

tA

V
J


=                                  (1) 

Where J is pure water flux (L/m2h), V is volume of permeate (L), A is 

effective area of membrane (m2) and Δt is the sampling time (h).  

RESULTS AND DISCUSSION 

Characterization of GO 
XRD analysis was carried out to confirm the formation of GO from 

graphite. From  Fig. 2 and Fig. 3, it can be observed that XRD spectra

of graphite and GO showed a characteristic peak at around 2θ 
=  10.18° respectively. The XRD pattern of graphite has a very intense 

and sharp peak, indicating that the graphite is highly crystalline 

and ordered structure. After the oxidation and exfoliation processes, 

the peaks disappeared and new peak arouse at lower degree (10.18°), 

confirming the formation of GO. The interlayer spacing obtained for 

graphite and GO were 0.324 nm and 0.868 nm, respectively. It can be 

observed that after the oxidation process, GO possesses bigger 

interlayer space. According to Tissera et al. (2015), the high in-

terlayer space in the synthesized GO is existed due to occurrence of 

oxygenated functional groups and interpolated water molecules in the 

graphite. 

Fig. 2 XRD pattern for graphite. 

Fig. 3 XRD pattern for GO. 

Characterization of composite PES membrane  
Fourier transform infrared (FT-IR) test was carried out to 

characterize the composite PES membrane before and after addition of 

additives. The absorption spectral peaks at the wavelength of 3414, 

1556, 1120 cm-1 in GO particles correspond to the functional groups of 

hydroxyl (O-H) and carboxyl group (C=O and C-O), respectively. 

These functional groups can alter filtration application by improving its 

hydrophilic property of the membrane surface (Zinadini et al., 2014). 

The spectrum also showed two bands at 1078 cm-1 and 1234 cm-1

originated from the C=O stretching vibrations of alkoxyl. After the 

introduction of GO, the spectra indicated the GO entrapped and formed 

as one part of PES structure which responsible for enhancing the 

hydrophilic characteristics of the membrane. This means that the 

carboxylic acid groups are formed on the surface of the graphene. The 

band at 1627 cm-1 is assigned to the vibrations of the adsorbed water 

molecules and the contributions from the vibration of aromatic C=C.  

Fig. 4 FT-IR spectra of composite PES membrane. 
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The TGA curves and decomposition temperature value of neat and 

composite PES membranes in the temperature range of 50-1000 °C 

were shown in Fig. 5. It can be seen that the composite PES membranes 

which contained PVP show a weight loss around 50% at 110 °C. These 

losses are corresponded to the removal of water and COOH groups, 

respectively. Plus, the PVP-composite membrane is sent for testing in 

wet condition. The high decrement of weight lost around 110 °C is also 

a result of oxygen functional groups removal due to the decomposition 

of the hydroxyl or epoxy groups. PES membrane holds the 

decomposition temperature at around 405 °C, corresponding to the 

degradation of the polymer backbone in both blend and bare membrane 

(PES). It is interesting to note that the decomposition temperature is 

improved when GO is incorporated into PES membranes compared to 

PVP Oh et al. (2014). From these results, it can be clearly seen that GO 

is effectively oxidized.  

Fig. 5 Thermogravimetric analysis of composite PES membranes. 

Effect of GO and PVP additives on hydrophilicity and pure 
water flux (PWF)  

The hydrophilicity of the membrane surface can be measured by 

using water contact angle measurement (Ganesh et al., 2013). The 

water contact angle was measured by using the sessile drop method. A 

decreasing trend of contact angle was observed as the additives loading 

was increased in the composite PES membrane as shown in  

Fig. 6. This lower contact angle means that the membrane surface 

is more attracted to water and hydrophilic in nature. In general, when 

the same amount of additives (PES-0.5PVP and PES-0.5GO) is used, 

the composite PES membrane that contained GO (53°) has lower 

contact angle that the one contained PVP (64°). This indicates that the 

surfaces of composite PES-GO membranes are relatively more 

hydrophilic compared to pristine PES membrane. During the 

membrane formation, the hydrophilic GO migrates towards the top 

surface of the membrane as the top layer is more exposed to water (non-

solvent), thus giving the appearance of dark color of the top surface in 

comparison to the bottom surface (Ganesh et al., 2013). However, the 

hydrophilicity of composite PES membrane can be further improved 

when both PVP and GO are used. By combining both additives (PES-

0.5GOPVP), more hydrophilic membrane can be achieved (48°). Other 

than additive types, the amount of additive also plays a significant role. 

By increasing the amount of additive from 0.5 wt% to 1.0 wt%, the 

hydrophilicity of composite PES membranes increased significantly. 

The lowest contact angle (42 °) was observed for PES membrane due 

to the absence of additives to alter membrane pore size. Membrane with 

no additive will exhibit more dense and closed pack top layer pore as 

illustrated in SEM image of Fig 8. The membrane pore size and 

distribution, and the membrane hydrophilicity had great effect on the 

membrane flux. With the increase of the membrane pore size and 

hydrophilicity, the flux is increased with lower contact angle (Zhao et 

al., 2011). 

Fig. 6 Water contact angle of composite PES membrane. 

Fig. 7 shows the pure water flux (PWF) for PES and composite PES 

membranes. It can be seen that the trend of PWF for composite PES 

membrane is inversely proportional with water contact angle. 

Composite PES membranes that contained GO have higher PWF 

compared to PVP. When GO and PVP are both added, the PWF 

increases significantly compared to when associated with bare PES 

membrane. The PWF of composite PES membrane with addition of 

modifier GO or PVP experienced an increment about more than 40% 

compared to bare PES membrane. The value of PWF for PES-

0.5GOPVP was 147 L/m2h and by increasing the value of additives to 

1.0 wt%, the value of PWF became almost double to 230 L/m2h. PVP 

is not only known to help increasing the hydrophilicity of polymeric 

membrane, but it also can alter the microstructure of the membranes. A 

number of studies showed that PVP can be used as a pore filler to 

enhance the micro voids of membrane. This study established the 

importance of using both additives to enhance the hydrophilicity of 

composite PES membrane. The synergetic effects between GO and 

PVP improve the hydrophilicity due to hydroxyl functional groups in 

GO and water soluble PVP that acts as pore-forming reagents (Chang 

et al., 2014). The main factor is that GO particles with oxygen-

containing groups dispersed in the casting solution can homogeneously 

distribute on the membrane surface or membrane pores during the 

phase inversion process with the aid of hydrogen bonds between GO 

and PVP, as shown in Fig 8. 

Fig. 7 Pure water flux of composite PES membranes. 
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Fig 8 shows the SEM images of PES, PES-0.5GO, PES-0.5PVP 

and PES-0.5GOPVP composite PES membranes. The cross-sectional 

SEM images of the prepared membranes displayed typical 

characteristic of asymmetric porous structure with a dense skin top-

layer followed by a finger-like porous sub-layer.  It was found that the 

top surface contained much smaller pore size compared to the bottom 

micro void structure. This can be due to the formation of skin layer that 

induced by phase inversion process (Sirinupong et al., 2017). From Fig 

8 , the SEM image of bare PES membrane showed denser top layer pore 

opening compared to PES membrane with fusion of additives. 

Consequently, due to the carbon-based structure of GO and PES 

polymer, the GO was well spread in the polymer and agglomeration on 

the surface was not observed. The finger-like pores for the PVP 

embedded membranes were observed to be slightly wider than the one 

with GO. This is because of the hydrophilic nature of GO increases the 

mass transfer rate between the solvent and the non-solvent during phase 

inversion (Rezaee et al., 2015). From the PWF and contact angle 

studies, it is observed that the addition of GO can significantly affect 

the hydrophilicity of the PES membrane due to presence of hydroxyl 

and carbonyl functional group in GO. Besides, the presence of PVP in 

the cast solution also facilitates water diffusion to the polymer cast film, 

causing faster solvent and non-solvent (water) exchange rate during 

phase inversion process and leading to formation of long finger-like 

voids.(Sirinupong et al., 2017) 

CONCLUSION 

Composite PES membranes were prepared by using blending 

method. Different types (GO and PVP) and amounts of additives (0.5 

and 1.0 wt %) were used in this study and their effects on the 

hydrophilicity and morphology of composite PES membranes were 

examined by water contact angle and PWF. The prepared composite 

PES membranes were first analyzed using FTIR and TGA. The results 

showed reduction of water contact angle and higher PWF performance 

accomplished. The SEM images showed that the prepared composite 

membranes were in asymmetric structure with dense top layer and 

supported by finger-like structure. When higher amount of GO and 

PVP was used, the finger-like structure became bigger. This might be 

the reason behind higher PWF value. The highest value of PWF (230 

L/m2.h) with lowest contact angle (42°) were observed for PES-

1.0GOPVP membrane due to high amount of GO and PVP. GO and 

PVP as pore filler altered membrane structure to become more 

microporous, less dense on top layer and more straight fingerlike 

structure that allow water channeling to be faster. This study established 

the importance of using both additives to enhance the hydrophilicity of 

composite PES membrane and improve the antifouling properties of the 

membranes. 
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