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In this paper, the effect of both passive and actively-modified vehicle handling characteristics
on minimum time manoeuvring for vehicles with 4-wheel torque vectoring (TV) capability
is studied. First, a baseline optimal torque vectoring strategy is sought, independent of any
causal control law. An optimal control problem (OCP) is initially formulated considering
4 independent wheel torque inputs, together with the steering angle rate, as the control
variables. Using this formulation, the performance benefit using torque vectoring against
an electric drive train with a fixed torque distribution, is demonstrated. The sensitivity
of TV-controlled manoeuvre time to the passive understeer gradient of the vehicle is
then studied. A second formulation of the optimal control problem is introduced where a
closed-loop torque vectoring controller is incorporated into the system dynamics of the OCP.
This formulation allows the effect of actively modifying a vehicle’s handling characteristic
via TV on its minimum time cornering performance of the vehicle to be assessed. In
particular, the effect of the target understeer gradient as the key tuning parameter of the
literature-standard steady-state linear single-track model yaw rate reference is analysed.

1. Introduction

Active yaw control systems for improved performance and safety have been commonplace
on passenger vehicles for the past two decades [1–5]. Today, premium vehicle manufactur-
ers are taking these systems a step further as they continuously seek ways to deliver the
most enjoyable and pleasant experience for the driver. Technology currently under de-
velopment allows vehicle handling to be tailored to the desires of the individual, whether
the preference is for a ‘fun-to-drive’ characterisitic or a stable predictability. Modern
all-wheel-drive electric vehicles (EVs) offer substantial opportunities for tailoring of han-
dling through active control of yaw dynamics by over-actuation, namely torque vectoring
(TV); the distribution of wheel torques between multiple wheels. TV has the potential
to extend the maximum cornering force by superior use of friction availability [1, 6–8].
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TV systems typically consist of a yaw rate reference, a feedback controller that outputs
the required yaw moment (some systems include feedforward elements [9]) converted to
individual wheel torque demands by the Control Allocator (CA). Advanced techniques
using mathematical analysis and simulation tools have been used to optimise both con-
troller [10–12] and CA performance [9, 12, 13]. In particular, de Castro et. al. [13] de-
veloped a realisable causal feedforward CA scheme, considering an electric vehicle with
four independent electric motors, seeking to minimise time to navigate a U-turn bend.
They achieved this by using nonlinear optimal control techniques, which permitted both
the ability to gain insight into optimal controls for distribution of torques but also the
realistic emulation of a racing driver. Numerous other vehicle dynamics studies using the
optimal control technique to manoeuvre vehicles at the performance limit has permitted
a realistic emulation of both circuit racing drivers [14–18], and rally trailbraking [19, 20];
EV-specific topologies were considered in [13, 21, 22]. The nonlinear optimal control solu-
tion gives an ideal driver behaviour (no mistakes, friction-limit operation, full preview of
future conditions)–which is not possible with a causal driver model, racing-line following
[16], or model predictive control.
With modern actively-controlled vehicles, the optimal control technique has been ex-

tended to not only correctly mimic the professional driver, but to gain insight into how
to maximise the performance of active systems given a certain objective. Tremlett et. al.
[23] explore optimum differential set-up for touring car racing, while [17] simultaneously
determine optimal deployment of the complex hybrid power technology and numerous
set-up options available on modern Formula 1 cars. These studies are examples of an
open-loop control method [24, 25] from which the maximum performance potential of
the vehicle with TV may be ascertained– by determining the optimal control inputs that
must be applied to the vehicle directly. However, optimal open-loop control is a-causal
and hence gives only theoretical insight; a causal control system (closed-loop control
algorithm [24, 25]) is required to make use of the insight in a practical application.
In this work we propose the application of nonlinear optimal control techniques to study

the effect of handling characteristics, passive and actively modified, of torque-vectored
vehicles for minimum time manoeuvring. In [21] we generated a particular minimum
time open-loop control trajectory over a U-turn for a 7 degree of freedom (DOF) vehicle
model with nonlinear tyres and TV via 4 independent motors. The open-loop optimal
control problem was formulated with 4 independent wheel torques and front steering rate
(corresponding to the driver steering input) as the control inputs. In this paper we extend
the open-loop OCP formulation of [21] to study the effect of passive handling balance,
determined by the front/rear tyre characteristics, on the controlled performance.
Furthermore, the open-loop control solution generates a baseline performance as a

benchmark against which a closed-loop control law is assessed. The OCP is reformu-
lated with two control inputs of total longitudinal torque demand (corresponding to the
driver’s throttle/brake command) and steering rate. A closed-loop TV controller actively
modifying the vehicle’s handling characteristic is included in the system dynamics of the
OCP. For an Unmanned Aerial Vehicle, Levin et. al. [26] produced optimal state tra-
jectories in OCP, which were then used as reference signals to be followed in an OCP
formulation including a motion controller. A framework that included the closed-loop
TV controller in the system dynamics for a ground vehicle was first introduced in [22],
using, however, a rather simple 3DOF single track vehicle model, with a linear tyre model
and neglecting important load transfer effects, while the torque vectoring control action
was applied as an external yaw moment. In this work we extend the approach of [22]
by considering the 7DOF model with nonlinear tyre characteristics and load transfer
effects of [21]. Torque vectoring is now realistically implemented through control of trac-
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tion/braking forces at each of the 4 wheels independently. This formulation allows us to
assess the effect of actively modifying the handling balance of the vehicle on minimum
time cornering performance. Several approaches in the literature propose heuristic target
handling characteristics for TV controlled vehicles. For instance, De Novellis et. al. [9]
choose a target to produce a more agile response by reducing understeer with respect to
the passive vehicle. Our analysis investigates the sensitivity of manoeuvre time to the
target handling characteristic with the purpose of informing engineers how to optimise
the performance of a TV vehicle.

2. Vehicle System Modelling

This section sets out the mathematical models required for the optimal control problem
formulation in §3.

2.1. 7DOF Vehicle Model

A 7DOF, two-track vehicle model is employed with nonlinear tyres (Fig. 1), including a
quasi-static representation of longitudinal and lateral load transfers. Roll and pitch dy-
namics are neglected. Retarding torque is provided exclusively by regenerative braking.
In a similar manner to [19, 20], aerodynamic forces and rolling resistance are neglected
since the manoeuvre under consideration is of moderate speed. The equations are param-
eterised for a high-performance EV (Table 1). In the following, i = {F,R} (front, right),
j = {L,R} (left, right), k = {x, y, z}. x, y and z denote the longitudinal, lateral and
vertical directions respectively. Quantities without subscript k denote resultants. The

Figure 1.: 7DOF vehicle model
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equations of motion for the 7DOF vehicle model (Fig. 1) are:

V̇ =
1

m
[(fFLx + fFRx) cos(δ − β)− (fFLy + fFRy) sin(δ − β) (1)

+ (fRLx + fRRx) cos β + (fRLy + fRRy) sinβ] ,

β̇ =
1

mV
[(fFLx + fFRx) sin(δ − β) + (fFLy + fFRy) cos(δ − β) (2)

− (fRLx + fRRx) sin β + (fRLy + fRRy) cosβ]− ψ̇,

ψ̈ =
1

Iz
[ℓF {(fFLy + fFRy) cos δ + (fFLx + fFRx) sin δ} − ℓR (fRLy + fRRy) (3)

+ w/2 (fFLy sin δ − fFLx cos δ − fRLx)

+ w/2 (fFRx cos δ − fFRy sin δ + fRRx)]

ω̇ij =
1

Iw
[Tij − fijxr] , (4)

where: m is the vehicle mass; Iz is the moment of inertia about the vertical axis; V is
the vehicle velocity at the center of mass (CM); β is the vehicle sideslip angle at the
CM; ψ̇ is the yaw-rate. The moment of inertia of each wheel about its axis of rotation is
Iw; the wheel radius is r; the wheel angular speeds are ωij; the steering angle is δ; the
drive/brake torque applied on each wheel is Tij . Tyre forces are denoted by fijk. The
parameters ℓF , ℓR determine the location of the CM with respect to the center of each
wheel; w is the track width.
The tyres are modelled using the simplified Pacejka Magic Formula (MF) [27], assuming

tyre friction force is linearly dependent on the tyre normal force, and isotropic tyre force
characteristics:

µij(|sij|) = MF(|sij |) = D sin(Catan(Bisij)), where: |sij | =
√

s2ijx + s2ijy, (5)

where |sij | is the resultant tyre slip magnitude, and sijx and sijy are the theoretical
longitudinal and lateral slips, respectively [27]; µij is the total tyre force coefficient; Bi,
C, D are the MF coefficients. Tyre force components are given by:

|fij| =
√

f2ijx + f2ijy, where: fijk/fijz = µijk = −
sijk
|sij|

µij(|sij|), (6)

where µijk are the tyre force coefficients for tyre ij in longitudinal or lateral directions
(k = {x, y}). Similarly, sijk is the theoretical slip quantity for tyre ij in the k = {x, y}
directions.
A quasi-static representation is used to determine the normal loads on each wheel,
fijz, adopted from [28] and re-presented here, by neglecting pitch, roll and vertical
translation—considering only the static weight distribution and weight transfers gen-
erated by lateral and longitudinal accelerations. The normal loads on each wheel are
given by:

fFLz = f0FLz −∆fxL −∆f yF , fFRz = f0FRz −∆fxR +∆f yF , (7)

fRLz = f0RLz +∆fxL −∆f yR, fRRz = f0RRz +∆fxR +∆f yR,
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Table 1.: Vehicle and tyre model parameters, and manoeuvre boundary conditions

(a) Vehicle Parameters

Symbol Name Unit Value

m mass kg 1137
L wheelbase m 2.5
w track width m 1.374
h height of CM m 0.317
ℓf distance of CM to front axle m 1.187
ℓr distance of CM to rear axle m 1.313
Iz yaw moment of inertia kgm2 1174
µmax tyre-road friction coefficient - 1
r wheel radius m 0.298
nδ rack ratio - 16
Bf front Pacejka stiffness factora - 16.4
Br rear Pacejka stiffness factora - 20.7
C Pacejka shape factor - 1.46
D Pacejka peak factor - 1
Tmax motor torque limit Nm 800
Pmax motor power limit kW 90

(b) Boundary
Conditions

x x0 xf

s 0 sf
V freeb free

ψ̇ 0 free
ωij free free
sn free free
χ 0 free
xR free free
yR free free
π
2 free free
δ 0 free
t 0 free

(c) Tyre parameters for passive steady-state understeer gradient set-up

Parameter Unit Values

Passive understeer gradient, KSS
pas

◦/g -1.0 -0.5 0.0 0.5a 1.0
Front tyre cornering coefficient, ηf rad−1 24 24 24 24 24
Rear tyre cornering coefficient, ηr rad−1 17 20 24 30 41
Front Pacejka stiffness factor, Bf - 16.4 16.4 16.4 16.4 16.4
Rear Pacejka stiffness factor, Br - 11.7 13.6 16.4 20.7 28.0

abaseline passive steady-state understeer gradient; b‘free’ within state/constraint bounds

where the static normal loads are:

f0FLz = f0FRz =
mgℓR

2(ℓF + ℓR)
, (8)

f0RLz = f0RRz =
mgℓF

2(ℓF + ℓR)
.

Changes in normal load arising due to lateral acceleration across the front and rear axles
are given by:

∆f yF =
mhℓR

w(ℓF + ℓR)
ay, ∆f yR =

mhℓF
w(ℓF + ℓR)

ay, (9)

while the changes due to longitudinal acceleration on the left and right tracks are given
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by:

∆fxL = ∆fxR =
mhℓR

2(ℓF + ℓR)
ax. (10)

The passive, steady-state understeer gradient of the vehicle is defined as [29]:

KSS
pas =

(

1

ηf
−

1

ηr

)

/g. (11)

The passive vehicle’s understeer gradient is modified by selecting cornering coefficient
values ηf and ηr, assuming that the cornering coefficient is constant, where:

ηf = BfCD ηr = BrCD. (12)

Equation (11) is valid considering the small angle assumption. In [30], ranges are given
for where the trigonometric functions remain valid; both slip angles and steering angles
in the following results do not exceed 10◦, hence the approximation holds well.

2.2. Road model

In the following, a U-turn manoeuvre consisting of two 50m straights joined by a bend
of constant radius of curvature, with turn radius, R, is considered, as shown in Figure 4.

3. Optimal Control Formulations

This section describes the optimal control problems (OCP), the corresponding math-
ematical formulation and numerical optimisation solver to be used in the open- and
closed-loop analyses.

3.1. Control configurations

To meet the objectives of generating baseline optimal trajectories, assessing passive char-
actistics on controlled behaviour, and to evaluate the effect of modifying the yaw rate
reference of the TV controller, two OCP formulations are required. Figure 2(a) shows
the open-loop control method [24, 25] from which the maximum performance potential of
the vehicle with TV may be ascertained– by determining the optimal control inputs that
must be applied to the vehicle directly. The efficient cause1 of this control is a ‘perfect’,
‘super-human’ driver. ‘Perfect’, is defined as ‘the ability to operate the vehicle at the
limit of adhesion at every instant without making errors’. ‘Super-human’ meaning he
has direct authority over individual wheel torques (Tij in (21)). This formulation is used
to generate the baseline optimal trajectories for TV in §4.1, and to analyse the effect of
passive handling balance on controlled response in §4.2.
Figure 2(b) shows the closed-loop control algorithm formulation [24, 25]. Perfect open-

loop control is a-causal and hence only of theoretical interest; a causal active yaw control
system is required to determine the torques applied at each wheel to follow the desired

1Aristotle. Physics, 195a
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Figure 2.: In the open-loop OCP formulation (a), the control inputs are steering rate and
4 torques. In the closed-loop OCP (b), the control inputs to be optimised are steering
rate and torque demand. The 4 wheel torques are determined by the closed-loop TV con-
troller which follows a yaw rate reference corresponding to the desired modified handling
behaviour.

high-level motion objectives– in this case yaw rate, ψ̇, and total longitudinal torque
demand, Tx. The specific component of interest for this research is the yaw rate reference,
and by incorporating a closed-loop controller into the system dynamics of the OCP, the
performance of the reference may be evaluated (§5). To evaluate the reference, a ‘perfect’
driver is once again required but, in this instance, merely a ‘human’ one, with authority
over only longitudinal torque demand and steering (equation 22), not individual wheel
torques which are now outputs of the control allocation. Further detail is given in §5.

3.2. Mathematical Formulation

To find the optimal controls and corresponding vehicle states required to achieve a
specified manoeuvre in minimum time, optimal control problems are mathematically
formulated as follows. Consider a dynamic system in the general state-space form:

ẋ = f [x(t),u(t)], (13)

where x and u are state and control vectors respectively and t is the elapsed time.
Although the objective is to minimise time, a change of the independent variable is

now performed. Elapsed time, t, is transformed to distance travelled along the road
centreline, s, such that the formulation must now be expressed with respect to s (see
Figure 3). Two related coordinates are required to map differential equations from time
to distance: lateral position relative to the road centreline, sn, and the angle of the vehicle
relative to the road centreline, χ [17, 31]. This change of coordinate reference frame, from
vehicle-centred to road-centred ‘curvilinear coordinates’, is made to ensure affine road
boundary constraints.
Thus the dynamic system in (13) becomes:

ẋ(s) = f [x(s),u(s)]; (14)
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Figure 3.: Curvilinear coordinate definition; independent variable, s, distance travelled
along road centreline

The OCP now seeks to find the control vector sequence to minimise the cost function:

J = φ[x(s0, sf )] +

∫ sf

s0

L[x(s),u(s)], (15)

subject to initial and final conditions:

x(s0) = x0, x(sf ) = xf , (16)

and equality and inequality constraints:

p[x(s),u(s)] = 0, g[x(s),u(s)] ≤ 0, (17)

where 0 and f subscripts denote initial and final values, φ denotes the Mayer term and
L denotes the Lagrange integral term.
The curvilinear coordinate frame is shown in Figure 3, and time derivatives are defined

as:

ṡ =
(Vxcosχ− Vysinχ)

1− snκR
, ṡn = Vxsinχ− Vycosχ, χ̇ = ψ̇ − κRṡ, (18)

where Vx = V cosβ, Vy = V sinβ, (19)

and V is the vehicle speed, κR is the instantaneous path curvature of the road centreline,
ψ̇ is the vehicle yaw rate and β is the sideslip angle at the CM. In Figure 3, st, denotes
the tangent to the road centreline at point s. The state and control vectors for the vehicle
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model configurations are:

x(s) = {V (s), β(s), ψ̇(s), ωij(s), xR(s), yR(s), θR(s), sn(s), χ(s), δ(s), t(s)}
T , (20)

u(s) = {TFL(s), TFR(s), TRL(s), TRR(s), δ̇(s)}
T , (21)

where Tij are the individual wheel torques, δ̇ is steering rate. Time elapsed, t, is included
as a state to allow analysis as a function of time to be performed. For the closed-loop

control method (TV), the control vector includes only overall torque demand, Tx (as
illustrated in Figure 2(b)):

u(s) = {Tx(s), δ̇(s)}
T . (22)

Equations of motion (1-4) and curvilinear coordinates (18) are transformed from a
time-base to a distance-base as follows:

dζ

ds
= ζ ′ =

dζ

dt

dt

ds
= ζ̇ ṡ−1 (23)

where ζ is any state. Control-related state distance derivatives, δ and t, are calculated:

dδ

ds
= δ′ =

δ

dt

dt

ds
= δ̇ṡ−1, (24)

dt

ds
= t′ = ṡ−1. (25)

Distance derivatives of the global coordinates of the road centreline are given as:

x′R = cos θR, y′R = sin θR, θ′R = κR, (26)

where xR, yR are the global coordinates on two nominal orthogonal axes relative to an
origin and θR is the heading relative to that origin.
In the current study, the cost function is composed primarily of the Lagrange integral

term to minimise time to complete the manoeuvre. The Mayer term is introduced to
ensure straight-line running conditions at the start of the manoeuvre. The cost function
is:

J(s) =W0φ[x(s0, sf )] +

∫ sf

s0

1

ṡ
ds, where (27)

φ[x(s0, sf )] =
β20
β̄2

+
ψ̇2
0
¯̇ψ2

+
δ20
δ̄2

+
χ2
0

χ̄2
, (28)

where β0, ψ̇0, δ0 and χ0 are initial sideslip, yaw rate, steer angle and relative yaw angle
values respectively. ‘x̄’ are normalisation factors for the equivalent states. W0 is the
relative weighting of the Mayer term for the initial conditions. The full set of boundary
conditions are tabulated in Table 1. Including the initial conditions in the cost function
is more tractable for the solver than imposing a hard constraint.
For optimisation considering the uncontrolled vehicle, a static torque distribution is

enforced by including an additional term into the Lagrange integral expression. Again,

9
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considering torque limits in the cost function is more tractable than setting torque limits
as a hard constraint:

J(s) = (29)

W0φ[x] +
∫ sf
s0

(

ṡ−1

t̄
+WT

(TFL−TFR)2+(TRL−TRR)2+(TFL(1−γ)−γTRL)2

T̄ 2

)

ds,

where t̄ and T̄ are time- and torque-normalisation factors respectively, WT is the relative
weighting on the torque terms and γ is the proportion of total torque applied at the front
axle.
It is assumed that the driver is capable of instantaneously switching between accelerator

and brake. In addition to road boundary constraints, steering rate bandwidth is limited
to 1Hz [32, 33]:

|δ̇| ≤ δ̇max, |Tij | ≤ Tmax, (30)

where δmax denotes the maximum steering rate and Tmax denotes the maximum torque
of each individual motor. Finally, road boundary constraints are expressed:

wR,l ≤ sn ≤ wR,r, (31)

where wR,l and wR,r denote the left and right road widths.

3.3. Solver

GPOPS − II [34] is used to solve the optimal control problems, which transcribes the
continuous-time OCP into a discrete nonlinear programming problem (NLP) using the
Legendre-Gauss-Radau quadrature orthogonal collocation approach. ADIgator [35] au-
tomatic differentiation software is used to calculate derivatives. Simulations were per-
formed on a desktop PC with 8GB RAM and an Intel R© CoreTM i7-3370 CPU at 3.40GHz
delivering a computation time between 3 and 60 minutes depending on the particular
OCP setup.

Remark 1 The optimal control problem must be preconditioned to improve the perfor-
mance of the optimisation algorithm [36]. Decision variables must be as equally-weighted
as possible to minimise errors in determination of the search direction to improve rate
of convergence. Scaling the state matrix to improve conditioning is performed to ensure
all decision variables are O(1). A scaling scheme has been applied in the same manner
as [37], achieved by applying scaling factors to all physical quantities, based on three
fundamental quantities of length, mass and time. For example: let mass scaling factor
m̃ = m−1, then scaled mass becomes mm̃ = 1; let length scaling factor L̃ = L−1, then
scaled wheelbase becomes LL̃ = 1; let time scaling factor t̃ =

√

(L/g), then scaled time
becomes tt̃. Velocity is scaled by a combination of length and time scaling factors, ac-
cording to its units, and becomes V L̃t̃−1. The conditioned dual problem is solved and
then unscaled to give results in the original domain. To improve performance further,
non-smooth operations such as min, max, sign and abs have been replaced by close
approximations that are continuously differentiable [37].

10
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4. Open-loop control method

In this section, the absolute potential of the TV system is determined. This is the open-

loop control method described in §3.1 (Fig. 2(a)). This will allow the torque vectoring
performance to be compared against the uncontrolled vehicle in §4.1. It will also allow
analysis of what effect the passive, steady-state understeer gradient has on the controlled
response in §4.2.
A U-turn manoeuvre (Figure 4) with R = 35m is navigated. In general terms, the

vehicle enters the manoeuvre on the right at high speed in a straight line, exerting
maximum braking torque. As the speed reduces and the road curvature increases, braking
is reduced, steering is gradually applied until the maximum curvature point is reached
and the vehicle has moved to the inside road boundary. After this midpoint (where lateral
acceleration is maximal), torque is gradually applied, steering is reduced to zero as high-
speed, straight-line running is approached and the vehicle returns to the outside road
boundary.

4.1. Uncontrolled vs. Torque Vectoring

The optimal control problems for uncontrolled and TV-controlled vehicle set-ups are
presented for comparison in this section. The TV set-up is formulated as in §3, with cost
function (27). The uncontrolled vehicle (hereafter, Unctrl) is compared by setting the
static drive torque distribution to produce 4WD, (γdrive = 0.6). Braking distribution is
γbrake = 0.7. These distributions require cost function (29). Finally, the impact of TV
with dynamic load transfer (LT) removed (i.e. normal loads become simply a function of
static weight distribution) is examined (hereafter Unctrl no LT ).
Thus three open-loop control method optimisations are now presented for comparison.

With torque vectoring capability, the manoeuvre time of 8.502s is 0.380s (to 3 significant
figures) faster than Unctrl. This is a significant benefit for just one corner and, when
extrapolated over a whole lap of 10-15 turns, would give a benefit of the order of ∼ 3−4s,
which is considerable in the racing context. TV no LT is 0.038s faster than TV : In this
analysis, two plots will be examined.
First, Figure 5 overlays states, controls and calculated quantities for all optimisations.

A dynamic scenario is considered, yet the steady-state understeer gradient calculated at
every instant is still useful in giving an indication of vehicle handling behaviour, defined
as follows [29]:

KSS
inst =

V δ

ψ̇
− L

V 2
. (32)

KSS
inst is plotted in Figure 5(d). Further insight is drawn from plots of friction utilisation,

as shown in Figure 6, for each tyre separately. Friction utilisation is defined as the lateral,
longitudinal or resultant force divided by the total force available on the wheel:

µijk =
Fijk

µmaxFijz
, (33)

where i ∈ [F,R]; j ∈ [L,R]; k ∈ [x, y] and µmax is the tyre-road friction coefficient.
Subfigures enumerated with (i) show friction utilisation on the friction circle; subfigures

enumerated with (ii) show friction utilisation as a function of distance travelled (lateral

11
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Figure 4.: Comparison of path trajectories for torque vectoring and the uncontrolled
vehicle with 70:30 front:rear static brake torque distribution and 60:40 propulsive torque
distribution. Vehicle position is plotted every second.

and total). Accelerations at the centre of gravity (CM) are shown in subfigures (e.i) and
(e.ii) in a similar manner (lateral, longitudinal and total).
Looking first of all at the vector velocity and acceleration traces, with reference to

Figure 5(a) and 6(f), it is clear that TV is able to sustain a greater magnitude of total
longitudinal acceleration and hence can both start and exit the manoeuvre at higher
speeds than Unctrl.
There is an interesting difference in path trajectory at the midpoint (Fig. 4): the

uncontrolled vehicle takes a tighter line, hugging the inside edge of the track for 80 <
s < 130m, whilst TV takes more of a ‘double apex’, reaching a point of maximum path
curvature (max (κpath), at point of minimum speed, Vmin) at s = 0.5sf . TV has a lower
Vmin, since, in effect, its maximum path curvature is greater than the uncontrolled paths:

12
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Figure 5.: Comparison of torque vectoring with uncontrolled vehicle, and for torque
vectoring when load transfer effects are neglected: states and controls

Vmin ≈
√

acentripetal

max (κpath)
. The uncontrolled vehicle is able to maintain 3km/h higher speed

over 90 < s < 120m and thus gain time back during this portion of the manoeuvre.
TV uses all friction available on each wheel through most of the manoeuvre. When

torques are saturated by motor limits, a small reduction in friction utilisation is observed
at the front tyres during high-speed deceleration (0 < s < 40m) and on the rear tyres
at high-speed acceleration (180 < s < 210m). The torque limits reduce the amount of
torque vectoring that can be applied at high speed (Figure 5(h)) and, therefore, greater
handwheel angle (Figure 5(f)) is required to compensate for the reduced influence on
the lateral dynamics that are possible from the both the left-right torque difference and
the coupling effect of longitudinal forces on lateral forces via the friction circle. The
handwheel angle increases the understeer gradient during these periods (Figure 5(d)).
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Figure 6.: Comparison of torque vectoring with uncontrolled vehicle, and for torque
vectoring when load transfer effects are neglected: friction utilisation

TV is highly understeering during turn entry (where yaw moment is stabilising) and
maintains a near-constant understeer gradient for most of the turn before increasing once
again as torques reach their limits. Unctrl exhibits high levels of oversteer for turn-entry
during the pendulum turn, progressing to mild understeer at the apex, with significant
levels of understeer over the second half of the manoeuvre during acceleration. Oversteer
during turn entry is due to use of the pendulum-turn technique (yawing out of the turn
before yawing into the turn).
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Friction usage for Unctrl is maximal for FL for the duration of the manoeuvre. FR
friction is ∼ 0.8 during high speed portions. During braking, rear tyres usage is near-
unity but during acceleration, front tyre use reduces to only ∼ 0.5 at the end of the
manoeuvre. This is due to a torque distribution that favours the less-loaded front tyres,
despite the rearward load transfer that occurs during acceleration.
Figure 5(d) shows that TV is able to ‘flatten’ the understeer gradient characteristic

substantially when compared with Unctrl, through applying a stabilising yaw moment
during braking and a destabilising yaw moment during acceleration. This is attributed to
compensation for load transfer effects. Inspection of Figure 5(h) shows that magnitude
of yaw moment is proportional to ax. This trend of direct yaw control effecting a stabilis-
ing yaw moment under deceleration and a destabilising yaw moment during acceleration
is confirmed by findings for a similar electric vehicle topology analysed in [13], and a
brake torque vectoring differential study for a RWD conventionally-powered touring car
in research by Tremlett et. al. [18, 23, 38] and Kaspar et. al. [39]. De Novellis et. al. [9]
describe a similar finding for this yaw moment trend when a yaw rate reference indepen-
dent of longitudinal acceleration is used. Indeed, the β-method described in the seminal
work of Shibahata et. al. [1] showed that direct yaw control can overcome load transfer
effects, considering a 6DOF vehicle model with roll and pitch DOFs and nonlinear tyres.
By removing load transfer effects, further insights may be gained. For TV no LT (nor-

mal loads are equal to their static values according to weight distribution) almost no yaw
moment is required to match the handwheel, sideslip, yaw rate and understeer gradient
profiles as required by TV, and friction usage is near-maximal (where the vehicle is not
torque-limited). This gives further credence to the theory that TV improves performance
by making use of tyre force coupling effects: controlling longitudinal forces such that lat-
eral forces are reduced/increased on each corner for a greater resultant force, and hence
a greater total acceleration than would otherwise be possible.

4.2. Effect of passive handling characteristic

It has been demonstrated that TV is 0.380s faster than Unctrl, for a passive steady-state
understeer gradient KSS

pas = 0.5◦/g.
Since TV extends the performance envelope of the vehicle by the correct distribution

of tyre forces, the pertinent question is whether there is a certain KSS
pas for which tyre

force distribution by TV gives the greatest performance envelope and therefore delivers
a faster manoeuvre time. To answer this question, optimal control problems (with TV
active) are formulated and solved for a range of passive understeer characteristics. This
is achieved by modifying tyre parameters.
Subsequent work by the authors [22] considered the same manoeuvre for a 3DOF

vehicle model with TV, with KSS
pas = 0.5◦/g. The instantaneous understeer gradient

followed the passive value very closely.
In the present study, optimisations were run for TV for KSS

pas = {−1,−0.5, 0, 0.5, 1}
by altering front and rear tyre stiffness parameters, BF and BR, according to Table 1
(recall (11) and (12)). The manouevre time for all optimisations is 8.52s (to two decimal
places). This clearly demonstrates that the controlled performance is insensitive to the
passive characteristic of the vehicle for these modest perturbations from neutral steer,
as was found for the 3DOF model results in [22].
Figure 7 shows states, controls and calculated quantities for the range of passive han-

dling balances. Figure 7(d) shows that KSS
inst follows K

SS
pas fairly closely for neutral steer

for 60 < s < 140m where torques are below their limit value. There is some variation
with acceleration and associated normal load (as was found in [21]). Similar profiles of
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understeer gradient with distance travelled are observed for all permutations: slightly
greater understeer effect for 0 < s < 100m during braking and slight reduction on un-
dersteer effect for 100 < s < 200m during acceleration. (This is the opposite trend to
that experienced by the uncontrolled vehicle). For variation in KSS

pas, it is clear that the
further from neutral steer, the greater the instantaneous understeer gradient deviates
from the passive value. For example, where KSS

pas = 1◦/g (red), KSS
inst is around ∼ 3◦/g.

Where wheel torques are saturated, the understeer gradient is dramatically increased
due to the greater contribution of steering required to generate the lateral forces, since
torque vectoring is no longer able to assist to the same degree in the optimal redistribution
of tyre forces.

Remark 2 Wheel torques (and consequently Mz) show little variation. This is an im-
portant result since it demonstrates that the control yaw moment (vehicle authority) is
predominantly used to counteract load transfer effects. The main differentiator between
the optimisation controls is the handwheel angle, which is increased in proportion with
passive understeer gradient. Correspondingly, for sideslip angle, there is a clear trend of
increasing tail-out sideslip as KSS

pas progresses from +1.0 to −1.0◦/g (Fig. 7(c)). Steering
angle (driver control authority), is used to generate front lateral force and hence the
angle required depends on the understeer gradient.

Figure 8 shows friction utilisation and CM vehicle accelerations. Total friction usage
for each tyre is similar in all cases (Fig. 8(a-d)). Friction use on the front tyres during
0 < s < 40m shows a reduction from the maximum, corresponding to the curtailment of
torque vectoring ability by actuator limitations. The same is true for the RR tyre when
160 < s < 210m.
Time deltas relative to neutral steer (Figure 7(i)) show interesting symmetry about

the point s = 0.5sf , but no consistent trends as a function of understeer gradient. The
final time deltas are of a small enough magnitude to be inconclusive, possibly as a result
of optimisation peculiarities rather than the fundamental system dynamics.
In summary, for the 7DOF, as for the 3DOF model in [22], manoeuvre time for the

controlled vehicle is insensitive to the passive vehicle understeer characteristic for this
manoeuvre. For the 3DOF model, the controlled understeer gradient follows the passive
value closely; for the 7DOF model, controlled understeer gradient deviates increasingly
from the passive value the further away from neutral steer. In addition, the 7DOF un-
dersteer gradient is not constant for the manoeuvre but shows a small variation towards
greater understeer during deceleration and vice versa for acceleration, and a significant
increase where torque vectoring is limited by motor constraints.
It must be reiterated that the open-loop set-up with Tij directly applied is unrealisable

in the real world for reasons noted in §3.1; nonetheless it demonstrates the open-loop
optimal controls required to achieve optimality in terms of time minimisation. The next
section will evaluate how close the closed-loop performance can approach the baseline
open-loop result and what effect the yaw rate reference has on manoeuvre time.

5. Closed-loop control

The second objective of this study is to evaluate the relative performance of the yaw
rate reference on manoeuvre time by including the closed-loop TV feedback controller
in the system dynamics. This section describes the inclusion of the closed-loop TV con-
troller in the system dynamics to achieve this objective and compares results considering
permutations in yaw rate reference.
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Figure 7.: Effect of varying passive understeer gradient (defined by steady-state cornering
stiffness) on torque vectoring-controlled vehicle: states and controls

For optimisation of the closed-loop control algorithm (§3.1), modifications are made
to the open-loop control method optimal control formulation used in §4. Figure 2(b)
shows the optimal control configuration which including a simplified TV controller. The
controller is composed of a yaw rate reference, which converts the driver steering angle
input and vehicle speed into a reference yaw rate. Next, the controller takes the difference
between the yaw rate reference and the vehicle yaw rate (yaw rate error) and applies a
proportional gain to give one output: yaw moment demand, Mz. Finally, the control
allocation determines the individual wheel torques, Tij.
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Figure 8.: Effect of varying passive understeer gradient (defined by steady-state cornering
stiffness) on torque vectoring-controlled vehicle: friction utilisation

5.1. Mathematical definition of TV controller in system dynamics

The yaw rate reference, controller and CA are now incorporated into the mathematical
definition of the system dynamics.
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P controller

Feedback control is included in the form of a simple proportional-gain (P) controller:

Mz(s) = Pψ̇err(s), (34)

where ψ̇err is the yaw rate error.
To isolate the contribution of the yaw rate reference from the contribution of the

performance of the system as a whole, it is important that the P controller is tuned in
such a way as to deliver a consistent desired transient response. A parameter optimisation
approach was used to find the P gain for a desired yaw response in the time domain.
A single-track model was used as the plant, a step steer was applied with a constant
forward speed and the yaw rate response simulated. The P gain was a decision variable
chosen by Matlab function fminsearchbnd [40] such that the cost function minimised the
root of the square of the yaw rate error between the desired yaw rate and actual yaw rate

response. The desired transient yaw rate response, ψ̇dynref , was generated as a first-order

step response with 99% rise time, τ , of 0.2s chosen from experience in real-world data,
rising to the steady-state value, ψ̇SSref , calculated from the steady-state yaw rate reference

(42). The desired transient yaw rate response was:

ψ̇dynref = ψ̇SSref (1− e
−t

τ ) (35)

This choice accords with Wong ([29], pp359) “The optimum transient response of a vehicle

is that which has the fastest response with a minimum of oscillation in the process of

approaching the steady-state motion.” The tuning process described was repeated for a
range of speeds, and the mean value taken for the P gain, P = 100kNm/rads−1 (to 1
significant figure).

Control Allocation

The requested yaw moment,Mz, is generated by the combination of wheel torques via the
control allocation. After the overall difference in torque between the left and right tracks
is calculated, the approach distributes torques front-rear by allocating wheel torques
in proportion to the normal load on the axle, since this was found to be the optimal
distribution in the literature for minimum time manoeuvring [13, 41] and in general
permits a higher cornering force [1]. The following approach is simplified from [42].
First, torque limits are calculated for left and right tracks: the minimum of motor

limits and adhesion limits. The achievable overall longitudinal torque, Tx, is converted to
longitudinal force, Fx by dividing by the tyre radius. The torque that must be supplied
by each track are given by the following equations:

TL =
r

w

(w

2
Fx −Mz

)

, (36)

TR =
r

w

(w

2
Fx +Mz

)

, (37)

(38)

where TL and TR are the longitudinal torques to be supplied by the left and right tracks
of the vehicle, respectively and w is the track width. The track torques are split front-rear
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according to the proportion of normal load on each wheel:

TFL = TL
fFLz

(fFLz + fRLz)
, TFR = TR

fFRz
(fFRz + fRRz)

, (39)

TRL = TL
fRLz

(fFLz + fRLz)
, TRR = TR

fRRz
(fFRz + fRRz)

. (40)

(41)

Thus, the overall torque demand, Tx, from the driver, and the yaw moment demand from
the P-controller, Mz, are converted into the torques at each wheel, while considering
motor and friction limits.

5.2. Effect of target understeer gradient

Figure 9.: The steady-state single-track yaw rate references parameterised by target un-
dersteer gradient, Ktar, expressed in ‘handling diagram’ form; dynamic steering angle
against lateral acceleration.

It has been observed that the optimally-controlled open-loop control method (TV) can
reduce manoeuvre time by 0.380s over the uncontrolled vehicle for a U-turn manoeuvre
with radius R = 35m. Now, incorporating the feedback controller into the optimal control
system dynamics, the effect of yaw rate reference will be evaluated.
The standard steady-state single-track yaw rate reference is of particular interest as it

is the common reference adopted by the literature. It is defined [29]:

ψ̇SSref =
V

KtarV 2 + L
δ. (42)

This is parameterised by the target understeer gradient, Ktar. The selection method of
Ktar in the literature is heuristic, depending on preference for stability or agility. In
this section, optimisations with Ktar = {−0.5, 0.0,+0.5,+1.0,+1.5,+2.0}◦/g are pre-
sented. These optimisations reveal: a) how close the causal closed-loop control algorithm

can approach the a-causal baseline open-loop control method ; b) the influence of target
understeer gradient on manoeuvre time. Optimisations for a U-turn manoeuvre with
R = 35m were run for each yaw rate reference. In Table 2, manoeuvre times and final
time differences, ∆tf , relative to the open-loop (OL) baseline (KSS

pas = +0.5◦/g, penulti-
mate column) and ∆tf to Ktar = +0.5◦/g (ultimate column) are set out. The closed-loop
(CL) controller with Ktar = +0.5◦/g is able to complete the manoeuvre only +0.017s
slower than the open-loop baseline. In the racing context, this could result in around
+0.2s per 10-15 turn lap. The performance deficit of the closed-loop result to the base-
line is 4% of the performance difference between TV and Unctrl, so a large proportion
of the potential is realised.
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Table 2.: Effect of yaw rate target (TV), Baseline KSS
pas = 0.5◦/g

Set-up Ktar dev. from KSS
pas Time ∆tf

a ∆tf
b

(◦/g) (◦/g) (s) (s) (s)

OL n/a n/a 8.502 +0.000 -0.017

CL 2.0 +1.5 8.522 +0.019 +0.003

CL 1.5 +1.0 8.517 +0.015 -0.002

CL 1.0 +0.5 8.518 +0.016 -0.001

CL +0.5 +0.0 8.519 +0.017 +0.000

CL 0.0 -0.5 8.523 +0.021 +0.005

CL -0.5 -0.7 8.529 +0.027 +0.010

aTime difference with respect to open-loop baseline.

bTime difference with respect to Ktar = KSS
pas = +0.5◦/g.

The second purpose of this section was to evaluate the influence of target understeer
gradient on performance using the single-track reference. Manoeuvre times for the single-
track reference lie within 0.012s of each other, with a standard deviation of 0.004s. This is
a very small variation, which cannot be reliably attributed to the system dynamics alone;
discretisation and the particular numerical accuracies of the optimisation algorithm will
have a bearing. Nevertheless, a physical explanation arising from the nonlinear tyre char-
acteristics is given in §5.2.1. Thus, the data suggest that minimum time manoeuvring
with TV is largely insensitive to target understeer gradient. Analysis of the vehicle be-
haviour over the course of the manoeuvre yields further insight. Figure 10 overlays states,
controls and calculated quantities for the closed-loop optimisations: Ktar = {−0.5,0, 0.5,
1.0, 2.0}◦/g. Figure 10(a) shows a common speed trace for all cases. Of key interest is the
yaw rate and understeer gradient, since these are the object of control and the high-level
means by which to control it, respectively. Yaw rate (Figure 10(c)) follows the reference
closely and, in so doing, achieves the target understeer gradient (Figure 10(d)) in all
cases.
Sideslip (Figure 10(b)) is tail-out for all simulations, with increasing magnitude as

understeer gradient reduces. The difference in sideslip between most extreme targets
(Ktar = 2◦/g and Ktar = −0.5◦/g) has a maximum over the course of the manoeuvre of
2.5◦. The maximum difference between optimisations of handwheel angle is 40◦, which
is a significant difference in workload for the driver.
The most noteworthy feature of these results is that a very similar yaw rate is achieved

for each understeer target. There is, therefore, a general yaw rate profile for this particular
KSS
pas, that minimises manoeuvre time to within a very small tolerance—yet it is achieved

through a variety of combinations of target understeer gradients and driver control inputs.
According to equation (42), the only means to achieve the same yaw rate profile is by
modification of the steering angle, as L and Ktar are constant and V is to be maximised
at all times and does not vary according to target. Figure 10(f) shows that handwheel
angle is increased in inverse proportion to Ktar, with greatest steering angles required
for Ktar = 2◦/g. Note that the ability to follow this yaw rate profile is dependent on the
‘perfect’ driver (which the optimal control represents) to maximise the potential of the
controlled-vehicle set-up.
The yaw moment provided by the torque difference between left and right tracks shows

a similar trend for all targets: stabilising effect during braking and destabilising during
acceleration. A greater magnitude of yaw moment (and therefore torque difference across
tracks) is required as understeer target decreases, observable in the regions 20 < s < 60m
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Figure 10.: Comparison of closed-loop torque vectoring performance for a range of over-
steering to understeering target gradients, Ktar : states and controls.

and 120 < s < 180m.
Further insight is drawn from plots of friction utilisation, as shown in Figure 11. The

immediate observation is that, with the exception of the initial and final 10m and 20m
respectively where torque is limited, friction utilisation is maximal for every tyre, for
every understeer target. Maximum total friction use is key to maximum performance.
This is a combination of the effects of torque vectoring and driver control inputs.
The steady-state single-track reference is a simple expression, parameterised by the

length of the vehicle in addition to the understeer target. This simplicity is undoubtedly
a key reason for its widespread adoption in the literature.
Results of the open-loop control method optimisations in §4 demonstrated that torque
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Figure 11.: Comparison of closed-loop torque vectoring performance for a range of over-
steering to understeering target gradients, Ktar : friction utilisation

vectoring seeks to neutralise the negative effects of weight transfer on total cornering
force. It achieves this using two mechanisms: directly by generating a yaw moment from
the left-right torque difference; indirectly by longitudinal forces influencing the cornering
stiffness and therefore lateral forces (and the associated yaw moments generated) through
coupling effects. In effect, the steady-state single track reference commands not only no
lateral load transfer (since there is no track width) but also no longitudinal load transfer
(since it does not consider longitudinal dynamics). Thus, its inherent characteristics
match the characteristics observed in the optimal baseline open-loop results, and this is
why it delivers a very high level of performance even in the 7DOF model.
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Figure 12.: Linear and nonlinear lateral tyre friction curves for steady-state cornering as
a function of slip angle. Operating points shown following understeer gradient targets
(a) where Ktar = KSS

pas, (b) relative understeer with respect to KSS
pas, and (c) relative

oversteer with respect to KSS
pas.

In this section, it has been demonstrated that in spite of the simplicity of the single-
track yaw rate reference, a high level of performance is still achieved. This level of per-
formance is not affected by the choice of target understeer gradient, opening up the
possibility of selecting the target based on driver preference, without loss of performance.

5.2.1. Effect of tyre model

In previous work by the authors [22], a similar methodology was followed with a lower-
order, 3DOF single-track model with linear tyre forces constrained by front and rear
friction circles, longitudinal dynamics including longitudinal load transfer and TV emu-
lated by an externally-applied yaw moment. In contradiction to the 7DOF model find-
ings presented in this section, for the 3DOF model it was found that, for the closed-loop
optimisations, manoeuvre time was minimised by setting Ktar = KSS

pas and significant

degradation in time was found when Ktar deviated from KSS
pas. This phenomenon can be

explained by studying the tyre friction curves as a function of slip. For simplicity, Figure
12 plots lateral friction against slip angle, assuming pure steady state cornering with
zero longitudinal acceleration. Linear and nonlinear tyre models are shown for front and
rear tyres. Rear stiffness is greater than front stiffness to give KSS

pas = 0.5◦/g. The tyre
models are equivalent at zero slip only (ηi = BiCD) and hence the nonlinear tyre lags
the linear at higher values of slip, and reaches its peak at a higher slip angle.
To achieve a target understeer gradient at a given lateral acceleration, a difference in

slip angles, ∆α, is required, since understeer gradient is related to slip angles from the
definition [29] (note that this is equivalent to equation 32):

KSS = (|αf | − |αr|)/ay = ∆α/ay. (43)

To demonstrate and explain the difference between the tyre models, reference are made
to the three cases of Ktar = KSS

pas, as well as understeer and oversteer targets in Figure
12(a), (b) and (c) respectively.
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• Target=Passive. Ktar = KSS
pas (Figure 12(a)). As steady-state velocity is increased,

lateral acceleration and slip angles increase. The peak tyre friction is approached at
front and rear simultaneously for the linear tyre, since ∆α to respect the Ktar matches
that for KSS

pas. Total tyre friction is
∑

µ = 2. For the nonlinear tyre, the corner-
ing stiffness is not identical front and rear, at high slip angles, so peak tyre friction
is reached at front slightly before rear, but still offering near-maximal total friction
(
∑

µnonlinear ∼ 2).
• Relative understeer: Ktar > KSS

pas(Figure 12(b)). In this case, the front tyres peak

first: a greater ∆α is required than for KSS
pas, and hence for the linear case, the rear

tyres cannot deliver maximum friction utilisation (
∑

µ ∼ 1.75). For the nonlinear
tyres, the same ∆α is required, yet

∑

µnonlinear ∼ 2. As slip angle increases and the
peak of the µ−slip curve is approached, the gradient of the curve for the linear tyre
remains high, whereas in the nonlinear case the gradient approaches zero.

• Relative oversteer: Ktar < KSS
pas(Figure 12(c)). This is a similar situation to relative

understeer, except that the rear tyres saturate first. ∆α is much smaller than for KSS
pas

(and is still positive, since in absolute terms, the target is still mildly understeering).
For the linear case, the front tyres cannot deliver maximum friction utilisation (

∑

µ ∼
1.82). Again, the ∆µ/∆α gradient at the peak of the nonlinear tyres is close to zero
for the rear tyre. However, the front tyre is operating further from the peak that in (a)
and (b) and hence the the ∆µF/∆sFy gradient is slightly increased — yet the total
tyre friction generated is still close to maximal.

Therefore, at any target where Ktar 6= KSS
pas, tyre friction levels for linear are non-

maximum (decreasing as the difference between the target and the passive increases)
whereas the nonlinear tyre model is always close to maximal, since even with a large
difference in slip angles (front-rear), the reduction in tyre friction will be very small. Tyre
force coupling of the nonlinear tyres below the limit further improves the overall friction
level, as at high slip ratios, the ∆µ/∆α angle gradients are even closer to zero as the
peak is approached. Further investigation revealed that lateral load transfer contributes
a minor influence but the control allocation distributing torque according to normal load
ensures that tyre cornering stiffnesses are equalised as far as possible between all four
tyres.

Remark 3 Clearly, if a sufficiently large ∆α was imposed by the TV controller, nonlinear
tyres would result in loss of

∑

µnonlinear. However, for the range of Ktar considered in this
paper (resulting in large variation in maximum steering angle) the optimal performance
is practically insensitive to Ktar.

6. Conclusions

This work has studied the effect of handling characteristics, passively and actively mod-
ified, of torque-vectored vehicles for minimum time manoeuvring. Optimal control tech-
niques were used to generate open-loop control trajectories for a U-turn manoeuvre for
an electric vehicle with four independent motors. Results confirmed that TV is able to
compensate for adverse load transfer effects encountered during acceleration, braking and
high lateral accelerations. The effect of altering the passive handling of the vehicle was
studied, concluding that, while the passive characteristics of the vehicle had negligible
effect on the minimum time performance of the TV-controlled vehicle, notable differences
in the steering input and sideslip response were observed.
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An optimal control framework that incorporated a TV controller in the system dynam-
ics was then used to evaluate the ability of the controller to realise the baseline potential
when following a yaw rate reference. The standard steady-state single-track model ref-
erence was shown to come close to the baseline performance. Finally, a major finding of
this work demonstrated that manoeuvre time for the reference-following TV vehicle is
largely insensitive to target understeer gradient, opening up the possibility of subjective
target selection without compromising performance. It was shown that this insensitivity
is attributable to tyre nonlinearity.
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