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Abstract  

This study investigates the effect of hydronium ions (H3O
+) ions on the structure and 

dynamics for water at the interface of a phospholipid bilayer using molecular dynamics 

(MD) simulations of a POPC bilayer in the presence and absence of H3O
+ ions. From these 

simulations, the survival probability, hydrogen bond lifetimes, orientation relaxation and 

angular distribution of interfacial water, at increasing distances from the membrane 

surface, were calculated. Simulations of POPC in the absence of H3O
+ ions reproduce 

previously reported deviations of interfacial water from the properties of bulk water. Our 

results show that in the presence of H3O+ these deviations are even more pronounced 

with the strongest effects seen in the survival probability and orientational relaxation. To 

further investigate the effect of the H3O
+ -induced reduction of area per lipid on interfacial 

water, we carried out simulations where H3O
+ ions were removed but the area per lipid 

was fixed to the values seen the presence of H3O
+. The combined findings from our study 

suggest that the presence of H3O
+ ions affects the properties of interfacial water, 

accentuates the deviation from bulk properties and extends the long-range effect of these 

deviations further away from the membrane surface.  

  



Introduction  

Biological membranes are semipermeable barriers that separate the cell from its external 

environment and compartmentalise cellular organelles. Membranes are critical for 

numerous physical processes including the active and passive diffusion of molecules, as 

well as the structure and function of membrane proteins. Phospholipid bilayers form the 

main component of cell membranes and consequently, any membrane-mediated process 

is affected by the structure, mechanical and physico-chemical properties of the bilayer. 

There is also an increasing number of studies demonstrating the importance of water in 

the structure and dynamic of membranes and phospholipid bilayers 1-2. Rather than being 

a mere solvent driving the hydrophobic effect, water at the water-lipid interface should be 

“considered as a component of the membrane” that acts a “connecting material” affecting 

the structure and thus function of membranes 2. The structure and dynamics of such 

interfacial water has been studied using a wide range of techniques 3-7. The combined 

results from these studies suggest that interfacial water has distinct properties that differ 

from the ones of bulk water. More specifically, interfacial water appears to have shorter 

and longer-lived hydrogen bonds3, 8-10 and a preferred orientation of the water dipole 11-16 

that might further depend on the nature of the lipid 17. As a result of the interaction with 

lipid head groups, interfacial water exhibits reduced rotational motion (i.e. slower re-

orientational relaxation) 18-22 and altered diffusion 8, 13, 20, 23-24. It appears that interfacial 

water is a compromise of the water adopting the network-like structure of the bulk and 

arranging itself to optimise its direct interaction with the lipid headgroups 2.   

 

The structure, morphology and physico-chemical properties of a phospholipid bilayer is 

also strongly affected by its lipid composition and environmental factors such as 

temperature, pressure and ionic strengths. These effects have been studied extensively 

using a wide range of wet-lab and simulation techniques 25-31. Less studied is the effect 

of pH on membranes. A few studies have shown that lowering the pH of the bathing 

solution affects the mechanical and electrical properties of phospholipid bilayers 32 and 

increase the lamellar gel-to-liquid crystalline phase-transition temperature 33. In addition, 

both increases and decrease in pH cause changes in membrane conductivity and alter 

water penetration into the bilayer. Subsequently, this changes the area per lipid (APL) 



and membrane thickness 34-35.  Variations in the pH also alters capacitance and interfacial 

tension 36-37. Given the dependence of interfacial water on bilayer properties, it is likely 

that pH also affects structure and dynamics of water at the membrane surface.  

 

A process that is related to both pH and interfacial water is the movement of solvated 

protons across the membrane surface required for cellular respiration and energy 

metabolism. The membrane-facilitated migration of protons has been studied for 

decades, using both complex biological membranes as well as model membranes such 

as phospholipid bilayers and vesicles 38-41. While the detailed mechanism of proton 

migration is still not fully understood, many studies suggest that interfacial water is integral 

to proton migration by forming a structural, kinetic and/or energetic barrier that prevents 

solvated protons to escape into the bulk 39, 42-45. This suggest that proton migration is 

closely linked to the unique properties of interfacial water. Studies of proton migration on 

membrane surface and the effect of pH on membranes clearly highlights the complex 

interplay between the lipid bilayer, interfacial water and surface-bound ions 46.  

 

Solvated protons at the membrane surface can exist in a number of forms including the 

hydronium cation (H3O
+), the Zundel cation (H5O2

+) and the Eigen cation (H9O4
+). The 

affinity of these ions for membrane surfaces has been demonstrated using both ‘wet-lab’ 

experiments 47-50 and simulations 35, 51-53. The latter have played an important role in 

providing a molecular level insight into the mechanism of how solvated protons bind to 

membrane surfaces. Combined insight from these studies indicate that hydronium and 

Zundel cations displace water at the membrane surface, and that the cations reside in the 

‘binding sites’ formed by neighbouring lipids 51-54.  A  recent simulation study 35 showed 

that at high hydronium concentrations these hydronium-lipid interactions are directly 

linked to the reduction in APL and increase in membrane thickness observed in neutron 

scattering experiments of membranes at low pH.  

 

In the present study, we investigate the effect of the accumulation of hydronium ions at 

the water-lipid interface on interfacial water. Specifically, we use simulations of 1-

Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) at neutral conditions and in the 



presence of 40 mM H3O
+ to assess the effect of hydronium-lipid and hydronium-water 

interaction on the structure, dynamics and hydrogen bonding properties of interfacial 

water.  

 

Methods  

The detailed setup of the simulation systems as well as the parameters for the MD 

simulations were reported previously 35 and are thus only briefly outlined below.  

 

Model systems for membrane and ‘bulk water’  

Both membrane and bulk water simulations were carried out in the absence and presence 

of H3O
+ (Table 1). The systems referred to as ‘neutral’ contained no H3O

+ ions while the 

‘low pH’ systems contained H3O
+ ions equivalent to a concentration of 0.04 M, denoted 

as 40 mM [H3O
+].  The concentration is calculated based on the ratio of water molecules 

and H3O
+ ions and the water concentration of 55.5 M. The membrane systems consisted 

of a pre-equilibrated bilayer of 512 POPC molecules and approximately 23,000 water 

molecules; that is, at least 45 water molecules per lipid to ensure a fully hydrated state. 

The system consisting of a POPC bilayer with 40 mM [H3O
+] was prepared by randomly 

replacing 16 water molecules with 16 H3O
+ ions. For the bulk water systems, 6 H3O

+ ions 

were added to a cubic box with ~9000 water molecules. If required, the positive charge 

of the system was neutralised with Cl- ions. In all systems Na+ and Cl– ions were used to 

obtain a final concentration of 0.15 M NaCl. 

 

A H3O
+ concentration of 40 mM is equivalent to approximately a pH of approximately 1.5. 

For several reasons, we did however not consider changing the protonation state of the 

phosphate group. Firstly, the pKa of the phosphate group in phosphatidylcholine lipids 

depends on the method used and various estimates reported include 0.855, <156, 1.057, 

1.358, <1.5 59 and 2.2538. Even for the isolated phosphate group, a pKa value as low as 

1.54 has been proposed for dimethyl phosphate 53. Secondly, these estimates of pKa rely 

on critical assumptions that intrinsically limits their accuracy. For example, the pKa of 0.8 

was determined by assuming that the APL is constant and corresponded to that of a fluid-

phase phosphatidylcholine bilayer, and that the dielectric permittivity and other properties 



of the interfacial water are the same as those of bulk water 60. There are numerous wet-

lab and computational studies showing that interfacial water clearly deviates from that of 

bulk water 3-7 and variations in pH induce phase transitions in lipid bilayers and alter APL 

32-33, 61-62 . Thirdly, given that H3O
+ ions are likely unequally distributed between the bulk 

and the membrane surface it is not possible to reliably predict how many of the lipids 

would be protonated at a given pH. Finally, our previous study of POPC bilayers at low 

pH have shown that simulations with non-protonated POPC and H3O
+ ions can 

qualitatively reproduce the concentration-dependent effect of H3O
+ ions on APL and 

membrane thickness 35. Finally, our study was aimed understanding what happens to 

properties of water when the membrane is altered by the presence of H3O
+ ions at the 

water-lipid interface, rather that understanding the process of protonation or 

deprotonation, which cannot be described by classical MD. 

MD simulation of membrane and ‘bulk water’ systems at neutral and low pH 

All simulations were carried out using GROMACS version 4.6.7 63, in conjunction with the 

GROMOS 54A7 force field64 and parameters for POPC developed by Poger et al. 65 

Parameters for the H3O
+ ion compatible with the GROMOS 54A7 force field were obtained 

from the Automated Topology Builder (molid 3859). 66-67 Briefly, the partial charges of the 

oxygen and hydrogen atoms were -0.587e and 0.529e, respectively, giving an overall 

charge of +1 to the ion. The O–H bond length and the H–O–H angle were set to 0.0983 

nm and 109.50	°, respectively. Water was described using the simple point charge (SPC) 

model 68. Temperature and pressure were maintained at 303 K and 1 bar using a 

Berendsen thermostat and barostat 69.  

 

All systems were simulated using a 2-fs time step. Membrane systems were simulated 

for 1 µs each and coordinates were saved every 200 ps. As instantaneous position and 

orientation of water molecules changes at a rate much faster than every 200 ps, each 

membrane simulation was extended by 40 ns during which the coordinates were saved 

every 2 ps. All simulations of bulk water were 40-ns long and coordinates were saved 

every 2 ps. The LINCS algorithm 70 was used to constrain the lengths of all bonds in lipids. 

Non-bonded interactions were evaluated using a single-range cut-off scheme whereby 

interactions within a 1.4-nm cut-off were calculated at every step and the pair list was 



updated every 5 steps 71. To correct for the truncation of electrostatic interactions beyond 

1.4 nm a reaction-field correction
 72 with a relative dielectric constant (εr) of 62 was 

applied. Note that the GROMOS lipid force field parameters were developed with a 

reaction-field and a single-range cut-off and have been shown to reproduce the structure 

and dynamics of POPC bilayers.   

 

 

Simulations of fixed-APL POPC without H3O
+ ions  

Fixed-APL simulations were carried out based on the approach described in Bhide et al 

18 , which the authors referred to as a ‘frozen’ bilayer. The structure from the end of the 

low pH simulation was chosen as a starting configuration. All H3O
+ ions and the same 

number of Cl- ions were removed and this new system was simulated in the NVT 

ensemble such that the APL remains constant. Analysis showed that after a short time 

(~5-10 ns) water molecules occupied the space previously filled by the H3O
+ ions at the 

water-lipid interface confirming the removal of the ions did not introduce any significant 

change in the pressure. All other simulations parameters were the same as for the neutral 

and low pH simulations. The system was simulated for 1 µs.  

Data analysis  

Analysis was carried out using GROMACS tools63 and the water dynamics module in the 

MDAnalysis package 73. The local density of water as a function of distance from the 

membrane surface was estimated by counting the number of water molecules in a 0.1 nm 

thick ‘slab’ at increasing distances from the water-lipid interface. For this, the water-lipid 

interface was defined as a plane parallel to the membrane surface in xy, and z = 0 being 

the average z-coordinate from all phosphorous atoms in the upper leaflet of the lipid 

bilayer. For each ‘slab’ centred at distances between z = -1.5 nm and z = +2.5 nm with 

respect to the water-lipid interface the number of water molecules were averaged over all 

frames from the last 500 ns of the 1-µs simulations.  

 

The analysis of the hydrogen bond (H-bond) lifetimes, angular distribution and survival 

probabilities of water was carried out using the 40-ns trajectory of the membrane 



simulations. Similar to the local density, properties were analysed as a function of 

distance from the membrane surface. However, rather than calculating a given property 

for all water molecules at a given distance from the membrane surface, made up of all 

lipid molecules in the upper leaflet, the analysis is carried for water molecules found in a 

cylindrical volume centred at a selected lipid molecule and at a given distance from the 

membrane surface in the z direction (Figure 1). Compared to averaging properties across 

all water molecules above the entire membrane surface this approach has the benefit of 

revealing some of the variations of properties due to the local environment created by the 

heterogeneous surface of the membrane without explicitly considering the ruggedness of 

the surface. It also significantly reduces the computational resources required, in 

particular for properties that are based on an auto-correlation (e.g. orientation relaxation). 

 

The cylindrical volumes used for analysis are illustrated in Figure 1 and were defined as 

follows. The volume has a radius of 1.5 nm and is positioned at the centre of geometry 

(COG) of heavy atoms that make up the choline, phosphate and glycerol groups in the 

selected lipid. The cylinder is positioned at increasing distances away from the water-lipid 

interface using a lower z value of z = 0, z = 0.5 nm, z = 1.0 nm, z = 1.5 nm, z = 2.0 nm 

and z = 2.5 nm, where z = 0 is the at the COG of the lipid head group. For example, 

Figure 1A and 1B show the cylindrical zones of water molecules using a cut-off of z = 0.5 

nm and z = 1.0 nm, respectively. For all simulations analysed, the number of water 

molecules found in this cylindrical zone is between 200 – 400. The property of interest is 

averaged over all water molecules in the volume and all frames in the simulation. The 

analysis was carried out for 30 lipid molecules.  

 

To allow for a direct comparison, the analysis for bulk water is carried out a in similar 

fashion despite there not being a ‘surface’. In this case, water in a cylindrical volume 

around a selected water molecule is used for analysis. Again, the analysis is repeated for 

at least 30 water molecules. To ensure this approach does not result in artefacts, all 

properties were also calculated without the use of layers or cylinder and the property was 

either averaged over all water in the box or at least 30 water molecules selected at 

random.  



The angular distribution function, also referred to as the orientational polarisation 13, was 

calculated using the water dynamics module in MDAnalysis. Angular distribution is given 

as a line histogram of cos(θ) where θ is the angle formed by the dipole vector of a water 

molecule, û, and a vector parallel to the z-axis of the simulation system, n̂. The angular 

distribution is plotted as a histogram of count(cos(θ)) vs cos(θ). Both for the membrane 

and bulk water the angular distribution was calculated using the cylindrical volumes 

described above with cut-offs from 0.5 nm to 2.5 nm. For each cut-off, the angular 

distribution was averaged over 30 values, where each was calculated using a cylindrical 

volume around a lipid or water molecule selected at random.  

 

The survival probability, as reported by Pu et al 74, was used to estimate how long a set 

of water molecules remain in a given volume and is defined as  

	𝑃 𝜏 = 	
1

𝑇
	

𝑁(𝑡, 𝑡 + 𝜏)

𝑁(𝑡)

.

/01

 

where T is the maximum time of the simulation, t is the time-step and N(t) is the number 

of particles, in the volume of interest, at time t and N(t + t) is the number of particles at 

every frame from time t to t in the same volume. As for the analysis of angular distribution 

the cylindrical volumes with cut-offs from 0.5 nm to 2.5 nm were used and for each cut-

off the survival probability was averaged over 30 values. The survival probability is plotted 

as P(t) vs t. 

 

The water orientation relaxation, as reported by Yeh & Mou 75, was used to estimate how 

fast water molecules are rotating as given by the change in direction of their dipole vector. 

The corresponding time correlation function is defined as 

 

𝐶û 𝜏 = 𝑃4	 û 𝑡5 ∙ 	û 𝑡5 + 	𝜏	 	 	 

 

where P2 = (3x2 – 1)/2 is the second-order Legendre polynomial and û is the dipole 

vector of the water molecule.  

 



For H-bond lifetimes, also referred to as hydrogen bond population relaxation, the 

autocorrelation function as proposed by Rapaport 76 was used. This is given by 

 

𝐶 𝜏 = 	
ℎ89	(𝑡5)	ℎ89

: (𝑡5 + 	𝜏)89

ℎ89	(𝑡5)89

 

where 	ℎ89
: (𝑡5 + 	𝜏) = 1 if there is a continuous H-bond between atom pairs ij during the 

time interval (𝑡5 + 	𝜏) and ℎ89
: (𝑡5 + 	𝜏) = 0 otherwise. As for the analysis of angular 

distribution and survival probability water in cylindrical volumes with cut-offs from 0.5 nm 

to 2.5 nm were used and for each cut-off, and averaged over 30 values.  

 

For survival probability and H-bond lifetimes, the characteristic relaxation times were 

obtained by fitting the following two-term exponential:  

𝐶 𝑡 = 	𝐴1𝑒𝑥𝑝
−𝑡

𝜏1
+ 𝐴4𝑒𝑥𝑝

−𝑡

𝜏4
		 

where A1 and t1 describe the fast component and A2 and t2 describe the slow component.  

 

For the orientational relaxation the curves do not decay to zero within the sampled 

timeframe and an additional, constant term A3 was added to account for this.  

 

𝐶 𝑡 = 	𝐴1𝑒𝑥𝑝
−𝑡

𝜏1
+ 𝐴4𝑒𝑥𝑝

−𝑡

𝜏4
	+ 𝐴@ 

 

 

Results  

Water ‘layers’ at the water-lipid interface  

One of the consistent observations from studies of interfacial water is that the density of 

water is reduced compared to the bulk. Figure 2 shows the density of water as a function 

of distance to the membrane surface obtained from the neutral and low pH membrane 

simulations. The density was calculated by counting the number of water molecules in 

0.1 nm thick ‘slabs’ at distances from -01.5 nm to +0.25 nm from the membrane surface, 

averaged over all frames in the last 500 ns of the simulation. The membrane surface was 

defined as a plane in the xy dimension of the simulation box z = 0 being the average z-



coordinate from all phosphorous atoms in the upper leaflet of the lipid bilayer (shown as 

grey spheres in Figure 2). Approximating the bilayer surface by a plane does not account 

for local variations in the positon of the head groups in the z dimension and thus neglects 

the ‘ruggedness’ of the bilayer surface. However, over time and space these variations 

are averaged out, thus having little impact on macroscopic properties such as density. 

The confirm this, the average z-position of all P atoms in the upper and lower bilayer, 

averaged over all frames in the last 500 ns of the simulation of POPC in the presence of 

H3O
+ was calculated (Figure S1 in the supplementary material). The results from this 

analysis confirm that, on average, there is no statistically significant difference in the z-

position of the 256 P atoms that form the bilayer surface (confidence interval 99%). Also, 

as reported in our previous work 35, the H3O
+ ions accumulate at the water-lipid interface 

within ~100 - 150 ns and after that the ions are rarely found in the bulk solution (see also 

Fig S2 in the supplementary material). As a result, membrane properties such as APL 

and position of head group atoms that can affect the density of water are equilibrated in 

the last 500 ns of the simulations that are used for analysis here. 

 

As can be seen from the graphs in Figure 2, the density of water is zero in the hydrophobic 

part of the membrane and steadily increases until it reaches bulk at ~1 nm from the 

membrane surface. This is consistent with other studies showing that density of water 

approaches bulk values at approximately 0.5 to 2.0 nm form the membrane surface 8, 23, 

77. While the graphs from the neutral and low pH simulations show the same shape the 

one from the low pH simulation is clearly shifted towards the right. As a result, the density 

at the membrane surface is lower indicating that less water penetrates into the water-lipid 

interface (z = 0).  

 

 

Water at the membrane surface in a neutral system 

Figure 3 shows different properties of water calculated from simulations of POPC under 

neutral conditions. As detailed in the methods section, these properties were calculated 

for five regions, each 0.5 nm wide, at increasing distances from the membrane surface. 



These are named region I to IV (see also Figure 1). In addition, the same properties were 

calculated for bulk water from simulations of a box of water molecules.  

 

Survival probability is a measure of permanence i.e. of how long a water molecule 

remains in given volume. A slower decay of survival probability indicates that water 

molecules reside longer time in a given volume. Figure 3A shows average survival 

probabilities for the five regions in comparison to bulk water. For each region, the data 

shown is the average ± standard deviation over 30 lipid molecules, where each average 

represents an average over time (frames) and water molecules found in the volume 

surrounding the given lipid molecule. A qualitative comparison of these graphs shows that 

water molecules closest to the membrane surface (region I) show the longest 

permanence time, indicated by the slowest decay of the survival probability. Even after 

50 ps the survival probability has not reached zero. For each region moving further away 

from the membrane surface, the permanence time decreases. Quantitatively this is 

reflected in the relaxation times for the survival probabilities listed in Table 2. Analysis 

showed that a two-component exponential gave a much better fit than a single 

exponential, in particular for the two regions closest to the bilayer. This means there exists 

a fast and a slow component of the decay. The relaxation time for the slow component, 

given by t2, ranges from 22.1 ps for water closest to the membrane (region I) to 4.7 ps for 

water in the region furthest away from the membrane (V). Similarly, t2 describing the 

relaxation time of the fast component, ranges from 3.1 ps for region I to 0.8 ps for region 

V. Both the slow and fast components indicate that water in or near the lipid headgroup 

experiences a drastic slowing down compared to water closer towards the bulk. Both the 

fast and slow component of the relaxation times decrease by an approximate order of 

magnitude when water moves from region I to V. The biggest change in relaxation time 

is clearly seen when water moves into (or out of) the region closest to the membrane. 

Also, comparison to values from bulk water show that even at distance of 2.5 nm from the 

surface, the permanence time of water is still affected by the membrane surface. The 

survival probabilities for the 30 individual data sets of each region are shown in Figure S3 

in the supplementary material. From this, and the error bars on the average survival 



probabilities in Fig 3A, it is evident that the variability of survival probabilities within a given 

region is much larger for water close to the membrane than water towards the bulk.  

 

Our findings are consistent with previous reports from simulations of phospholipid bilayers 

8, 19. For example, Debnath et al reported MD simulations of DPPC bilayers and analysis 

of the survival probabilities and their relaxation times showed that t for the fast and slow 

components are 19.2 ps and 1.4 ps for water that continuously reside within +/- 0.3 nm of 

the phosphate atoms. These values are comparable to the ones reported in this study. 

Like in our study, t is reduced ~10 fold for water that approaches bulk (defined as water 

that continuously reside >1.5 nm above the phosphate atoms). Another study by Bhide et 

al from simulations of DOPC and DOPS bilayers showed the same trends 8.  

 

Next, we compare the H-bond lifetimes for the different water regions. Figure 3B and 

Table 3 show the decay for the H-bond lifetimes and the corresponding relaxation times. 

The decay of the lifetimes seen in Figure 3B suggests that it is mostly the water buried in 

the lipid head groups (region I) that is affected. This is confirmed by the relaxation times. 

The slow component, t2, is 3.9 ps and 1.5 ps, respectively, for water in regions I and II, 

which is ~4 and 2 time larger than for bulk water. For water that is > 1.0 nm away from 

the membrane surface t2 is comparable to the value from bulk water. Thus, in comparison 

to survival probability, only the water molecules in the two closest regions to the 

membrane deviate from bulk water.  

 

The water orientation relaxation estimates how fast water molecules change direction. A 

slow decay of orientational relaxation indicates that a water molecule remains in the same 

orientation for longer compared to water molecules with a fast decay. Figure 3C shows 

the orientational relaxation for the five water regions and Table 4 lists the characteristic 

relaxation times. The decay was fitted to a two-component exponential that contains an 

additional, constant term (A3), to account for the decay not reaching zero in some of the 

regions. Comparison of the A3 values from the different regions shows an increased value 

for regions I and II. This indicates an orientation preference for the dipole of water 

molecules buried in, and just above, the lipid head groups on a time-scale longer than the 



20 ps. A3 continually decreases for each region further away and reaches bulk values for 

water > 2.0 nm from the membrane surface, indicating a loss of this orientation 

preference. The relaxation times t1 and t2 show that the times between reorientation of 

the dipole is significantly increased for waters < 1.5 nm from the membrane surface. This 

indicates that the closer the water is to the lipid head groups the longer it spends in a 

given orientation. The nature of this preference is described in more detail in the section 

on the analysis of the angular distribution. 

 

The slowdown of the water dipole orientation agrees with results from previously reported 

studies of interfacial water. For example, Bhide et al 18 carried out simulations of DOPC 

bilayers and separated water molecules into regions based on whether they were part of 

the first solvation shell of lipids or not. For water that are continuously found close to lipid 

headgroups the orientational correlation function is substantially reduced compared to 

bulk water. The effect is reduced but still present for water that is located just above the 

lipid head group. Similarly, Murzyn et al 20 showed that the reorientation of water 

molecules within 0.4 nm of any atom of a POPC lipid bilayer is strongly reduced and the 

effect is gradually lost for water > 0.7 – 1.2 nm from the membrane surface. Further, the 

nonzero decay of water buried in the lipid head group observed in our simulations agrees 

with previous results from Debnath et al 19.  

 

As noted above, the nonzero decay of the water orientation relaxation indicates an 

orientational preference. This can be quantified by the angular distribution for the water 

dipole vector. Figure 3D shows the angular distribution for the five interfacial water 

regions and bulk water. Angular distribution is given as a line histogram of cos(θ) vs θ 

where θ is the angle formed by the dipolar vector and a vector parallel to the z-axis of the 

simulation system (which is the normal to the membrane surface that runs along the xy 

plane). Values of cos(θ) = -1 and cos(θ) = 1, mean the water dipole is parallel to the 

membrane normal (i.e. perpendicular to the membrane surface). In the case of cos(θ) = -

1 the dipole is pointing towards the membrane surface and in the case of cos(θ) = 1 the 

dipole is pointing away from the surface. At cos(θ) = 0, the dipole is at right angle to the 

membrane normal i.e. the dipole runs parallel to the membrane surface. A flat line for 



cos(θ) vs θ implies that all orientations are equally likely meaning the water dipole does 

not show a preferred orientation. 

 

Comparison of the angular distribution from the five regions shows that for region I, the 

water dipole is strongly affected and exhibits a high preference for values close to cos(θ) 

= -1. This signifies that the dipole is preferentially orientated almost parallel to the 

membrane normal and pointing towards the membrane surface. As can be seen from the 

angular distribution of the other regions, this preference gradually reduces to zero as 

water approaches bulk. For water, just above the lipid head groups (region II), this 

preference is still present but much reduced compared to water closest to the lipid head 

group. For water that is > 1.0 nm from the surface the preference is essentially lost, 

indicated by the flat line histograms. These observations are consistent with results from 

spectroscopy experiments with different phospholipid bilayers showing that, on average, 

the dipole of interfacial water molecules points towards the membrane surface9, 11, 14 and 

that water molecules become more and more randomized as they move towards bulk 

solution 14.  

 

In summary, the data from our simulations of water at the interface of a POPC lipid bilayer 

under neutral conditions reproduce previously reported findings of increased permanence 

times, increased H-bond lifetimes, reduced orientational relaxation, and a preferred 

orientation of the water dipole. The results also show that these changes are most 

pronounced for water buried in the lipid headgroups and gradually decrease for water 

further away from the membrane surface.   

 

Water at the membrane surface in a low pH system  

For a direct comparison to a POPC bilayer under neutral conditions, the survival 

probability, H-bond lifetimes, orientational relaxation and angular distribution were 

calculated from simulations of POPC at low pH (i.e. in the presence of H3O
+ ions). The 

results from this analysis are shown in Figure 4. Comparison of the survival probability 

from the simulations of POPC under neutral conditions (Figure 3A) and at low pH (Figure 

4A) shows that in the presence of H3O
+ ions the decay of the survival probability for all 



five regions is shifted further away from the bulk. Specifically, the survival probability for 

each of five regions shows a slower decay in the presence of H3O
+ compared to the 

neutral condition. Quantitatively, this can be seen in the relaxation times shown in Table 

5. Comparing the slow component of the decay, t2, from the neutral system (Table 2) to 

t2 from the low pH system (Table 5) shows that in the latter, t2 increases by ~80% for all 

regions of interfacial water. For example, for water molecules closest to the water-lipid 

interface, t2 increases from 22.1 ps under neutral conditions to 38.8 ps at low pH. The 

values for t1, show an increase of ~30% suggesting that the fast component of the decay 

is less affected by the presence of H3O
+ than the slow component. Besides these 

increases in permanence time, the overall trend between the regions is the same. That 

is, the biggest change in t1 and t2 occurs from region I to region II and the change 

becomes successively smaller the further away water is from the membrane surface. 

Overall, the results from the survival probability analysis indicate that permanence time 

of interfacial water is much higher in the presence of H3O
+.  

 

Figure 4B and Table 6 show H-bond lifetimes and corresponding decay times calculated 

from the low pH simulations. Comparison of the H-bond lifetimes from the neutral and low 

pH system show that similar to survival probability, all curves are moved away further 

away from the bulk value. In the case of the H-bond lifetimes the effect is however less 

pronounced. Comparison of the H-bond relaxation times from neutral conditions (Table 

3) and low pH (Table 6) shows that in the latter the slow component of the decay (t2) is 

increased in all five regions while the fast component (t1) is not affected much. Like in the 

survival probably, the overall trend between the five regions is the same at neutral and 

low pH.  

 

Figure 4C shows the time-dependent decay of the orientational relaxation obtained from 

the low pH simulations. Both the decay curves and the values of A3 suggest that in the 

presence of H3O
+ not only region I but also region II shows a non-zero decay. This implies 

that water molecules in both these regions show a marked orientational preference. Also, 

compared to neutral conditions, at low pH none of the five regions reach the decay seen 

in bulk. Figure 4D shows the angular distribution plots for low pH simulations. Like in the 



neutral system, the waters in region I show a strong preference for cos(θ) = -1 indicating 

that for the majority of water molecules the dipole is pointing towards the membrane 

surface. However, in contrast to the neutral system, at low pH there is no gradual 

decrease of this preference for water further away from the membrane surface. Water in 

region II shows an almost flat distribution suggesting that, on average, water molecules 

in region II show no preferred orientation. Region III shows a small preference for cos(θ) 

= 1 where the dipole points away from the membrane surface.  

 

In summary, comparison of water at the surface of a POPC lipid bilayer under neutral 

conditions and at low pH suggests that for the latter, the changes in the properties of 

interfacial water deviate even more from the ones in bulk water. The most pronounced 

difference is for the survival probabilities and orientational relaxation. In addition, the 

presence of H3O
+ ions affects the orientation of the dipole.  

 

Direct and indirect contributions from H3O
+ estimated from ‘fixed-APL’ simulations  

The combined results from this and previous studies suggest that H3O
+ ions affect both 

the structure of the membrane itself and that of interfacial water. As noted in the 

introduction, the interplay of the membrane, interfacial water and surface-bound ions is 

complex and most effects are interrelated and hard to isolate. Even in our simple model 

system of limited complexity, there are different ways in which the presence of H3O
+ ions 

can induce changes in the properties of interfacial water. Either directly, via water-H3O
+ 

interactions, or, indirectly, via the H3O
+-induced lowering of APL. To isolate the indirect 

effect of APL from the direct effect of water-H3O
+ on the different properties, we carried 

out additional simulations of a ‘fixed-APL’ bilayer without H3O
+ ions. In these simulations, 

the membrane shows the same reduced APL as seen in the low pH simulations, but 

without the explicit presence of H3O
+.  

 

From these simulations, all properties were calculated using the same approach as for 

the neutral and low pH simulation systems. Comparison of the survival probabilities, H-

bond lifetimes and orientation relaxation shows that qualitatively the interfacial water 

behaves in the same manner as in the simulations of POPC in the absence and presence 



of H3O
+ ions. That is, the water closest to the membrane surface (region I) shows the 

strongest deviation from bulk and the effect gradually decrease for water further away 

from the membrane surface (Figures S4A, S4B and S4C in the supplementary material). 

Comparison of the decay for these three properties (Tables S1, S2 and S3 in the 

supplementary material) shows that for region I the value of t2 is approximately halfway 

between the values from the simulations of POPC in absence and presence of H3O
+ ions. 

For all other regions, the decay times are either the same or close to the values from 

simulations under neutral conditions. Similarly, for the orientation relaxation, the constant 

term (A3) that accounts for the decay not reaching zero, obtained from the fixed-APL 

simulations is also approximately in between the values from the neutral and low pH 

simulations (Table S3).  

 

Comparison of the angular distribution from the fixed-APL simulations (Figure S4D) to the 

ones from the neutral (Figure 3D) and low pH simulation (Figure 4D) shows that the 

orientation of the water molecules in the fixed-APL is closer to the one found at low pH 

than under neutral conditions.  Like in the simulation of POPC at low pH, the fixed-APL 

simulations lack the gradual decrease of preferred orientations that is seen in simulations 

of POPC under neutral conditions, and only the water molecules in region I show a 

preferred orientation.  

 

Discussion  

In this study, we aimed to investigate the effect of H3O
+ ions on the structure and 

dynamics of interfacial water. For this, we carried out extensive MD simulation of a 

solvated POPC lipid bilayer (at full hydration) under conditions mimicking neutral pH and 

low pH. In a previous study 35, we have used such simulations to demonstrate the effect 

of H3O
+ ions on the structure and morphology of the bilayer. Results showed that H3O

+ 

ions accumulate at the water-lipid interface where they form strong and long-lived H-

bonds with the phosphate and carbonyl oxygens of the lipids (see also Fig S2 in the 

supplementary material). As a result of these lipid-H3O
+ interactions the bilayer shows a 

reduced APL and increased membrane thickness, compared to the same bilayer in the 

absence of H3O
+ ions. This condensing of the bilayer agrees with the results from neutron 



scattering and electrical impedance spectroscopy experiments of POPC at low pH 34. 

Results presented in the current study suggests that the presence of H3O
+ also affects 

the structure and dynamics of interfacial water. As noted, our previous study35 showed 

that our model to describe H3O
+ interacting with POPC bilayers can qualitatively predict 

the effect of H3O
+ ions on APL and membrane thickness. Nevertheless, it is worth noting 

that describing the solvated proton as a H3O
+ ion, and thus ignoring the presence of Eigen 

and/or Zundel cations, presents a limitation of our model with respect to the detailed 

interaction of a solvated proton with interfacial water molecules. For this reason, we focus 

our analysis on macroscopic properties, averaged over large number of water molecules 

as well as time, and the comparison of these averages between neutral and low pH 

conditions, rather than in terms of specific molecular interactions of individual water and 

H3O
+ ions. 	

 

There are numerous wet-lab and simulation studies demonstrating that the properties of 

interfacial water deviate from that of bulk water 1-2, 4, 40-41. Central to the study of interfacial 

water is the concept of layers where water is organised in distinct, but connected regions 

2, 8, 12-15, 18-20, 22-23, 77-80. The number and definition of layers varies and depends, among 

others, on the properties investigated and/or the techniques used. This means it is often 

not possible to do a direct, quantitative comparison of results from different studies. 

Nevertheless, in most studies, interfacial water is considered to be between 1 – 2 nm 

form the membrane surface.  

 

In agreement with this, analysis of water at the surface of a POPC bilayer under neutral 

conditions reveals that, compared to bulk water, interfacial water exhibits increased 

permanence, reduced orientational relaxation, longer-lived H-bonds and a preferred 

orientation in which the water dipole points towards the membrane surface. For all 

properties, the deviation from bulk is the largest for water closest to the water-lipid 

interface (region I). The effect is gradually reduced as the distance to the membrane 

increases. As described in the relevant results sections, these observations agree with 

previously reported data. It is interesting to note that the distance at which the water 

returns to bulk values depends on the property. For example, the survival probability 



deviates from bulk for water as far as 2.5 nm from the membrane surface. In contrast, the 

orientational relaxation and H-bond lifetimes only deviate from bulk values for water within 

0.5 nm and 1 nm of the membrane surface, respectively. Similarly, only water within 1 nm 

of the membrane surface shows preferred orientation. A possible reason for this is that 

survival probability is affected by all of the other properties as well as the diffusion of 

interfacial water, which has been shown to deviate from bulk water different diffusion 8, 13, 

20, 23-24.  

 

Comparison of data from the simulation of POPC at neutral and low pH shows all of these 

properties are affected by the presence of H3O
+ ions but the extent of the effect differs. 

For example, at low pH, the permanence time for all five regions is slowed down even 

further away from bulk water than for neutral conditions. In particular, the slow component 

of the decay of the survival probability is strongly affected by the presence of H3O
+. Similar 

effects are seen in orientational relaxation and H-bond lifetimes. As a consequence of 

these effects, the layer in which the properties of water deviate from bulk appears to grow 

thicker. In their study on the orientational motion of water at the interface of a DOPC 

bilayer, Bhide et al 18 noted the challenges of interpreting the mechanisms underlying the 

different timescales in the orientational relaxation of interfacial water. Nevertheless, in a 

previous studies 81 of water in a confined space, the three timescales in the decay of the 

orientational relaxation were interpreted as follows using a ‘wobbling-in-a-cone’ model: 

the first (fast) component is related to the relaxation of the fast internal-librational motion. 

The authors noted in their study that this motion was too fast to be observed in the 

experiments. 81 The second, intermediate timescale corresponds to the relaxation of the 

molecules’ restricted motion inside the cone while the third and slowest timescale relates 

to the full relaxation of the orientation (i.e. the relaxation of the cone) in which the water 

returns to its unrestricted motion. Furthermore, based on the results from their ‘frozen’ 

simulations, Bhide et al 18 noted that one of the reasons for the slowing down of the 

orientational relaxation for water close to the interface is the motion of the headgroup 

lipid. However, even if this motion is removed the water still does not reach relaxation 

times seen in bulk water. Based on simulations of phosphatidylcholine lipid bilayers it is 

not really possible to separate the contribution of the choline or phosphate groups to this 



effect due to their coupled motion. Nevertheless, the results from our present study show 

that the slow component corresponding to the relaxation of the cone itself is further 

reduced in the presence of H3O
+ compared to neutral conditions. 

 

The results from the angular distribution (Figures 3D and 4D) suggest that at low pH the 

orientational preference of water close to the membrane (region I and II) is reduced, 

indicating that water is less ordered. At the same time the increase in the non-zero decay 

of the orientation relaxation for these regions (term A3 in Tables 4 and 7, and Figures 3C 

and 4D) suggests a slower reorientation and higher orientational preference. To explain 

this apparent contradiction, it should be noted that while both angular distribution and 

orientation relaxation are related to the orientation of the water molecules with respect to 

the membrane surface, the two properties are not the same. Also, they occur and are 

measured at very different timescales.  Orientational relaxation measures how fast water 

molecules are rotating given by the change in direction of their dipole vector and the decay 

time of this process occurs on the time scale of a few to 10s of ns. In contrast, angular 

distribution is a measure of orientational preference of the dipole with respect to the 

membrane surface. This is obtained from averaging the position of the water dipole over 

100s of ns. Based on the combined results it appears that at low pH, individual water 

molecules are slowed down in their rotation but over longer time frames and averaged 

over many water molecules the preferred orientation is reduced.  

 

Previous studies using vibrational sum frequency generation spectroscopy (VSFG) 11 

show that addition of CaCl2 reduces ordering of interfacial water at the surface of a 

zwitterionic DPPC bilayer. Based on the comparison of VSFG spectra from DPPC in the 

absence and presence of CaCl2 the authors propose that the Ca2+ shields the charge of 

the phosphate and as a result reduces the impact of the P-N dipole of the lipid headgroup 

on the water. It has also been shown previously that Ca2+ binds to the surface of 

phospholipid bilayers and interacts with phospholipid head groups and, like H3O
+, 

reduces the APL of the bilayer. Based on these similarities and the higher charge density 

of H3O
+ ions, it is possible that the decrease in the preferred orientation of water close to 

a membrane surface in the presence of H3O
+ is caused by a similar effect.  However, to 



directly assess this a direct comparison of the same system with and without Ca2+ at low 

and high pH is needed, which is beyond the scope of this study. 

 

As noted before the observed changes in the properties of interfacial water at low pH can 

be caused directly by the interaction of H3O+ with water or indirectly by the H3O
+-induced 

lowering of APL. The fixed-APL simulations allowed us to isolate these effects. If the direct 

interaction of H3O
+ ions with interfacial water were the only contribution to the differences 

seen in the neutral or low pH systems, interfacial water in the fixed-APL simulations 

(where the H3O
+ ions were removed) should exhibit the same patterns and values as in 

the neutral POPC simulations. On the other hand, if the reduced APL is the main 

contribution to the observed differences of interfacial water at neutral and low pH, 

properties in the fixed-APL simulations would be equal or close to values from simulations 

of POPC in the presence H3O
+ (even if the ions themselves have been removed). As the 

results from fixed-APL simulations show, the contributions from these different effects 

depends on the property. Results from the survival probabilities, H-bond lifetimes and 

orientation relaxation shows that for water closest to the membrane surface (region I) the 

decay times of the slow components are in-between the values for simulations in the 

absence and presence of H3O
+ ions. This suggests that for water molecules that are 

located in the lipid headgroups, the same region where H3O
+ ions are found, the increase 

in survival time and H-bond lifetimes seen in simulations of POPC in the presence of H3O
+ 

is a result of both the reduced APL and the direct water- H3O
+ interactions. Furthermore, 

for all other regions, the values are the same or close to the ones from simulations under 

neutral conditions. Thus, in the absence of direct interaction with H3O
+ ions, the reduced 

APL itself, does not affect survival probabilities and H-bond lifetimes of the interfacial 

water. Results from the angular distribution analysis shows that the orientation of the 

water molecules in the fixed-APL is closer to the one found at low pH than under neutral 

conditions. This indicates that the tighter packing of the lipids, induced by the lipid-H3O
+ 

interactions, is the main contribution to the changes in the orientation of interfacial water 

molecules.  

 



As noted in the introduction, acidic pH affects the properties of phospholipid bilayers 

including the lamellar gel-to-liquid crystalline phase-transition temperature or membrane 

conductance and capacitance. This suggests a tighter packing of lipids, consistent with 

the reduced APL and increased membrane thickness seen in experiments and 

simulations 34-35, caused by the direct interaction of the hydronium ions 35, 51-53. One can 

also speculate that some of these changes in membrane properties are more indirectly 

caused by the changes in interfacial water at low pH. For example, the widening of the 

interfacial water layer and the increase in ordering of water at low pH might stabilise the 

gel phase and thus contribute to the observed increase of the lamellar gel-to-liquid 

crystalline phase-transition temperature. Another example, of how interfacial effects can 

alter  membrane properties was reported by Zhou and Raphael 32 who showed that pH-

induced changes in bending stiffness resulted from alterations of interfacial electrostatics 

as opposed to changes in the intramembrane dipole potential. Results from these studies 

highlight the complex interplay of interracial water and membrane properties. 

Nevertheless, to assess if and how the pH-induced changes in interfacial water affect 

biological processes requires studies on more complex membranes that better mimic cell 

membranes 

 

Summary and conclusion  

While numerous studies investigated the properties of interfacial water little is known if 

and how these properties are affected by the presence of H3O
+ ions, as found at low pH. 

To address this question, we used extensive MD simulations to compare the structure 

and dynamics of water at the interface of a POPC bilayer, in the absence and presence 

of H3O
+ ions. Analysis of properties using five different water layers, at increasing distance 

from the membrane surface, highlights that the distance at which the water deviates from 

bulk depends on the property. Under the neutral conditions, the survival probability of 

interfacial water appears to be affected for water as far as 2.5 nm from the membrane 

surface while orientational relaxation, H-bond lifetimes and orientational preference only 

deviate for the water within about 0.5 – 1 nm from lipid headgroups. Likewise, the extent 

to which properties are affected by the presence of H3O
+ varies. Most affected is the 

survival probability, which is much higher in the presence of H3O
+ than under neutral 



conditions. Similarly, H3O
+ slows down the orientational relaxation even further compared 

to neutral conditions. Independent of the extent of the deviation from bulk, in all three 

properties the H3O
+ ions cause the long-range effect to extend further away from the 

membrane surface.  In the case of the angular distribution, the H3O
+ ions appear to reduce 

the preferred orientation. Results from fixed-APL simulations in the absence of H3O
+ 

suggest that the tighter packing of the lipids, induced by the lipid-H3O
+ interactions, rather 

than the direct water-H3O
+ interactions, are the major contribution to the changes in the 

dipole orientation of interfacial water molecules. In contrast, the changes in survival 

probability and H-bond lifetimes are likely a combination of the direct interaction of H3O+ 

ions with water as well as the reduced APL. 

 

Supporting Information 

Average z-position of P atoms in the upper and lower leaflets of a POPC bilayer in the 

presence of H3O
+ ions; Position of H3O

+ ions in the simulation system of POPC with H3O
+ 

ions; Survival probability for the five regions of interfacial water under neutral conditions; 

Properties of interfacial water from ‘fixed-APL’ simulations of membranes in the absence 

of H3O
+; Relaxation times for survival probabilities of interfacial water from the ‘fixed-APL’ 

simulations and for bulk water in the absence of H3O
+; Relaxation times for H-bond 

lifetimes of interfacial water from the ‘fixed-APL’ simulations and for bulk water in the 

absence of H3O
+. Relaxation times for orientation lifetimes of interfacial water from the 

‘fixed-APL’ simulations and for bulk water in the absence of H3O
+. 

 

at the start of the simulation (t = 0 ns), randomly placed in the simulation system, and 

after 200 ns of simulation as they accumulate at the water-lipid interface. 
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Figures and Tables  

 
 

 

 

Figure 1. Schematic of cylindrical volumes used for analysis of interfacial water. Five groups of 

water molecules were selected by defining a cylindrical volume around a selected lipid molecule 

at five different, increasing distances away from the water-lipid interface. For this, the cylinder 

was positioned at z = 0 – 0.5 nm (region I), z = 0.5 – 1.0 nm (region II), z = 1.0 – 1.5 nm (region 

III), z = 1.5 – 2.0 nm (region VI), z = 2.0 – 2.5 nm (region V), where z = 0 is the at the centre of 

geometry (COG) of the heavy atoms in the head group of the selected lipid. (A) and (B) show the 

cylindrical volume and the resulting group of water molecules for regions I and V, respectively. 

The small inset image shows the same group of water molecules from a ‘top view’ i.e. looking 

down onto the membrane surface. 

 

 

 

 

 

 



 

Figure 2: Normalised density of water as a function of distance from the membrane surface, 

calculated from simulations of POPC bilayers in the absence and presence of H3O
+. The density 

was calculated from the last 500 ns of a 1-µs simulation of POPC without H3O
+ ions (blue) and in 

the presence of 40 mM [H3O
+] (green).  

 

 



 
Figure 3. Properties of interfacial water from simulations of POPC under neutral 

conditions. (A) survival probability, (B) hydrogen bond lifetimes, (C) orientation relaxation 

and (D) angular distribution for five regions, at increasing distances from the membrane 

surface. As reference the same property from simulations of bulk water is shown (black). 

Error bars are 1 standard deviation. For all plots the five regions are: z = 0 – 0.5 nm 

(region I, orange), z = 0.5 – 1.0 nm (region II, cyan), z = 1.0 – 1.5 nm (region III, red), z = 

1.5 – 2.0 nm (region IV, green), z = 2.0 – 2.5 nm (region V, blue), where z = 0 is the at 

the centre of geometry of head group of the selected lipid (see also Figure 1).  

 

 
 
 
 
 
  



 
Figure 4. Properties of interfacial water from simulations of POPC in the presence of 40 

mM H3O
+. (A) survival probability, (B) hydrogen bond lifetimes, (C) orientation relaxation 

and (D) angular distribution for five regions, at increasing distances from the membrane 

surface. As reference the same property from simulations of bulk water is shown (black). 

Error bars are 1 standard deviation. For all plots the five regions are: z = 0 – 0.5 nm 

(region I, orange), z = 0.5 – 1.0 nm (region II, cyan), z = 1.0 – 1.5 nm (region III, red), z = 

1.5 – 2.0 nm (region IV, green), z = 2.0 – 2.5 nm (region V, blue), where z = 0 is the at 

the centre of geometry of head group of the selected lipid (see also Figure 1).  

 
  



Table 1: Overview of simulation systems, the corresponding number of H3O
+ ions added, 

the resulting H3O
+ concentrations and simulations times. For membrane simulations, the 

angular distribution and density was calculated from the last 500 ns of a 1-µs simulation. 

Survival probability, orientational relaxation and H-bond lifetimes were calculated from a 

40-ns simulation where frames were written out every 2 ps. Data for the POPC bilayer in 

the absence of H3O
+ ions were taken from a previous study 65, 82 

System 
Number of 
H3O

+ ions  
[H3O

+] Simulations 

Membrane  

Neutral  - - 1 µs, 40 ns 

Low pH 16 40 mM 1 µs, 40 ns 

Fixed-APL  - - 1 µs, 40 ns 

Bulk water  

Neutral - - 40 ns  

Low pH 6 40 mM 40 ns 

 

 

Table 2. Relaxation times for survival probabilities of interfacial water and bulk water 

under neutral conditions. For each of the five regions as well as for bulk water, relaxation 

times were obtained by fitting a two-term exponential decay to the corresponding survival 

probabilities. A1 and t1 describe the fast component and A2 and t2 describe the slow 

component. For all fits the correlation coefficients were > 0.99 and Chi2 was < 3*10-3. 

 

Region A1 t1 (ps) A2 t2 (ps) 

0.0 – 0.5 nm (I) 0.5 3.1 0.5  22.1 

0.5 – 1.0 nm (II) 0.3 1.9 0.6 9.2 

1.0 – 1.5 nm (III) 0.2 1.1 0.8 5.5 

1.5 – 2.0 nm (IV) 0.2 1.0 0.8 4.8 

2.0 – 2.5 nm (V) 0.2 1.0 0.8 4.7 

Bulk water  0.1 0.8 0.8 3.2 

 

 

 

 



Table 3. Relaxation times for H-bond lifetimes of interfacial water and bulk water under 

neutral conditions. For each of the five regions as well as for bulk water, relaxation times 

were obtained by fitting a two-term exponential decay to the corresponding H-bond 

lifetime curves. A1 and t1 describe the fast component and A2 and t2 describe the slow 

component. For all fits the correlation coefficients were > 0.99 and Chi2 was < 5*10-4. 

 

Region A1 t1 (ps) A2 t2 (ps) 

0.0 – 0.5 nm (I) 0.7 0.7 0.3 3.9 

0.5 – 1.0 nm (II) 0.6 0.5 0.4 1.5 

1.0 – 1.5 nm (III) 0.5 0.4 0.5 1.0 

1.5 – 2.0 nm (IV) 0.4 0.3 0.6 0.9 

2.0 – 2.5 nm (V) 0.4 0.3 0.6 0.8 

Bulk water  0.3 0.3 0.7 0.9 

 

 

 

Table 4. Relaxation times for orientation relaxation of interfacial water and bulk water 

under neutral conditions. For each of the five regions as well as for bulk water, relaxation 

times were obtained by fitting a two-term exponential decay to the corresponding 

orientation relaxation curves. A1 and t1 describe the fast component and A2 and t2 

describe the slow component. The constant term A3 accounts for the decay of some 

regions not reaching zero within the sampling time.  For all fits the correlation coefficients 

were > 0.99 and Chi2 was < 8*10-5. 

 

Region A1 t1 (ps) A2 t2 (ps) A3 

0.0 – 0.5 nm (I) 0.6 0.5 0.3 5.1 0.082 

0.5 – 1.0 nm (II) 0.8 0.5 0.2 2.1 0.009 

1.0 – 1.5 nm (III) 0.6 0.3 0.3 0.9 0.0008 

1.5 – 2.0 nm (IV) 0.4 0.3 0.3 0.8 0.0003 

2.0 – 2.5 nm (V) 0.4 0.3 0.3 0.7 0.0001 

Bulk water  0.0 0.4 0.1 0.8 0.0001 

 

 

 

 

 



Table 5. Relaxation times for survival probabilities of interfacial water and bulk water in 

the presence of H3O
+. For each of the five regions as well as for bulk water, relaxation 

times were obtained by fitting a two-term exponential decay to the corresponding survival 

probabilities curves. A1 and t1 describe the fast component and A2 and t2 describe the 

slow component. For all fits the correlation coefficients were > 0.99 and Chi2 was < 3*10-

3. 

 

Region A1 t1 (ps) A2 t2 (ps) 

0.0 – 0.5 nm (I) 0.4 3.6 0.6 38.8 

0.5 – 1.0 nm (II) 0.3 2.6 0.6 17.5 

1.0 – 1.5 nm (III) 0.2 1.6 0.7 10.1 

1.5 – 2.0 nm (IV) 0.2 1.4 0.7 8.7 

2.0 – 2.5 nm (V) 0.2 1.4 0.7 8.4 

Bulk water  0.2 0.8 0.8 3.3 

 

 

Table 6. Relaxation times for H-bond lifetimes of interfacial water and bulk water in the 

presence of H3O
+. For each of the five regions as well as for bulk water, relaxation times 

were obtained by fitting a two-term exponential decay to the corresponding H-bond 

lifetime curves. A1 and t1 describe the fast component and A2 and t2 describe the slow 

component. For all fits the correlation coefficients were > 0.99 and Chi2 was < 2*10-3. 

 

Region A1 t1 (ps) A2 t2 (ps) 

0.0 – 0.5 nm (I) 0.7 0.9 0.3 7.1 

0.5 – 1.0 nm (II) 0.6 0.6 0.4 3.1 

1.0 – 1.5 nm (III) 0.5 0.4 0.5 1.7 

1.5 – 2.0 nm (IV) 0.4 0.4 0.6 1.6 

2.0 – 2.5 nm (V) 0.4 0.4 0.5 1.4 

Bulk water  0.3 0.3 0.7 1.0 

 

 

 

 
 

 

 



Table 7. Relaxation times for orientation relaxation of interfacial water and bulk water in 

the presence of H3O
+. For each of the five regions as well as for bulk water, relaxation 

times were obtained by fitting a two-term exponential decay to the corresponding 

orientation relaxation curves. A1 and t1 describe the fast component and A2 and t2 

describe the slow component. The constant term A3 accounts for the decay of some 

regions not reaching zero within the sampling time.  For all fits the correlation coefficients 

were > 0.99 and Chi2 was < 2*10-4. 

 

Region A1 t1 (ps) A2 t2 (ps) A3 

0.0 – 0.5 nm (I) 0.4 0.5 0.4 5.9 0.14 

0.5 – 1.0 nm (II) 0.8 0.5 0.2 3.1 0.02 

1.0 – 1.5 nm (III) 0.4 0.4 0.5 1.8 0.002 

1.5 – 2.0 nm (IV) 0.4 0.4 0.5 1.6 0.0008 

2.0 – 2.5 nm (V) 0.4 0.4 0.5 1.6 0.0008 

Bulk water  0.6 0.3 0.3 0.9 0.0001 

 

 

  



 


