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Abstract. The aim of the present paper is to study the effect of gravity 
on visco-elastic surface waves in solids. The wave velocity equations are 
deduced from Biot's theory of initial stress on the assumption that gravity 
creates a type of initial stress - hydrostatic in nature. Resulting equations 
are used to investigate surface waves of the Rayleigh, Love and Stoneley 
types. Results are in good agreement with corresponding classical results 
when gravity and viscosity are neglected. 
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1. Introduction 

Usefulness of surface waves is well recognised in the study of earthquakes, seismology, 
geophysics and geodynamics. The theory of surface waves has been widely developed 
by Rayleigh (1885), Voigt (1887), Stoneley (1924), Ewing et al (1957, pp. 257-259, 311), 
Hunter (1960, pp. 1-57), Bland (1960, pp. 30-75), Flugge (1967, pp. 3-21) and Jeffreys 
(1959, pp. 35-38). 

Effects of gravity, curvature and viscosity are not considered in detail. Considering 
the effect of gravity in the problem of propagation of waves in solids, in particular, 
on an elastic globe has been discussed first by Bromwich (1898). Subsequently, the 
investigations of the effects of gravity was considered by Love (1911, pp. 144-178) in 
his text, Some problems of geodynamics, wherein he exhibited that the velocity of 
Rayleigh waves is increased to a significant extent by the gravitational field when 
wavelengths are large. Biot (1965, pp. 44-45) investigated the effect of gravity on 
Rayleigh waves by assuming gravity to create a type of initial stress of hydrostatic 
nature and the medium to be incompressible. Adapting the same theory of initial 
stress and using the dynamical equations of motion for a homogeneous isotropic 
elastic solid medium under the initial stress, some problems of waves and vibrations 
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have been studied by different investigators. De & Sengupta (1973) studied the effects 
of gravity on elastic waves and vibrations and also on the propagation of waves in 
an elastic layer (De & Sengupta 1974). Das & Sengupta (1990a) considered problems 
of surface waves in general visco-elastic media of higher order and also surface waves 
in thermo-visco-elastic media considering time rate of stress and strain of higher 
order (Das & Sengupta 1990b). Roy & Sengupta (1983a) investigated the rotatory 
vibration of a general visco-elastic solid sphere and also the radial vibration of a 
general visco-elastic solid sphere (Roy & Sengupta 1983b). The details are found in 
the work of Eringen & Suhubi (1975, pp. 518, 524-530, 622, 830). 

In this paper an attempt has been made to formulate the equations of motion in 
visco-elastic media under the influence of gravity. Starting from the dynamical 
equations of motion for a homogeneous isotropic elastic solid medium under initial 
stress, as presented by Biot (1965, pp. 273-281), the authors have derived the wave 
velocity equations satisfied by displacement potentials ~ and ~ to account for gravity 
and viscosity. This theory is then applied to the particular examples of Rayleigh 
waves, Love waves and SIoneley waves. Final wave velocity equations in each case 
are in good agreement with the corresponding classical results when the gravity field 
and the viscous field are neglected. 

2. Formulation of the problem 

Consider two homogeneous semi-infinite visco-elastic solid media M 1 and M2 welded 
in contact in the influence of gravity (figure 1). Suppose that the media are separated 
by a plane horizontal boundary, extending to infinitely great distance from the origin, 
M 2 being above M 1. As a reference co-ordinate system we consider a set of orthogonal 
cartesian axes 0xl x2 x3, the origin 0 being any point on the boundary and 0x 3 pointing 
normally to M I. Consider the possibility of a type of wave travelling in the positive 
xl-direction in such a manner that the disturbance is largely confined to the 
neighbourhood of the boundary and at any instant all particles in any line parallel 
to the x3-axis have equal displacements. These two assumptions conclude that the 
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Figure 1. Interface geometry. 
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wave is a surface wave and all partial derivatives with respect to x2 are zero. 
Let us assume that ul, u2 and u3 are the components of displacement at any 

point (xt,x2, x3) at time t. We may separate out the purely dilatational and purely 
rotational disturbances associated with the components ua and u3 by introducing 
two displacement potentials $ and ff in the form 

84, 8¢, 04, ~4, 
u~ = 8~1 8x~' u~ = ~ + Ox--7' (1) 

where ~b and ~b are the functions of the co-ordinates xl, x a, and t and 

V2~=a,  V2 ff=du3 du~ 
Ox~ dx3' 

82 02 d z 0ul c~u2 8u3 
V2 = ~-i~.2 + ~d-~2 + A= q ~x~ ~ ~' ~ +~ o~" 

The component u2 is associated with purely distortional movement. We mark that 
~b, ~b and u2 are respectively associated with P-waves, SV-waves and SH-waves 
(Bullen 1965, pp. 252-265), The symbols have their usual meanings. 

The dynamical equations of motion for the three-dimensional problem under the 
state of initial stress and gravity (Biot 1965, pp. 44-45, 273-281) are 

8all &r12 &r~3 8u3 02u~ 
Ox-7+ ~-~-+ o-~7+ ogN=ost~, 
0tr21 8a22  8a23 0u3 82u2 

0,3, 8,,,~ o,,,, / a , ,  0,,: '  I ,~:u, (2) 
o,,, ~ 0-~-~ + ~ - ~ ; - P g t , ~  + ~,,~)=P 0t2' 

where p is the density of the homogeneous medium, g is the acceleration due to 
gravity and trii are the stress components. 

The stress-strain relation according to Voigt (1887) in an isotropic visco-elastic 
solid medium of first order is 

(r/, + t/2~)tro = (2 , + 22~)A6,j + 2(/~ +/~2~)e,,, (3) 

where ~/1, 21, #1 are elastic constants with r/2, 22 and ~2 accounting for viscosity, e~j 
is the strain tensor and 60 is the Kronecker symbol. 

Substituting (3) in (2), we obtain displacement equations of motion in a first-order 
visco-elastic medium under the influence of gravity as 

8 0A 0 2 + 
[(,~-1 +- [./1 ) + (~.2 -I-/./2)~-]~x 1 + (,ttl + ]./2 ~ ) V  Ul pg(rl,,  8 "~0u3 

= P(~h 8 ~d2ul 

2 = 
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c~A O 2 
[()-1 "t" ]A'I)"~ (;.2 "~",[~2)~]0~3 "~" ( "  I "~-f12~) V U3 

- PO(tll + qzD)t3ul=P(ql~x t + q2~J--~O'O2u3, (4) 

where p, r/l, r/2, 21, 22,/q,/~2 denote the properties of the medium M 1 and those 
with dashes the properties of the medium M2. 

Introducing (1) into (4), we get the following wave equations in M~ satisfied by ~b, 
~O and u2 

where 

~24j V~r + V2,r V24VL + Oc~xl 
Ot 2 = 

02~1 2 O 2 d~t) 
COt 2 =(V2s  + V2s~)V O/L- O~x ~' 

~2U2 ( V2 2 ~ 2 

v,2r = (x~ + 2ul)/o,  v~z = (;.2 + 2/~2)/p, 

0 
v~s=u,lp, V~s=U21o, L=,tl +~2~, 

(5) 

and similar relations in M2 with p, ~ ,  ~/2, 21, 22, #1, tt2 replaced by pl, ~/], q~, 2~, 
21, #~, #~ and so on. 

2.1 Boundary conditions 

The boundary conditions are: 

(i) The component of displacement at the interface between the media MI and M2 
must be continuous at all points and times. 
(ii) The stress components  a31,032,  tr33 must be continuous across the interface, i.e. 

}, 

Ltr32 = (/21 ~U2 

#'12~)td-x-~x32 + OxlOx3 J' (6) \ ~t} \ 

and similar expressions for M2 across the interface between MI and M 2 must be 
continuous at all points and times. 
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3. Solutions of the problem 

Let us take the solutions of (5) in the exponential form 

(~b, $, u2) = [$(x3), ~(x3), a2 (x3) exp [i(qxt - wt)], (7) 

for the medium Ma and similar solutions for M2, the functions $, q~, t~ 2 being replaced 
by ~', ~b', t~. 

Putting (7) in (5), we get a set of differential equations for the medium Mt as follows 

_(q2_ co2rl, i V i r  ) $ - ioq~ x rlK/VKr, 

- ( , f - c o 2 , 1 l / V i s )  ~ ig,l$ x ,iK/V,~s, 

- (,72 - c o 2 , f f , / V ~ s )  a2 = O, (8)  

where 
q*=(qx--icor/2), VIr  = V~T-icoV~r,  V~s= V~s--icoV~s. 

Similar relations for M 2 can be obtained replacing ~, ~, a 2, r/1, q2, Vlr, V2r, Vls, 
V2s, q*, VXT, Vxs, 21, #i ,  22, 1~2, p by dashes. 

Clearly, these equations (8) have exponential solutions and in order that ~, ~O and 
u 2 describe surface waves, they must become vanishingly small as x 3 --* ~ .  

Hence for the medium M~, we have 

q~ = [Atexp[- -  X 3 ] ( I ~  2 - -  ~12) ½ "a t- A 2 e x p [ -  X 3 ] ( I ' [  2 - -  ~'~)½]exp[i(r/xt -- cot)], 
(9a) 

~O = [ B l e x p [ -  x3](r/2 - ~)½ + B 2 e x p [ -  x3](q 2 - ~)½]exp[i(qxt - cot)], 
(9b) 

u2 = [Cexp [ -  x3 ] (q2 _ co2 q~/V~s)½] exp [i(qxl - cot)]. (9c) 

We have similarly those for the medium M2 as 

~, = [A, 1 exp[x3](q2 _ ~]2)½ + A~exp[x3](q2 _ ~,22)½]exp[i(nxx _ cot)], 
(9d) 

q / =  [B'I exp [x3](q 2 - ~2)½ + B~exp [x3](r/2 _ ~2)½]exp [i(r/x x _ cot)], 
(9e) 

u~ = [C' exp Ix3 ] (r/2 - w2 r/*'/V~s) ~ ] exp [i(qxl - wt)], 

where ~ and ~2 (j = 1, 2) are respectively the roots of the equations 

[o,2 _ ~2 x V l s l , t * ]  [co2 _ ~2 x v ~ r / ~ * ]  - g2,t2 = O, 

[co2 _ ¢,2 x V ~ s / ~ * ' ] [ c o  2 - ¢ ,2  x V ~ r l ~ ? , ' ]  - 02,12 = 0 ,  

(gf) 

(lOa) 

(lOb) 
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and 
B I = cx l A 1, B2=~2A2,  B'I = ot'I A ' t ,  B'2 = o(2 A '2 , 

with 
_ _  V 2 t ~ , x  , i / , , 2  / , , ~  ctj = ioT/(tO 2 (2 x KSmK,, ~j = i97/(to 2 _ ~2 x - - r s , q r  ,, (j = 1, 2). 

I n  evaluating 

__ * V 2 ½ __ 032 . * ' / V  '2 "t½ (72_Q)½, (72 C2)½, (72_c02xTK/ K s ) ,  (72 x,,K~ K s , ,  

the root with positive real part will be taken• 
Applying boundary conditions (i) and (ii), we obtain 

[1 -- ia t lQ1]A t + [1 --i~t2Q2]A 2 = [1 + i~t'tQ't]a't + [1 + i~t'2Q'2]A'2, 
( l l a )  

(11b) 

(11c) 
C ~ C t , 

[~x + iQx ] A1 + [~t2 + i Q e ] A 2  = [~'x - iQ'I ] A'I + [~t'2 - iQ'2] A'2, 

p x ( V 2 s / 7 * ) [ { 2 i Q l  +(1 + Q2)~tx}A , + {2iQ2 +(1 + Q2)ct2}A2] 

, 2  * ,  +Q2 )0c2} A2], = p , × ( V r s / q r ) [ { _ 2 i Q ,  + ( l + Q , 2 ) ~ t , } A ,  + { _ 2 i Q , 2 + ( 1  ,2 , , 
( l l d )  

2 , 2 2 , 2 ½ - p x (VKs/q~)(q  - to 7K/VKs)  x C 

,2 . ,  2 2 . ,  ,z ½ (l le)  = p' x ( V K s / q ~ ) ( q  -- tO q K / V K s )  x C', 

(p / ' t~ ) [{  2 2 _  _ v ~ r ( Q 2 - 1 ) +  V ~ r ( Q ,  1)+2V2s( l  i c q Q x ) } A l + {  2 2 

+ 2V2s(1 - i~2Q2)}A2]  

= (P'/7*') [ { V~r(Q'l  2 - 1) + 2 V'r2s(1 + ict'~ Q'~ ) } a'~ + 

+ {V'r2r(Q'2 2 - 1)+2V~s(1 +i~'2Q'2)}A'2]. ( l l f )  

From (1 lb) and (1 le) we find that only possible values of C and C' are zeros. Hence 
there is no propagation of displacement u2. Thus no SH-waves occur in this case. 

Eliminating the constants At, A 2, A'I, A~ from ( l l a ) - ( l l d )  we obtain the wave 
velocity equation finally in determinant form as 

[M~j[ =0 ,  ( i , j =  1,2,3,4), (12) 
where 

M l r  = [1 - i~trQr],  M l r + 2  = - [1 + i~t'rQ'r]; [when K = 1,2] 
• ! . 

M z r  = [ctK + iQr] ,  M2K + 2 = -- [Odr - - t Q r ] ,  

M3~ = p × (V~,s/7*)[2iQK + (1 + Q,~)~K], 
, 2  * ,  • , , 2  , . M3r+2 = - p' x ( V x s / 7  K ) [ - -  2 tQr  + (1 + QK )~tr], 

M a r  = ( p / q ~ ) [ V 2 r ( Q  2 - 1) + 2V~s(1 - i~trQr)] ,  

, , ,  ,2 ,2 2V~s(1 i0t~Qk)]; M4K + 2 = ( -  P /7K ) [VKr(QK - 1)+ + 
and 

QK=(1 -~2/72)½, Q~=(1 -~ ' r2 /72)  ½, (when K =  1,2). 

From (12) we get the wave velocity of surface waves in the common boundary under 
consideration in the presence of gravity and viscosity where viscosity is of first order 
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including strain rate and stress rate simultaneously. Although, effects of viscosity and 
gravity are small, the present analysis should prove to be useful in circumstances 
where these influences cannot 'be neglected. 

4. Particular cases  

4.1 Rayleigh waves 

To start with a particular case of surface waves, we consider visco-elastic Rayleigh 
waves under the influence of gravity in which the plane boundary is a free surface 
such that M 2 is replaced by vacuum. Here we also note that there can be no SH-waves. 

Hence in view of (11 d) and (11 f), we obtain 

[2iQ1 + (1 + Q~)oq]A~ + [2iQ2 + (1 + Q2)~2]A 2 = 0, (13) 

2 2 _  2VZs(l _ i c h Q 1 ) ] A 1  + [ V x r ( Q  1 1) + 

+ [V~cr(Q~ - 1) + 2V~cs(1 - i~2Q2)]a2 = 0. (14) 

After elimination of A 1 and A 2 from (13) and (14), we have 

where 
IM'ijl =0 ,  ( i , j=  1,2), (15) 

(when m = 1,2), 
M'lm = [2iQm + (1 + Q~)~,~]; 

, _ 2 2 2V2s(1 M2,, - [Vxr(Qm - 1) + - ictmQ,) ]. 

Equation (15) describes Rayleigh waves in a visco-elastic solid medium of the Voigt 
(I 887) type under the influence of gravity including strain rate and stress rate. In the 
absence of viscous and gravitational fields, this equation tallies with the corresponding 
classical result (Bullen 1965, pp. 252-265). 

4.2 Love waves 

For Love type surface waves on the surface of the earth, we assume only the non-zero 
component of displacement u2 which is a function of x l ,  x3 and t. All other components 
of displacement are zero. Let us assume that medium M2 is obtained by two horizontal 
plane surfaces at a finite distance H apart, the upper plane surface being free while 
the lower plane surface forms the medium M1 and extends to an infinitely great 
distance. 

For medium M 2 we must retain the full solution, since displacement no longer 
diminishes with increasing distance from the boundary surface of the two media and 
for medium M1, solutions are the same as it is in the general case. 

Therefore, for medium M j, we write 

u~ = [C', exp [x 3 ] (t/z - to 2 t/l' / VJs)~ + 

+ C~exp[ - Xs](r/2 - w2tl~ ' /V~s)½]exp[i(qxl  - wt)], (16) 

where the restriction that the real part of(r/2 - coztl*'/V'K2s) ½ be positive is not required 
for M2. 
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In the present case boundary conditions are 

(i) u2 and a32 are continuous at x3 = 0 
(ii) a~2 = 0, at x3 = - H. 

Employing boundary conditions (i) and (ii) and using (9c) and (16), we get the 
following equations 

c = c ' ,  + c i ,  (17) 

- p × ( v ~ , s / r / t , ) ( r / 2 -  c o 2 r / t , / v i s )  ~ × c = p '  × (Vi~s/,rt,) × 

× (r/2 _ o , 2 , # , / V ~ s ) ~ [ c ,  _ c ' : ] ,  (18) 

C', e x p [ -  H(r/2 - w2n~/V~s)  ~] - C~exp[H(r/2 - w:r/t;/V'~s) ~] = 0. (19) 

Eliminating C, C'~ and C~ from (17), (18) and (19), we get 

p × ( V 2 K s / r / ~ ) ( l _ ~ 2 . . , i v 2  ~ p, ,2 , ,  2 , ,  ,2 , ix / -xs~ + x (Vxs/r/~: )((c ~K / V x s ) -  1)~ × 

x tan {r/H((c 2 r/~'/V~s) - 1) * } = 0 (20) 

(where c = co/r/), which is the required wave velocity equation for Love waves under 
the influence of gravity in a visco-elastic solid medium of first order including strain 
and stress rates. It is seen from (20) that Love waves do not depend upon the gravity 
field, although they depend upon the viscous field. 

Taking r/o = 1 and r h = r/'l = 2~ = 2' 1 =/~t = #'1 = 0, (20) reduces to the corresponding 
result (Bullen 1965, pp. 252-265) in perfectly elastic medium. 

4.3 Stoneley waves 

The generalized forms of Rayleigh waves are Stoneley waves in which we assume that 
waves are propagated in the vicinity of interface of two semi-infinite media M 1 and 
M 2. Wave velocity of Stoneley waves in the presence of viscosity and gravity effects 
is determined by the roots of the equation (12) in the case of a visco-elastic medium 
of first order including strain and stress rates simultaneously. This equation of course 
reduces once more to the classical result in the absence of these effects. 

5. Discussion and conclusions 

It is clear from the above investigation that visco-elastic surface waves are affected 
by the time rate of strain and stress parameters. These parameters influence the wave 
velocity to an extent depending on the corresponding constants characterizing the 
visco-elasticity of the material. Further, the effect of gravity is significant when the 
wavelength is large, while the effect is small when the wavelength is small. However, 
there is always dispersion of waves due to gravity. 

It is noted that Love waves are not affected by the gravity field in any way as is 
evident from the equations of motion. As regards Rayleigh waves in visco-elastic solid 
medium of the Voigt type under the influence of gravity, we find that the wave velocity 
equation proves that there is dispersion of waves in presence of gravity and viscosity. 
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The results are in agreement with corresponding classical results when gravity and 
viscosity are neglected. This wave velocity equation is useful for numerical work. 

The Stoneley wave velocity equation is very similar to the corresponding problem 
in the classical theory of elasticity. Here also there is dispersion of waves due to the 
presence of the gravity field and visco-elastic nature of the solid. This generalized 
type of surface wave in visco-elastic infinite solids accounting for gravity reduces to 
the classical Stoneley wave when gravity is absent. 
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