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Abstract

This research is devoted to the study of plane wave propagation in homogeneous transversely isotropic magneto-
thermoelastic rotating medium with combined effect of hall current and two temperature. The research is applied to 
fractional order theory with three-phase lag heat transfer. It is analysed that, for 2-D assumed model, three types of 
coupled longitudinal waves (quasi-longitudinal, quasi-transverse and quasi-thermal) are present. The wave character-
istics like phase velocity, specific loss, attenuation coefficients, energy ratios, penetration depths and amplitude ratios 
of transmitted and reflected waves are computed numerically and illustrated graphically. The impact of hall current 
parameter by taking different values is represented graphically. Some particular cases are also derived from this research.
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temperature · Plane wave propagation
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List of symbols

δij  Kronecker delta
Cijkl  Elastic parameters
βij  Thermal elastic coupling tensor
T  Absolute temperature
T0  Reference temperature
φ  Conductive temperature
tij  Stress tensors
eij  Strain tensors
ui  Components of displacement
ρ  Medium density
CE  Specific heat
aij  Two temperature parameters
αij  Linear thermal expansion coefficient
Kij  Materialistic constant
Kij

*  Thermal conductivity
ω  Angular frequency
μ0  Magnetic permeability

�  Angular velocity of the solid and equal to Ωn , 
where n is a unit vector

u⃗  Displacement vector

H⃗
0
  Magnetic field intensity vector

j⃗   Current density vector
Fi  Components of Lorentz force
τ0  Relaxation time
ɛ0  Electric permeability
δ(t)  Dirac’s delta function
τt  Phase lag of heat flux
τv  Phase lag of temperature gradient
τq  Phase lag of thermal displacement
α  Fractional order derivative
ξ  Wave number
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1 Introduction

The medium deformed due to thermal shock and appli-
cation of the magnetic field, produces an induced mag-
netic and electric field in the media. These magnetic and 
electric field produce the voltage (known as Hall voltage) 
across conductor. The composite material such as a mag-
neto-thermoelastic material gained considerable impor-
tance since last decade because these materials show the 
required coupling effect between magnetic and electric 
fields. Study of plane wave propagation in a thermoe-
lastic solids gained considerable importance because of 
its applications in the area of inspecting materials, mag-
netometers, geophysics, nuclear fields and related top-
ics. In last decade significant attention has been given in 
the area of plane wave propagation in thermoelastic and 
magneto-thermoelastic (MT) medium.

Borejko [1] deliberated the coefficients of transmis-
sion and reflection for 3D plane waves in elastic media. 
Sinha and Elsibai [2] discoursed the refraction and reflec-
tion of thermoelastic waves with two relaxation times 
at the boundary of two semi-infinite media. Ting [3] 
explored propagation of surface wave in an anisotropic 
rotating media. Othman and Song [4, 5] presented differ-
ent hypotheses about magnetothermoelastic waves in 
homogeneous isotropic medium. Kumar and Chawla [6] 
discussed the plane wane propagation in anisotropic two 
and three phase lag (TPL) model. Deswal and Kalkal [7] dis-
cussed the problem in a surface suffering a time depend-
ent thermal shock for thermo-viscoelastic interactions in 
a 3-D homogeneous isotropic media.

The reflection of plane periodic wave’s occurrence in ther-
moelastic micropolar homogeneous transversely isotropic 
(HTI) media had been studied by Kumar and Gupta [8] to 
find out the complex velocities of the four waves i.e. quasi-
longitudinal displacement (qLD), quasi- transverse micro-
rotational (qTM), quasi-transverse displacement (qTD) and 
quasi thermal (qT) waves. Abouelregal [9] had investigated 
the induced displacement, temperature, and stress fields in 
transversely isotropic boundless medium with cylindrical 
cavity with moving and harmonically heat source with dual 
phase lag (DPL) model. The effects of reflection and refrac-
tion are studied by Gupta [10] at the boundary of elastic and 
a thermoelastic diffusion media, for plane waves by expand-
ing the Fick law with DPL diffusion model with delay times of 
both mass flow as well as potential gradient. Beside, Kumar 
et al. [11] depicted the effect of time, thermal and diffusion 
phase lags for an axisymmetric heat supply in a ring for 
DPL model for transfer of heat and diffusion by considering 
upper and lower surfaces of the ring as friction free.

Youssef [12, 13] proposed a two-temperature model 
for an elastic half-space with constant elastic parameters 

and with generalized thermoelasticity without energy 
dissipation. Sharma and Kaur [14] had investigated the 
transverse vibrations due to time varying patch loads in 
homogeneous thermoelastic thin beams. However, Kumar 
et al. [15] had explored of uncertainties due to thermo-
mechanical sources (concentrated and distributed) using 
Laplace and Fourier transform technique in a homogene-
ous transversely isotropic thermoelastic (HTIT) rotating 
medium with magnetic effect, two temperature and by 
G–N in presence and absence of energy dissipation w.r.t. 
thermomechanical sources. Kumar et al. [16] investigated 
the Rayleigh waves in a MT rotating media in the presence 
of hall current and two temperature.

Othman et al. [17] proposed a model for generalized 
magneto-thermoelasticity in an isotropic elastic medium 
rotated with a uniform angular velocity and with two–tem-
perature and initial stress under LS (Lord–Shulman), GL 
(Green–Lindsay) and CT (coupled theory) theories of gen-
eralized thermoelasticity. Kumar and Kansal [18] found 
reflected and refracted waves occurrence in MT diffusive 
half-space medium with voids. Maitya et al. [19] presented 
plane wave propagation in fibre-reinforced medium with 
GN –I and II type theories and rotation. Bayones and Abd-
Alla [20] discussed 2D problem of thermoelasticity regard-
ing thermoelastic wave propagation in a rotating medium 
with time-dependent heat source.

Alesemi [21] demonstrated the efficiency of the thermal 
relaxation time depending upon LS theory, Coriolis and 
Centrifugal Forces on plane wave’s reflection coefficients in 
an anisotropic MT rotating medium. Despite of this several 
researchers worked on different theory of thermoelastic-
ity Marin [22–25], Marin and Baleanu [26], Ezzat et al. [27], 
Marin [28, 29] Ezzat et al. [30], Ezzat et al. [31], Marin and 
Stan [32], Marin and Nicaise [33], Ezzat and El-Bary [34], 
Othman and Marin [35], Chauthale et al. [36], Marin [37], 
Kumar et al. [38], Marin et al. [39], Lata and Kaur [40–42] 
and Lata and Kaur [43, 44]. Inspite of these, not much work 
has been carried out in study of the plane wave propaga-
tion with combined effect of hall current, fractional order 
TPL heat transfer and two temperature.

In this paper, we have attempted to study the plane 
wave propagation with combined effect of hall current, 
fractional order TPL heat transfer and two temperature in 
HTI magneto thermo elastic medium.

2  Basic equations

Following Kumar et al. [45], the simplified Maxwell’s equa-
tions for a slowly moving and conducting elastic solid are

(1)curlh⃗ = j⃗ + 𝜀0
𝜕E⃗

𝜕t
,
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Maxwell stress components [45] are given by

The constitutive relations for a HTIT medium are given 
by

Equation of motion as described by Schoenberg and 
Censor [46] for a HTI medium rotating uniformly with an 
angular velocity and Lorentz force

where Fi = 𝜇
0

(

j⃗ × H⃗
0

)

 are the components of Lorentz 

force. The terms Ω × (Ω × u) and 2Ω × u̇ are the centripetal 
acceleration and Coriolis acceleration due to the time-
varying motion respectively.

The Eqs. (1)–(7) are appended by generalized Ohm’s law 
for finite conductivity and hall current effect [47]:

The heat conduction equation

where �ij = Cijkl�ij,

�ij = �i�ij , Kij = Ki�ij , K
∗

ij
= K∗

i
�ij i is not summed.

Here Cijkl
(

Cijkl = Cklij = Cjikl = Cijlk
)

 are elastic parameters 
and having symmetry (Cijkl = Cklij = Cjikl = Cijlk) . The basis 
of these symmetries of Cijkl is due to

1. The stress tensor is symmetric, which is only possible 
if 
(

Cijkl = Cjikl
)

(2)curlE⃗ = −𝜇0

𝜕h⃗

𝜕t
,

(3)E⃗ = −𝜇0

(

𝜕u⃗

𝜕t
+ H⃗0

)

,

(4)divh⃗ = 0.

(5)tij = �
0

(

Hihj + Hjhi − Hkhk�ij
)

.

(6)tij = Cijklekl − �ijT .

(7)tij,j + Fi = 𝜌
{

üi + (Ω × (Ω × u)i + (2Ω × u̇)i
}

,

(8)J =
𝜎
0

1 +m2

(

E + 𝜇
0

(

u̇ × H −
1

en
e

J × H
0

))

.

(9)

Kij

(

1 +

(

𝜏t
)𝛼

𝛼!

𝜕𝛼

𝜕t𝛼

)

�̇�,ji + K∗

ij

(

1 +

(

𝜏v
)𝛼

𝛼!

𝜕𝛼

𝜕t𝛼

)

𝜑,ji

=

(

1 +

(

𝜏q
)𝛼

𝛼!

𝜕𝛼

𝜕t𝛼
+

(

𝜏q
)2𝛼

2𝛼!

𝜕2𝛼

𝜕t2𝛼

)

[

𝜌CE T̈ + 𝛽ijT0ëij
]

,

(10)eij =
1

2

(

ui,j + uj,i
)

, i, j = 1, 2, 3.

T = � − aij�,ij ,

2. If a strain energy density exists for the material, the 
elastic stiffness tensor must satisfy Cijkl = Cklij

3. From stress tensor and elastic stiffness tensor symme-
tries infer 

(

Cijkl = Cijlk
)

 and Cijkl = Cklij = Cjikl = Cijlk

3  Formulation and solution of the problem

We consider a perfectly conducting HTI magnetothermoe-
lastic rotating medium with an angular velocity Ω and two 
temperature and TPL fractional order model of generalized 
thermoelasticity initially at a uniform temperature T0, with 
an initial magnetic field H⃗0 =

(

0,H0, 0
)

 acting towards y 
axis. The rectangular Cartesian co-ordinate system (x, y, z) 
having origin on the surface (z = 0) with z axis directing 
vertically downwards into the medium is used. For 2-D 
problem in xz—plane, we consider

In addition, we consider that

From the generalized Ohm’s law

The J1 and J3 using (8) are given as

Now using the transformation on Eqs. (7)–(9) following 
Slaughter [48] are as under:

u = (u, 0,w).

E = 0,� = (0,Ω, 0).

(11)J
2
= 0.

(12)J1 =
�0�0H0

1 +m2

(

m
�u

�t
−

�w

�t

)

,

(13)J
3
=

�
0
�
0
H
0

1 +m2

(

�u

�t
+m

�w

�t

)

.

(14)

C11
�2u

�x2
+ C13

�2w

�x�z
+ C44

(

�2u

�z2
+

�2w

�x�z

)

− �1
�

�x

{

� −

(

a1

�2�

�x2
+ a3

�2�

�z2

)}

− �0J3H0 = �

(

�2u

�t2
− Ω

2
u + 2Ω

�w

�t

)

,

(15)

(

C13 + C44

) �2u

�x�z
+ C44

�2w

�x2
+ C33

�2w

�z2

− �3
�

�z

{

� −

(

a1

�2�

�x2
+ a3

�2�

�z2

)}

− �0J1H0

= �

(

�2w

�t2
− Ω

2
w − 2Ω

�u

�t

)

,
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and

where

To facilitate the solution, below mentioned dimension-
less quantities are used:

Using (20) in Eqs. (14)–(16) and after suppressing the 
primes, yield

(16)

K1

(

1 +

(

𝜏t
)𝛼

𝛼!

𝜕𝛼

𝜕t𝛼

)

𝜕2�̇�

𝜕x2
+ K3

(

1 +

(

𝜏t
)𝛼

𝛼!

𝜕𝛼

𝜕t𝛼

)

𝜕2�̇�

𝜕z2

+ K ∗

1

(

1 +

(

𝜏v
)𝛼

𝛼!

𝜕𝛼

𝜕t𝛼

)

𝜕2𝜑

𝜕x2
+ K ∗

3

(

1 +

(

𝜏v
)𝛼

𝛼!

𝜕𝛼

𝜕t𝛼

)

𝜕2𝜑

𝜕z2

=

(

1 +

(

𝜏q
)𝛼

𝛼!

𝜕𝛼

𝜕t𝛼
+

(

𝜏q
)2𝛼

2𝛼!

𝜕2𝛼

𝜕t2𝛼

)

[

𝜌CE

𝜕2

𝜕t2

[

𝜑 − a1
𝜕2𝜑

𝜕x2
− a3

𝜕2𝜑

𝜕z2

]

+T0

{

𝛽1
𝜕ü

𝜕x
+ 𝛽1

𝜕ẅ

𝜕z

}]

,

(17)t
xx
= C11exx + C13exz − �1T ,

(18)t
zz
= C13exx + C33ezz − �3T ,

(19)t
xz
= 2C44exz ,

T = � −

(

a1

�2�

�x2
+ a3

�2�

�z2

)

,

�1 =
(

C11 + C12

)

�1 + C13�3,

�3 = 2C13�1 + C33.

(20)

x� =
x

L
, z� =

z

L
, u� =

�c2
1

L�1T0
u,

w�
=

�c2
1

L�1T0
w, t� =

c1

L
t, Ω

�
=

L

C1
Ω,

��
=

�

T0
, t�

xx
=

txx

�1T0
, t�

xz
=

txz

�1T0
,

t�
zz
=

tzz

�1T0
, ��

T
=

C1

L
�T , ��

v
=

C1

L
�v ,

��
q
=

C1

L
�q.

(21)

�2u

�x2
+ �1

�2w

�x�z
+ �2

�2u

�z2
−

�

�x

{

� −

(

a1

�2�

�x2
+ a3

�2�

�z2

)}

=
M

1 +m2

[

�u

�t
+m

�w

�t

]

+
�2u

�t2
− Ω

2
u + 2Ω

�w

�t
,

where

4  Plane wave propagation

We pursue plane wave equations of the form

where sin �, cos � denotes the projection of wave normal 
to the x–z plane.

Upon using Eq. (24) in Eqs. (21)–(23) we get

and by equating determinant of coefficients of U, W and �∗ 
to zero we yields the characteristic equation as

where

(22)

�1
�2u

�x�z
+ �2

�2w

�x2
+ �3

�2w

�z2
−

�3

�1

�

�z

{

� −

(

a1

�2�

�x2
+ a3

�2�

�z2

)}

= −
M

1 +m2

[

m
�u

�t
−

�w

�t

]

+
�2w

�t2
− Ω

2
w − 2Ω

�u

�t
,

(23)

(

1 +
C1
(

𝜏t
)𝛼

𝛼!L

𝜕𝛼+1

𝜕t𝛼+1

)

(

K1
𝜕2𝜑

𝜕x2
+ K3

𝜕2𝜑

𝜕z2

)

1

+

(

1 +

(

𝜏v
)𝛼

𝛼!

𝜕𝛼

𝜕t𝛼

)

(

K∗

1

𝜕2𝜑

𝜕x2
+ K∗

3

𝜕2𝜑

𝜕z2

)

=

(

1 +

(

𝜏q
)𝛼

𝛼!

𝜕𝛼

𝜕t𝛼
+

(

𝜏q
)2𝛼

2𝛼!

𝜕2𝛼

𝜕t2𝛼

)

[

𝜌CE T̈ +
𝛽1

𝜌
T0

{

𝛽1
𝜕ü

𝜕x
+ 𝛽1

𝜕ẅ

𝜕z

}

]

,

�1 =
c13 + c44

c11

, �2 =
c44

c11

, �3 =
c33

c11

, M =

(

L�0�
2

0
H
2

0

�C1

)

(24)

⎛
⎜
⎜
⎝

u

w

�

⎞
⎟
⎟
⎠
=

⎛
⎜
⎜
⎝

U

W

�∗

⎞
⎟
⎟
⎠
e
i(�t−�(xsin�−zcos�)),

U
[

�1�
2
+ �2

]

+W
[

�3�
2
+ �4

]

+ �∗
[

�5� + �6�
3
]

= 0,

U
[

�7�
2
+ �8

]

+W
[

�9�
2
+ �10

]

+ �∗
[

�11� + �12�
3
]

= 0,

�13�U + �14�W + �∗
[

�15�
2
+ �16

]

= 0.

(25)A�6 + B�4 + C�2 + D = 0,
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The roots of Eq. (25) give six roots of � that is, ±�
1
 , ±�

2
 

and ±�
3
 , and we are concerned to the roots with positive 

imaginary parts. Resultant to these roots, there exists three 
waves according to descending order of their velocities 
namely QL, QTS and QT. The phase velocities, attenuation 
coefficients, specific loss and penetration depth of these 
waves are obtained by the following expressions.

A = �13�3�12 − �9�6�13 − �14�1�12 + �7�6�14 + �9�1�15 − �15�7�3,

B = �3�13�11 + �4�12�13 − �9�5�13 − �10�6�13 − �14�1�11 − �14�2�12 + �14�7�5

+ �6�8�14 + �16�9�1 + �15�9�2 + �1�10�15 − �16�3�7 − �15�8�3 − �15�4�7,

C = �13�4�11 − �5�10�13 + �14�8�5 + �16�9�2 + �16�1�10 + �10�2�15
− �3�8�16 − �7�4�16 − �8�4�15,

D = �2�10�16 − �8�4�16,

�1 = − sin
2
� − �2 cos

2 �,

�2 =
−M

1 +m2
i� + �2 + Ω2,

�3 = �1 sin � cos �,

�4 =
−Mm

1 +m2
i� − 2�Ωi,

�5 = i sin �,

�6 = ia1 sin
3
� + ia3 sin � cos

2 �,

�7 = �3,

�8 ==
Mm

1 +m2
i� + 2�Ωi,

�9 = �2 sin
2
� − �3 cos

2 �,

�10 =
−Mm

1 +m2
i� + �2 + Ω2,

�11 = −i
�3

�1
cos �,

�12 = i
�3

�1
cos �

(

a1 sin
2
� + a3 cos

2 �
)

,

�13 = −
�2

1

�
T0�

2i sin �,

�14 =
�1�3T0�

2i cos �,

�

�15 = −

[

1 +
C1

L

��
T

�!
(i�)�+1

]

[

K1 sin
2
� + K3 cos

2 �
]

−

[

1 +
��
v

�!
(i�)�

]

[

K ∗

1
sin

2
� + K ∗

3
cos2 �

]

+

[

1 +
��
q

�!
(i�)� +

�2�
q

2�!
(i�)2�

]

C2

1
�CE�

2
(

a1 sin
2
� + a3 cos

2 �
)

,

�16 =

[

1 +
��
q

�!
(i�)� +

�2�
q

2�!
(i�)2�

]

C2

1
�CE�

2.

3

2

1

y

Free Surface 

Z=0

x

QT QT

QTSQTS

QL

QL

Fig. 1  Geometry of the problem

1. Phase velocity

The phase velocities are given by

where V1, V2, V3 are the velocities of QL, QTS and QT waves 
respectively (Fig. 1).

2. Attenuation coefficient

The attenuation coefficient is defined as

where Q1,Q2,Q3 are the attenuation coefficients of QL, QTS 
and QT waves respectively.

3. Specific loss

The specific loss is define as:

where W1,W2,W3 are specific loss of QL, QTS and QT waves 
respectively.

V
i
=

�

Re
(

�
i

) , i = 1, 2, 3

Qi = Img
(

�i

)

, i = 1, 2, 3.

Wi =

(
ΔW

W

)
i = 4�

|
|
|
|
|

Img
(
�i

)

Re
(
�i

)
|
|
|
|
|
, i = 1, 2, 3.
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4. Penetration depth

The penetration depth of plane wave is given by

where S1, S2, S3 are penetration depth of QL, QTS and QT 
waves respectively.

5  Reflection and transmission 
at the boundary surfaces

We consider a HTI magneto-thermoelastic half-space occu-
pying the region z ≥ 0. Incident QL, QTS and QT waves at the 
stress free and thermally insulated surface (z = 0) will generate 
reflected QL, QTS and QT waves in the half-space z > 0. The 
total displacements, conductive temperature are given by

where

Here subscripts j = 1, 2, 3 respectively denote the quan-
tities corresponding to incident QL, QTS and QT-mode, 
whereas the subscripts j = 4, 5, 6 denote the correspond-
ing reflected waves, �j are the roots obtained from Eq. (25).

6  Boundary conditions

The dimensionless boundary conditions at the free surface 
z = 0, are given by

Si =
1

Img
(

�i

) , i = 1, 2, 3.

(26)(u,w,�) =

6
∑

j=1

(1, dj , lj)Aje
iMj ,

Mj = �t − �j
(

x sin �j − z cos �j
)

, j = 1, 2, 3,

Mj = �t − �j
(

x sin �j + z cos �j
)

, j = 4, 5, 6.

dj =
�2�16 +

(

�2�15j − �5j�13j + �16�1j

)

�2
j
+ (�1j�15j − �6j�13j)�

4
j

(�9j�15j − �12j)�
4
j
+
(

�10�15j + �9j�16 − �11j�14j

)

�2
j
− �10�16

, j = 1, 2, 3.

lj =

(

�2�10 − �4�8

)

+
(

�10�1j + �2�9j − �4�7j + �8�3j

)

�2
j
+ (�1j�9j − �3j�7j)�

4
j

(�9j�15j − �12j)�
4
j
+
(

�10�15j + �9j�16 − �11j�14j

)

�2
j
− �10�16

, j = 1, 2, 3.

dj =
�2�16 +

(

�2�15j − �5j�13j + �16�1j

)

�2
j
+ (�1j�15j − �6j�13j)�

4
j

(�9j�15j − �12j)�
4
j
+
(

�10�15j + �9j�16 − �11j�14j

)

�2
j
− �10�16

, j = 4, 5, 6.

lj =

(

�2�10 − �4�8

)

+
(

�10�1j + �2�9j + �4�7j + �8�3j

)

�2
j
+ (�1j�9j − �3j�7j)�

4
j

(�9j�15j − �12j)�
4
j
+
(

�10�15j + �9j�16 − �11j�14j

)

�2
j
− �10�16

, j = 4, 5, 6.

(27)t33 = 0,

(28)t31 = 0,

Using Eq. (26) into the Eqs. (27)–(29), we obtain

The Eqs. (30)–(32) are satisfied for all values of x, there-
fore we have

From Eqs. (26) and (33), we obtain

The Eqs. (30)–(32) and (34) yield

where for p = 1,2,3 we have,

(29)
��

�z
= 0.

(30)

3
∑

j=1

Aje
i(�t−�j(xsin�j))

[

−C13i�jsin�j + C33idj�jcos�j − �3lj
]

−

6
∑

j=4

Aje
i(�t−�j(xsin�j))

[

C13i�jsin�j + C33idj�jcos�j + �3lj
]

= 0,

(31)

3
∑

j=1

Aje
i(�t−�j(xsin�j))

[

�jcos�j − dj�jsin�j
]

−

6
∑

j=4

Aje
i(�t−�j(xsin�j))

[

�jcos�j + dj�jsin�j
]

= 0,

(32)

3
∑

j=1

Aje
i(�t−�j(xsin�j))

[

ilj�jcos�j
]

−

6
∑

j=4

Aje
i(�t−�j(xsin�j))

[

ilj�jcos�j
]

= 0.

(33)

M1(x, 0) = M2(x, 0) = M3(x, 0) = M4(x, 0) = M5(x, 0) = M6(x, 0).

(34)

�
1
sin�

1
= �

2
sin�

2
= �

3
sin�

3
= �

4
sin�

4
= �

5
sin�

5
= �

6
sin�

6
.

(35)

3
∑

p=1

XipAp +

6
∑

j=4

XijAj = 0, (i = 1, 2, 3),

(36)

X1p =
−C13

�C2

1

i�psin�p +
C33

�C2

1

idp�pcos�p

−
�3

�1

[

1 − a1�
2

p
sin2�p − a3�

2

p
cos2�p

]

lp,

(37)X2p = i�pcos�p − idp�psin�p,
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and for j = 4, 5, 6 we have

6.1  Incident QL‑wave

In case of QL wave, the subscript p takes only one value, 
that is p = 1, which means A

2
= A

3
= 0 . Dividing the set of 

Eqs. (35) throughout by A1, by solving with Cramer’s rule 
we get three homogeneous equations as

6.2  Incident QTS‑wave

In case of QTS wave, the subscript q takes only one value, 
that is q = 2, which means A

1
= A

3
= 0 . Dividing the set of 

Eqs. (35) throughout by A2,  by solving with Cramer’s rule 
we get three homogeneous equations as

6.3  Incident QT‑wave

In case of QT wave, the subscript q takes only one value, 
that is q = 3, which means A

2
= A

1
= 0 . Dividing the set of 

Eq. (35) throughout by A3, by solving with Cramer’s rule we 
get three homogeneous equations as

where Zi (i = 1,2,3) are the amplitude ratios of the reflected 
QL, QTS, QT -waves to that of the incident QL-(QTS or QT) 
waves respectively.Here

can be obtained by replacing, respectively, the 1st, 2nd 
and 3rd columns of ∆ by 

[

−X1p,−X2p,−X3p
]�

(38)X
3p = ilp�pcos�p.

(39)

X1j =
−C13

�C2

1

i�psin�p −
C33

�C2

1

idp�pcos�p

−

�3

�1

[

1 − a1�
2

p
sin2�p − a3�

2

p
cos2�p

]

lp,

(40)X2j = −i�jcos�j − idj�jsin�j ,

(41)X
3j = −ilj�jcos�j .

(42)A1i =
A
i+3

A1

=
Δ

1

i

Δ
,

(43)A
2i
=

A
i+3

A
2

=
Δ

2

i

Δ
.

(44)A3i =
A
i+3

A3

=
Δ

3

i

Δ
,

(45)Δ =
|
|
|
A
i(i+3)

|
|
|3X3

(46)Δ
p

i
, (i = 1, 2, 3)

The energy flux across the surface element is repre-
sented as

where nm are the direction cosines of the unit normal and 
u̇l are the components of the particle velocity.

The time average P∗ , is the average energy transmis-
sion per unit surface area per unit time and is given at the 
interface z = 0 as

For complex functions a and b, we take

The energy ratios  Ei(i = 1,2,3) expressions for reflected 
QL, QT, QTH-wave are given as

1. QL- wave

2. QTS- wave

3. QT- wave

where 
⟨

P
∗

i

⟩

 i = 1, 2, 3 are corresponding to incident QL, 
QTS, QT waves respectively and 

⟨

P
∗

i+3

⟩

 i = 1, 2, 3 are cor-
responding to reflected QL, QTS, QT waves respectively.

7  Particular cases

1. If α = 1 we obtain results for plane wave propagation 
in magneto-thermoelastic transversely isotropic solid 
with rotation, hall effect, with two temperature, and 
with and without energy dissipation and TPL effects.

2. If � = 1 and �T = 0, �v = 0, �q = 0 and K∗ ≠ 0 we obtain 
results for plane wave propagation in magneto-ther-
moelastic transversely isotropic solid with rotation, 
hall effect, with two temperature and GN III theory 
(thermoelasticity with energy dissipation).

3. If � = 1, �T = 0, �v = 0, �q = 0 and K∗
= 0 we obtain 

results for plane wave propagation in magneto-ther-
moelastic transversely isotropic solid with rotation, 

(47)P
∗
= tlmnmu̇l ,

(48)⟨P∗⟩ =
�
Re
�
t
13

�
⋅ Re

�
u̇
1

�
+ Re

�
t
33

�
⋅ Re

�
u̇
3

��
.

(49)⟨Re(a)⟩⟨Re(b)⟩ = 1

2
Re
�
ab̄

�
.

(50)E1i =

⟨

P
∗

i+3

⟩

⟨

P
∗

1

⟩ , i = 1, 2, 3.

(51)E1i =

⟨

P
∗

i+3

⟩

⟨

P
∗

1

⟩ , i = 1, 2, 3.

(52)E1i =

⟨

P
∗

i+3

⟩

⟨

P
∗

1

⟩ , i = 1, 2, 3.
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hall effect, two temperature and GN II theory (gener-
alized thermoelasticity without energy dissipation).

4. If � = 1 and K∗ = 0 we obtain results for plane wave 
propagation in magneto-thermoelastic transversely 
isotropic solid with rotation, hall effect, with two tem-
perature and GN II theory with TPL effect

5. If 𝛼 = 1, 𝜏T = 0, 𝜏v = 0, 𝜏q = 𝜏0 > 0 and K∗ = 0, and 
ignoring �2

q
 we obtain results for plane wave propaga-

tion in magneto-thermoelastic transversely isotropic 
solid with rotation, Hall Effect, with two temperature 
and Lord–Shulman model.

If � = 1, �T = 0, �v = 0, �q = 0 and if the medium is not 
permeated with the magnetic field i.e. μ0 =  H0 =  0 then we 
obtain results for plane wave propagation in transversely 

isotropic thermoelastic solid with rotation, and with two 
temperature

6. I f  � = 1,C11 = C33 = � + 2�,C12 = C13 = �,C44 = �,

�1 = �3 = ��, a1 = a3 = a, �1 = �3 = � , K1 = K3 = K
∗

1
=

K
∗

3
= K

∗ we obtain expressions for magneto-thermoe-
lastic isotropic materials with rotation, Hall Effect, two 
temperature and with and without energy dissipation 
with TPL effect.

7. If � = 1, a1 = a3 = 0 we obtain results for magneto-
thermoelastic transversely isotropic solid with rota-
tion, Hall Effect, without two temperature, and with 
and without energy dissipation with TPL effects.

Fig. 2  Variations of phase velocity  v1 with frequency ω

Fig. 3  Variations of phase velocity  v2 with frequency ω

Fig. 4  Variations of phase velocity  v3 with frequency ω

Fig. 5  Variations of attenuation coefficient  Q1 with frequency ω
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8. If � = 1, Ω = 0, then we obtain results for plane wave 
propagation in transversely isotropic magneto-ther-
moelastic solid with Hall Effect, with and without 
energy dissipation, with two temperature and with 
TPL.

8  Numerical results and discussion

To demonstrate the theoretical results and effect of rota-
tion, relaxation time and two temperature, the physical 
data for cobalt material, which is transversely isotropic, is 
taken from Dhaliwal and Singh [49] is given as

c11 = 3.07 × 1011 Nm−2, c33 = 3.581 × 1011 Nm−2, c13 = 1.027 × 1010 Nm−2,

c44 = 1.510 × 1011 Nm−2, �1 = 7.04 × 106 Nm−2 deg−1,

�3 = 6.90 × 106 Nm−2 deg−1, � = 8.836 × 103 Kg m−3,

C
E
= 4.27 × 102j Kg−1 deg−1, K1 = 0.690 × 102 Wm−1 K deg−1,

K3 = 0.690 × 102 W m−1 K−1, K
∗

1
= 1.313 × 102 W s, K

∗

3
= 1.54 × 102 W s,

T0 = 298K, H0 = 1J m−1 nb−1, �0 = 8.838 × 10−12Fm−1, L = 1.

Fig. 6  Variations of attenuation coefficient  Q2 with frequency ω

Fig. 7  Variations of attenuation coefficient  Q3 with frequency ω

Fig. 8  Variations of specific loss  W1 with frequency ω

Fig. 9  Variations of specific loss  W2 with frequency ω
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The values of fractional order parameter α and two Tem-
perature a1 and a3 are taken as 0.5, 0.02, and 0.04 respec-
tively. For the determination of the values of penetration 
depth, phase velocity, specific loss, attenuation coefficient, 
amplitude ratios and energy ratios reflected QL, QTS and 
QT waves w.r.t. incident QL, QTS, and QT waves respec-
tively we have used package MATLAB 8.0.4 and drawn 
graphically to show the effect of hall current.

1. The line in black colour with square symbol represent 
m = 0.0,

2. The line in red colour with circle symbol represent 
m = 0.3,

3. The line in blue colour with triangle symbol represent 
m = 0.6,

8.1  Phase velocity

Figures 2, 3 and 4 indicate the change of phase velocities 
w.r.t. frequency ω respectively. The phase velocity V

1
 oscil-

lates in the initial range of the frequency for different value 
of hall current and remain same in rest of the range. In 
almost all the frequency range and for all the values of m,  
the phase velocity V2, V3 follows the same pattern.

8.2  Attenuation coefficients

Figures 5, 6 and 7 shows that the values of attenuation 
w.r.t. frequency respectively. From the graphs it is clear 
that attenuation coefficient Q1, Q2 increases for the initial 

Fig. 10  Variations of specific loss  W3 with frequency ω

Fig. 11  Variations of penetration depth  S1 with frequency ω

Fig. 12  Variations of penetration depth  S2 with frequency ω

Fig. 13  Variations of penetration depth  S3 with frequency ω
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values of the frequencies and then after decreasing the fol-
low the same pattern for all the values of hall current. The 
value of attenuation coefficient Q

3
 increases in the initial 

range of frequency and have same pattern with different 
magnitude for different values of hall current.

8.3  Specific loss

Figures 8, 9 and 10 exhibits the variations of Specific loss 
w.r.t. frequency. From the graphs it is clear that the value of 
specific loss W1 shows the oscillatory pattern for the initial 
value of the frequency for all the cases and then shows the 
same magnitude for rest of the range. The value of specific 

loss W2 shows rise in the initial value of frequency and then 
after decreasing it comes to steady state for rest of the fre-
quency range in all the cases similar variations. While the 
value of specific loss W3 gradually decreases with different 
magnitudes for all the cases of hall current.

8.4  Penetration depth

Figures 11, 12 and 13 shows the variations of penetration 
depth S1,S2, S3 w.r.t. frequency. Here, we notice a sharp 
decrease in S2 and S3 for all the cases in range 0.0 ≤ � ≤ 2 , 
and the variations approach the boundary surface by 
increasing slowly and smoothly in the rest.

Fig. 14  Variations of energy ratio  E11 with angle of incidence θ

Fig. 15  Variations of energy ratio  E12 with angle of incidence θ

Fig. 16  Variations of energy ratio  E13 with angle of incidence θ

Fig. 17  Variations of energy ratio  E21with angle of incidence θ
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8.5  Energyratios

8.5.1  Incident QL wave

Figure 14 depicts the change of energy ratio  E11 w.r.t. angle 
of incidence θ. It shows that the values of  E11 decreases grad-
ually with the change in angle of incidence corresponding 

to all the cases of hall current. Figure 15 shows the variations 
of energy ratio  E12 w.r.t. angle of incidence θ. Here the value 
increases and show same increasing pattern but difference 
in magnitude. Figure 16 depicts the changes of Energy ratio 
 E13 w.r.t. angle of incidence θ. It is noticed that the values 
decreases sharply in the initial range of angle and increase 
gradually throughout the range.

Fig. 18  Variations of energy ratio  E22 with angle of incidence θ

Fig. 19  Variations of energy ratio  E23 with angle of incidence θ

Fig. 20  Variations of energy ratio  E31 with angle of incidence θ

Fig. 21  Variations of energy ratio  E32 with angle of incidence θ
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8.5.2  Incident QTS wave

Figure 17 depicts the change of Energy ratio  E21 w.r.t. angle 
of incidence θ. Here corresponding to all the cases, we 
notice similar decreasing trends with difference in magni-
tudes for the whole range and show significantly variation 
for m. Figure 18 depicts the Variations in  E22 w.r.t. angle 
of incidence θ. Here corresponding to all the cases, there 
is sharp increases in initial range and then shows steady 
state for rest of range of θ Fig. 18. Variations of  E23 w.r.t. 
angle of incidence θ are shown in Fig. 19. Here, we notice 

values decreases sharply in the initial range of angle and 
increase gradually throughout the range.

8.5.3  Incident QT wave

Figures 20, 21 and 22 depict the Variations of Energy ratios 
 E31,  E32,  E33 w.r.t. angle of incidence θ. Hereafter sharp 
increase  E31  E32 and E33, with increase in angle of inci-
dence θfor all the cases of hall current.

Fig. 22  Variations of energy ratio  E33 with angle of incidence θ

Fig. 23  Variations of amplitude ratio  A11 with angle of incidence θ

Fig. 24  Variations of amplitude ratio  A12 with angle of incidence θ

Fig. 25  Variations of amplitude ratio  A13 with angle of incidence θ
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8.6  Amplitude ratios

8.6.1  Incident QL wave

Figures 23, 24 and 25 shows variations of amplitude ratio 
 A11,  A12,  A13 w.r.t. angle of incidence θ. Here, we notice 
that, initially, there is linear increase in the values of  A11 
for m = 0.0, 0.3 while for m = 0.6, it shows the curve form. 
The amplitude ratio  A12 and  A13 shows different pattern for 
every case of hall current with angle of incidence θ

8.6.2  Incident QTS wave

Figures 26, 27 and 28 depicts the variations of amplitude 
ratio  A21,  A22,  A23 w.r.t. angle of incidence θ. Here, we 
notice that a linear increase in amplitude ratios  A21 for all 
the cases of hall current while  A22 and  A23 shows opposite 
behaviour for all the cases of m.

Fig. 26  Variations of amplitude ratio  A21 with angle of incidence θ

Fig. 27  Variations of amplitude ratio  A22 with angle of incidence θ

Fig. 28  Variations of amplitude ratio  A23 with angle of incidence θ

Fig. 29  Variations of amplitude ratio  A31 with angle of incidence θ
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8.6.3  Incident QT wave

Figures 29, 30 and 31 show the variations of amplitude 
ratios  A31,  A32,  A33 w.r.t. angle of incidence θ respectively.. 
Here, we notice that these variations shows effect of hall 
effect parameter α on the amplitude ratios  A31,  A32,  A33.

9  Conclusions

From the analysis of graphs we conclude

1. The frequency of waves formed in the material have 
significant effect on the phase velocity, attenuation 
coefficients, specific loss and penetration depth of 
various kinds of waves.

2. The magnitude of energy ratios is also effected by the 
angle of incidence. As angle of incidence increases, 
we notice less variation in the magnitudes of energy 
ratios.

3. Hall current and two temperature changes the mag-
nitude of waves. With the increase in the hall current, 
the magnitude of waves are reduced.

4. The plane waves signals provides information about 
the inner earth structure and also useful in inspection 
of materials, magnetometers, geophysics, nuclear 
fields and related topics.
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