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Abstract: Based on a model of a two-heat-reservoir heat engine with a finite 
high-temperature source and bypass heat leak, the optimal configuration of the cycle is found 
for the fixed cycle period with another linear heat transfer law )( 1−∆∝ TQ . The finite 
thermal capacity source without heat leak makes the configuration of the cycle to a class of 
generalized Carnot cycle. The configuration of the cycle with heat leak and finite thermal 
capacity source is different from others.  
Keywords: Finite Time Thermodynamics, Heat Engine, Optimal Configuration 

__________________________________________________________________________________ 
 
Introduction 
 

Among the important topics in thermodynamics has been the formulation of criteria for comparing 
the performance of real and ideal processes. For example, the Carnot cycle provides an upper bound on 
the efficiency of all cyclic heat engines operating between two fixed temperature heat reservoirs. The 
work by Clausius, Kelvin, and others carried out in this tradition identified the limits on work, heat 
transfer, thermodynamic efficiency, COP, energy effectiveness, and energy figure of merit of various 
energy conversion devices. Since Gibbs, however, the focus has been directed toward state variables 
rather than the process variables of heat and work. An unavoidable consequence of this shift is the 
emphasis on equilibrium states and reversible processes. The use of reversible processes as standards 
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of performance is not desirable because a reversible process must be carried out at an infinitesimal 
slow pace. Since power produced by a heat engine is work divided by time, a finite amount of work 
produced by the engine over an infinite time delivers no power. The need to develop a nontrivial 
amount of power in real energy conversion devices is one reason why the high performance criteria of 
an ideal, reversible heat engine are seldom approached. 

The consequence of incorporating finite-time processes into an otherwise ideal thermodynamic 
cycle was demonstrated by Novikov [1](1957), Chambadal [2](1957), and Curzon and Ahlborn 
[3](1975) independently. They considered the case of finite rates of heat transfer to and from a Carnot 
heat engine. After maximizing the power output, they derived a simple expression for the efficiency 
that was different from the well-known Carnot efficiency. Their work is commonly referred to as 
finite-time thermodynamics or entropy generation minimization. Since NCCA’s work, many 
researchers have undertaken the study of irreversible thermodynamic cycles. Some detailed literature 
surveys of finite time thermodynamics were given by Andresen et al. [4], Sieniutycz et al. [5, 6], Bejan 
[7], Hoffmann et al. [8], Berry et al. [9], Chen et al. [10], Wu et al. [11] and Salamon et al. [12]. 

Since finite time thermodynamics [1-12] was applied to the performance study of heat engines, a lot 
of results, which are different from those by using the classical thermodynamics, have been obtained. 
The performance of the cycle is affected obviously by finiteness of heat capacity of source [13-18] and 
heat leak [19-22]. The optimal configuration and the fundamental optimal performance of the heat 
engines [15-18] with a finite high-temperature source are different from those with an infinite 
high-temperature source [23-25]. However, heat leak changes the relations between the optimal power 
output and the efficiency [19-22]. For the endoreversible cycle, the research into the effects of a finite 
heat reservoir on the performance includes two aspects. The first is to determine the optimal 
performance of the finite thermal capacity cycles, such as Carnot cycle [15,18], Rankine cycle [16] and 
Brayton cycle [17], etc. Optimization may be carried out with fixed heat input [18] or with variable 
heat input [15-17]. The second is to determine the optimal configuration of these heat engines with the 
given conditions. For example, the optimal configuration of an endoreversible constant-temperature 
heat reservoir heat engine is the Curzon-Ahlborn engine [23], and the optimal configuration of 
Newton’s law system variable-temperature heat reservoir heat engine is a generalized Carnot heat 
engine [13] (in which the temperature of the heat reservoirs and the working fluid change 
exponentially with time and the ratio of the temperatures of the working fluid and the heat reservoir is 
a constant). The optimal configuration of linear phenomenological law system variable-temperature 
heat reservoir heat engine is another generalized Carnot cycle [14] (in which the difference of 
reciprocal temperatures of the heat reservoirs and the working fluid is a constant). In this paper, we 
will investigate the latter. In general, heat transfer is not necessarily linear and also obeys other law, 
such as another linear heat transfer law )( 1−∆∝ TQ , thermal radiation law )( 4TQ ∆∝ , etc.. 
Therefore, a further discussion on the effect of heat transfer law on cycle is necessary. Some authors 
have assessed the effect of the heat transfer law on the performance of endoreversible and irreversible 
heat engines [14, 21, 26]. On the basis of these research work, a heat engine model with heat leak and 
finite heat capacity source is founded, and the optimal configuration of the maximum power output of 
a cycle is obtained under a given cycle time with another linear heat transfer law )( 1−∆∝ TQ . From 
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the established model, we obtain the optimal configurations and the fundamental optimal 
performance of the cycle for four cases. 

 
Physical Model 
 

The system adopted is a working fluid alternately connected to a high-temperature heat source with 
finite heat capacity and to a low-temperature heat sink with infinite heat capacity. The heat engine 
operates in a cycle fashion with fixed time τ  allotted for each cycle. There exists a direct bypass heat 
leak between the finite heat source and the infinite heat sink. This system to be considered in this paper 
is shown schematically in Fig.1. The high-temperature heat source is assumed to have constant heat 
capacity C , its temperature is given by )(tTx , and its initial temperature is given by HT . The 
low-temperature heat sink is assumed for simplicity to be infinite in size and therefore it has a fixed 
temperature LT . The rate of heat leak is assumed to be proportional to the difference of reciprocal 
temperatures of the heat source and heat sink. The temperature of the working fluid is )(tT . The 
absorbed and released heats of the working fluid are HCQ  and LCQ , respectively. The heat leak from 
high-temperature heat source to low-temperature heat sink is iQ .  

The two steps in the cycle during which the working fluid is disconnected from one reservoir and 
connected to the other are taken to be reversibly adiabatic. It is assumed that these steps occur 
instantaneously which implies that the temperature of the working fluid changes discontinuously. 

We assume that the heat transfer between the reservoirs and the working fluid and the heat leak 
between two heat reservoirs obey another linear law [ )( 1−∆∝ TQ ] 

dttTtTtQ xHC )](/1)(/1)[(
0∫ −=
τ
α                                            (1) 

        dttTTtQ LLC )](/1/1)[(
0∫ −=
τ
β                                           (2) 

       dttTTtQ xLi )](/1/1)[(
0∫ −=
τ
γ                                               (3) 

iHCH QQQ += , iLCL QQQ +=                                             (4) 

where HQ  is the real heat supply, LQ  is the real heat release, iQ  is the heat leak, )(tα is the 
thermal conductivity for heat transfer between the high-temperature heat source and working fluid, 

)(tβ  is the thermal conductivity for heat transfer between the working fluid and the low-temperature 
heat sink, and )(tγ is the thermal conductivity for heat leak between the heat source and the heat sink 
through the heat engine plant. We shall assume that at 0=t  the working fluid is in contact with 
high-temperature heat source and is separated from the low-temperature heat sink by an adiabatic 
boundary. At a later time )0( 11 τ<< tt , contact with the heat source is broken and the working fluid is 
placed in contact with the heat sink. The heat leak is continuous during the cycle period. Therefore, we 
write )(tα , )(tβ  and )(tγ as 
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where βα , and γ are constants. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

From the first law of thermodynamics and equation (4), the work output from the cycle is  
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Fig1.  Power cycle model 
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whereas from the second law of thermodynamics, the entropy change of the working fluid per cycle 
is 
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Furthermore, since the heat capacity of the high-temperature heat source is assumed to be constant, 
we have 

  )(tCdTdQ xH −=                                                        (10) 

Combining equations (1), (3), (4) and (10), we obtain the constraint equation on the time rate of 
change of the temperature of the high-temperature heat source in the following equation 

  0)](/1/1)[)()](/1)(/1)[()( =−+−+ tTTttTtTttTC xLxx γα&                       (11) 

where dttdTtT xx /)()( =& . 
 
Optimal Configuration 
 

Our problem now is to determine the optimal configuration of the model cycle in which the 
maximum work output is obtained under a given cycle time τ . For given α , ,β  γ , HT  and LT , 

)(tT  and 1t  must be determined. So using equations (8) and (11), we obtain the modified 
Lagrangian: 
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where λ  is Lagrangian constant, )(tµ  is a function of time. The path for the working fluid which 
results in the maximum work for a given time interval {0, τ } may now be obtained from the solution 
to the Euler-Lagrange equation. The Euler-Lagrange equations are given by 
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Substituting equation (12) into equations (13) and (14) yields 

  0)()(]}/1)(/2)[()](/1)(/2)[({)()( =+−+−++ ttTtTttTtTttt Lx αµβαλβα      (15) 

 0)()()]()()[()(/)()( 2 =−+++ ttCTttttTtt x µγαµλαα &                           (16) 

Substituting equations (5)-(7) into equations (15) and (16) yields 

0)}()](/1)(/2[1{ =+−+ ttTtT xWH µλα                    10 tt ≤≤              (17) 
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0)()())(()(/ 2 =−+++ ttCTttT xWH µγαµλαα &              10 tt ≤≤               (18) 

and 

0]}/1)(/2[1{ =−+ LWL TtTλβ                            τ≤< tt1               (19) 

0)()()( 2 =− ttCTt x µγµ &                                  τ≤< tt1               (20) 

The optimal configuration solution may be obtained from equations (11) and (17)-(20) for the 
following four heat engine cycles. 

When τ<≤ tt1 , =)(tTWL constant, solving equations (11) and (19) gives 

}/]/)()(exp{[)]([]/)(exp[)]([ 2
111 LLxxLLxxL TCttTtTtTTTtTtTT −+⋅−=− γ         (21) 

where )( 1tTx  is the temperature of high-temperature heat source at time 1tt = , and is determined by 
equations (24) discussed bellow. 

Equation (21) shows that the isothermal heat transfer is executed between the low-temperature heat 
sink and the working fluid. Despite that the working fluid does not come into contact with 
high-temperature heat source, the temperature of the high-temperature heat source )(tTx  decreases 
with time after 1t because of the heat leak from the high-temperature heat source to the 
low-temperature heat sink. The temperature of the high-temperature heat source can be obtained by 
using Equation (21) for τ=t . 

When 10 tt <≤ , solving equation (17) gives )(tµ , and then we have   
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From equation (11), we have 
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Substituting equations (22) and (23) into equation (18) yields the differential equation about )(tTx  
and )(tTWH  as following 
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The numerical solution of )(tTx  and )(tTWH  may be obtained using equations (11) and (24) with 
the initial condition of Hx TT =)0( . Then, )( 1tTx  is obtained, and )(tTx  in the time interval { τ,1t } is 
determined using )( 1tTx  and equations (21). Equation (24) could include equation of all kinds of the 
character of heat engine cycle. 

  
Special Cases 
 
Case 1. Infinite high- and low- temperature reservoirs without heat leak 
 

If the heat engine cycle is coupled with infinite reservoirs without heat leak, 0=γ  and C 
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approaches infinite large. Therefore the solution of equation (19) is  

== )()( tTtT WL constant                   τ≤< tt1                              (25) 

From equation (18) we have =)(tµ constant. From equation (11) we obtain )(tTx =constant= HT . 
Substituting )(tTx  into equation (17) yields )(tT = )(tTWH =constant, 10 tt ≤≤ . The optimal cycle is 
composed of two isothermal and two adiabatic processes. This is an endoreversible Carnot heat cycle, 
i.e., NCCA cycle [1-3]. The fundamental relation between optimal power output and efficiency of the 
endoreversible Carnot cycle is given by [26]  

2)]1(/1[
/1/)1(
ηβα

ηα
−+

−−= HL TTP                                                  (26) 

where τ/WP = , is the power output, HQW /1 −=η , is the efficiency. The power versus efficiency 
character is similar to a parabola, as shown in Fig.2.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

P

0 

0 

Pmax 
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generalized endoreversible Carnot engine without heat leak 
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Case 2. Infinite high- and low- temperature reservoirs with heat leak  
 

This cycle model is similar to that adopted by Bejan [19] except that the cycle contacts with 
reservoirs alternatively instead of simultaneously. In this case, γ  is finite and C approaches infinite 
large. The optimal configuration solution is the same as the case 1, which is an endoreversible Carnot 
heat engine cycle. The fundamental relation between optimal power and efficiency of an 
endoreversible Carnot heat engine cycle with bypass heat leak is given by [20]  
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where )/1/1( HLi TTQ −= γ .The power versus efficiency curve exhibits a loop-shaped one, i.e., there 
exist a maximum power output point and a maximum efficiency point, as shown in Fig.3. Despite the 
fact that the cycles have the same configuration, the power versus efficiency characteristics in this case 
is very different from that in the case 1. 
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Fig.3  Power versus efficiency characteristics of the 
endoreversible Carnot engine with heat leak 
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Case 3. Finite high-temperature source and infinite low-temperature sink without heat leak  
 

In this case, 0=γ and C  is finite. From equation (19), we obtain )(tTWL =constant when 
τ≤< tt1 . 

From equations (10), (11), (17) (18) and (19) we obtain 

     =)(tTWL constant                  τ≤< tt1                                 (28) 

atTtT xWH =− )(/1)(/1             10 tt ≤≤                                 (29) 

atCTtT Hx )/()( α−=                 10 tt ≤≤                                 (30) 

From equations (28), (29), and (30) we obtain 
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where a and b are constants. Equations (30) and (31) indicate that the temperature of the 
high-temperature heat source and the working fluid is a function of time in the time interval {0, 1t }, 
and the temperatures of the working fluid and heat sink are constants. This configuration is the same as 
the heat engine configuration obtained by Yan [14] when βα =  and can be called as a generalized 
endoreversible Carnot heat engine cycle. The fundamental optimal formula of a generalized 
endoreversible Carnot cycle can be derived as following [14] 

2)]1(/1[
//)1(
ηβα

ηα
−+

−−= HL TATP                                                     (32) 

where  )]/(1ln[)/( HHCHCH CTQQCTA −−= .                            
Since A  in equation (32) being a function of HCQ , therefore the fundamental optimal formula is 

related to the given HCQ . It is independent of HCQ  only if C  approaches infinite. For a given HCQ , 
the power output versus efficiency curve is similar to that shown in Fig.2. 

 
Discussion 
 

Comparing equation (24) with equation (29) we see that the heat leak change not only the value of 
)(tTx  and )(tTWH at 1tt = but also the relation between the temperatures of working fluid and the 

high-temperature heat source during the time interval {0, 1t }. If and only if the cycle is without heat 
leak, γ =0, equation (24) becomes equation (29), and the cycle configuration is the same as that in 
Case 3, i.e., a generalized endoreversible Carnot heat engine cycle. The optimal cycle configuration 
with heat leak is as follows. When the working fluid contacts with the high-temperature heat source 
during the time interval {0, 1t }, the temperature of the heat sink is constant, while the temperature of 



Entropy 2003, 5  528

the working fluid and the high- temperature heat source decrease with time according to special law, 
and the relation between the temperatures of working fluid and the heat source is complex and must be 
determined by solving equations (11) and (24) numerically. When the working fluid contacts with the 
low-temperature heat sink during the time interval { τ,1t }, the temperatures of both the heat sink and 
the working fluid are constants, while the temperature of the high-temperature heat source decreases 
with time from )( 1tTx to )(τxT  in the light of equation (21); At 1tt = and τ=t , the temperature 
distribution of the working fluid jumps adiabatically. Therefore, the optimal configuration is neither 
the endoreversible Carnot heat engine cycle nor the generalized endoreversible Carnot heat engine 
cycle. 

 
Conclusion 
 

In practice, heat reservoirs are generally of finite size with finite heat capacity and the heat leak 
always exists in the heat engine plant. Thus the problem of optimal configuration from which the 
maximum power is obtained with finite heat capacity and with heat leak is of practical. At the same 
time, the optimal configuration of the heat engine is of significance with another linear heat transfer 
law. The results include four special cases. Comparing the optimal configuration with that for an 
endoreversible heat engine cycle with infinite capacity without heat leak at the same transfer law 

)( 1−∆∝ TQ , we know that the existence of heat leak dose not change the optimal configuration but 
change the power versus efficiency characteristics of the cycle with infinite heat capacity. The finite 
heat capacity makes the cycle without heat leak become a generalized Carnot heat engine cycle. There 
is a big difference of optimal configurations for the finite heat capacity cycle with heat leak and the 
former three cases. This paper demonstrates the importance of finite size and finite heat capacity of 
heat reservoirs and the heat leakage upon the maximum power, the maximum efficiency, and the nature 
of the optimum cycle for the heat engine plant operated in finite time. Comparing with the results of 
Newton’s heat transfer law, we can know that heat transfer law has also different effect on the four 
special configurations of the cycle. 
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