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Abstract 

The study of flow of liquids in a circular pipe has been studied for a long time. The theoretical and 

numerical analysis of viscous fluid is very important in the field of physics, engineering and even in 

medicine. In any fluid flow, the Napier- stokes equation are very important to study the nature of flow. 

On the basis of Reynold number, the flow is either classified as laminar or turbulent. When the heat is 

supplied to a circular pipe with a liquid having laminar flow, the velocity, rate of flow of volume, 

temperature gradient, etc. are changed. This study aims to investigate the change in velocity, pressure 

drop, frictional factor and temperature distribution in the thermal layer across the liquid in the laminar 

flow. Various boundary conditions are assumed and the conservation of energy, momentum are also 

considered.  
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1. Introduction: 

Over the past 50 years, the flow along a circular 

cylinder represents a classical problem in fluid 

mechanics and thus received considerable 

attention [14]. The problem of viscous 

incompressible flow along a circular cylinder has 

for a long time received much attention, both 

theoretically and numerically. A common 

situation encountered by an engineer is heat 

transfer to fluid flowing through a pipe/tube. This 

can occur in heat exchangers, boilers, condensers, 

evaporators, and a host of other process 

equipment in mechanical components of the 

power generation applications. The behavior of 

viscous flow appears in food processing, plastic 

manufacturing, polymer processing, biological 

fluids, concrete mixtures, ice and magma flows 

[2]. The study of heat transfer can be done either 

in laminar flow or in turbulent flow [19]. Both 

conditions show different performance 

characteristics of the heat transfer for several 

fluids ranging from viscous to incompressible 

fluids. Besides, viscosity is the most important 

characteristic of any fluid. The value and 

changing of viscosity have essential significance 

for all events in the mechanical systems. The 

viscosity of fluid is changed with temperature, 

pressure and rate of shear. However, in analyzing 

the mechanical system operation it is usual to use 

only temperature dependence of viscosity, while 

influence of pressure and shear rate are neglected. 

The changing of viscosity with temperature and 

pressure is important not only for the sake of 

theoretical analysis but also regarding the 

practical application to the real mechanical 
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systems in which temperature and pressure are 

changing continuously. Furthermore, proper 

design of thermal systems (equipment, pipelines, 

etc.), among many other parameters, significantly 

dependent on using the suitable correlation for 

estimation of heat transfer parameters such as heat 

transfer coefficient or Nusselt number[13]. The 

viscous fluids have many applications in the field 

of fluid dynamics. Due to these applications, 

many research activities are conducted in this 

field. 

Various studies have been conducted to examine 

the flow of fluid over a stretching surface in two 

dimensions. Sakiadis [17] investigated the 

analysis of viscous fluid flow in 3-Dimension. 

The two cases of heat transfer on heat flux, and 

surface temperature with unsteady fluid flow over 

a continuous moving surface temperature, have 

been investigated by Tsou et al.[20]. They 

concluded that the velocity changes with the 

change in stretching parameter. In case of uniform 

or non-uniform heat fluxes, the numerical study of 

heat transfer has been analyzed by Ishak et al. [7]. 

They claimed that at the Micro polar fluid has a 

higher coefficient of convective heat transfer than 

viscous fluid flow.  

The flow of a fluid in a pipe may be laminar or 

turbulent. If the streak lines remain as a well-

defined line with only slight blurring due to 

molecular diffusion, then it is a laminar flow and 

if streak fluctuates in time and space, then it is a 

turbulent flow [6].  

For the pipe flow, Reynolds number, Re =  VD/ʋ    

is the most important quantity. It is the ratio of the 

inertia to viscous effects in the flow. Hence, the 

term flow rate should be replaced by Reynolds 

number, where V is the average velocity of the 

fluid in the pipe. The distinction between laminar 

and turbulent pipe flow and its dependence on an 

appropriate dimensionless quantity was first 

pointed out by Osborne Reynolds in 1883 A.D.. 

The flow in a round pipe is laminar if the 

Reynolds number Re is less than 2100 and is 

turbulent if it is greater than 4000. [4]. 

2. Problem Formulation: 

2.1. Laminar Flow: 

Consider a two-dimensional steady flow of an 

incompressible liquid flowing with the uniform 

velocity (U0) and temperature (T0) over an infinite 

long circular cylinder oriented with its long axis 

normal to the flow as shown in the Fig. 1.  The 

longitudinal flow relationship between the pipe 

and the fluid is also shown in the Fig. 1. It shows 

the actual velocity profile of the fluid. The surface 

of the cylinder initially is maintained at a constant 

wall temperature Tw. In order to keep the level of 

complexity at a considerable level the viscous 

dissipation effects are assumed to be negligible 

and thermal physical properties (heat capacity, 

thermal conductivity, viscosity and density) are 

assumed to be independent of temperature. These 

two assumptions lead to decoupling of 

momentum and thermal energy equations.   

 

Figure 1: Motion of the fluid in a pipe 

The balance principle of momentum for viscous 

fluid is given by Navier -Stokes equations [16] 

    𝝏𝑽

𝝏𝒕
+ 𝑽. 𝛁𝑽 = −

𝟏

𝝆
𝛁𝑷 + ∆𝑽                     (1) 

The equation of continuity is 

  𝛁. 𝑽 = 𝟎             (2) 

The momentum equation is 

𝜌 (
𝜕𝑈

𝜕𝑡
+ 𝑈. ∇𝑈 − 𝑓)) − ∇. 𝜎 = 0            (3) 

And the energy equation is  

𝜌𝐶𝑝 (
𝜕𝑈

𝜕𝑡
+ 𝑈. ∇𝑇) − 𝑘∇2𝑇 = 0                (4) 

where P is the pressure, 𝜌 is the density, V is the 

volume of the liquid, U is the velocity vector, T is 
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temperature, f is body force, Cp is heat capacity, 

k is specific heat capacity and 𝜎 is stress tensor. 

 

Figure 2: The actual velocity profile diagram in a laminar flow 

Kudela [12] assumed that the gravitational effect 

is neglected. The flow is merely a balance 

between pressure and the difference between the 

viscous forces and the pressure difference acting 

on the end of the cylinder of area πr2. The shear 

stress acting on the lateral surface of the cylinder 

is of area 2prl. This force balance can be written 

as 

P1𝜋R2 - ( P1 - ∆𝑃 ) 𝜋R2 - 2𝜋Rlτ = 0 

or equivalently      

∆𝑃

l
=

2τ

𝑅
                                                               (5) 

Equation (3) represents the basic balance in 

forces needed to drive each fluid particle along 

the pipe with constant velocity. Here  
2𝜏

𝑅
   must be 

independent of r. That is, t = CR where C is a 

constant. At the centerline of the pipe, the shear 

stress is a maximum, denoted by τw the wall shear 

stress. Hence, C = 
2𝑡

𝐷
 and the shear stress 

distribution throughout the pipe is a linear 

function of the radial coordinate. 

  τ = 
2𝜏𝑤𝑅

𝐷
                                      (6) 

The linear dependence of t on r is a result of the 

pressure force being proportional to R2 (the 

pressure acts on the end of the fluid cylinder; area 

A= 𝜋R2) and the shear force being proportional to 

r (the shear stress acts on the lateral sides of the 

cylinder; [5].  If the viscosity were zero there 

would be no shear stress, and the pressure would 

be constant throughout the horizontal pipe. The 

pressure drop and wall shear stress are related by 

∆𝑃 =
4𝑙𝜏𝑤

𝐷
                                                    (7) 

For laminar flow of a fluid, the shear stress is 

simply proportional to the velocity gradient,  

τ = 𝜇
𝑑𝑢

𝑑𝑦
  in the notation associated with pipe flow, 

this becomes 

τ = - 𝜇
𝑑𝑢

𝑑𝑅
                                                      (8)  

The negative sign is included to give t > 0 with 
𝑑𝑢

𝑑𝑟
 

< 0 (the velocity decreases from the pipe 

centerline to the pipe wall). Hence from equations 

(3) and (6) we get 

𝑑𝑢

𝑑𝑅
 = - ( 

∆P

2μl
)                                              (9) 

This can be integrated to give the velocity profile: 

u = -( 
∆P

2μl
)2 + C1          (10) 

where C1 is a constant. Because the fluid is 

viscous it sticks to the pipe wall so that u = 0 at R 

= 
𝐷

2
. Thus, C1 = 4R2 ∆𝑃

16𝜇𝑙
  [13].  

Hence, the velocity profile of the fluid during the 

flow can be written as  

μ (r) = ( 
∆𝑃𝑅2

4𝜇𝑙
)[1 −

𝑟

𝑅
)2] 

        =V max[(1 −
𝑟

𝑅
)2]           (11)                      

where Vmax = ( 
∆𝑃𝑅2

4𝜇𝑙
) is the centreline velocity. 

This is the velocity profile of the fluid in the pipe.  

Now let us consider the heat being supplied to the 

pipe as shown in the figure. Saleem et al. [18] has 

studied the heat transfer analysis of viscous 

incompressible fluid by combined natural 

convection and radiation in an open cavity. Also, 

Derby et al. [4] examined the performance of the 

approximations for modeling a representative 

problem of heat transfer and buoyant flow in 

optically thick fluid. 
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The volume flow rate through the pipe can be 

obtained by integrating the velocity profile across 

the pipe [11], [21].  Since the flow is 

asymmetrical about the center, the velocity is 

constant on small area element consisting of rings 

of radius r and change in thickness (dr) thus 

qv =  ∫ 𝑢𝑑𝐴  =  ∫ 𝑢(𝑟)2𝜋𝑟𝑑𝑟
𝑅

𝑜
 

    =   2𝜋Vmax[1 − (
𝑟

𝑅
)

2
]rdr 

    = 2𝜋Vmax [
𝑟

2

2
−

𝑟4

4𝑅2]  from r = 0 to R 

By definition, the average velocity is the flow rate 

divided by the cross- sectional area 

V av =  𝜋𝑅2 𝑉𝑚𝑎𝑥

2
                                               (12) 

V= 
𝑉𝑚𝑎𝑥

2
  = 

∆𝑃𝑅2

8𝜇𝑙
          (13) 

and qv = 
𝜋𝑅4∆𝑃

8𝜇𝑙
                      (14)  

2.2. Frictional Factor for Laminar Flow: 

For the frictional factor in a laminar flow, Darey 

Weisbach  [1] equation is  

hL  =  
∆𝑃

𝜌𝑔
   = f 

𝐿

𝐷

𝑉2

2𝑔
          (15) 

And we have f   =   
∆𝑃

2

2
 𝜌𝑉2

𝐷

𝐿
                    (16) 

Equation (11) can be rearranged to obtain  

∆𝑃 =
8𝜇𝑉𝑙

𝑅2   = 
32𝜇𝑉

𝐷

𝐿

𝐷
                     (17) 

Inserting (14) to (13) we obtain   

f  =  
64

𝑅𝑒
                                  (18) 

2.3. Coefficient of Thermal Expansion: 

The volume coefficient of thermal expansion is 

given by  

𝛼𝑣 =   
1

𝑉
(

𝑑𝑉

𝑑𝑇
)

𝑝
        (19) 

where V is the volume, T is the temperature and P 

is the pressure of the fluid. 

The vertical section of the flow is shown by Fig. 

4. During the flow of the fluid in the pipe after the 

heating process, as shown in Fig. 3. The following 

equations should be considered. 

 

Figure 3: Horizontal section of the flow 

 

 

Figure 4: Vertical section of the flow 
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The equation of continuity  

𝜕𝑢

𝜕𝑠
  

𝜕𝑣

𝜕𝜂
= 0                                                       (20) 

The equation of s- momentum is  

𝑢
𝜕𝑢

𝜕𝑠
+ 𝑣

𝜕𝑢

𝜕𝜂
= −

1

𝜌

𝑑𝑃

𝑑𝑠
+ 𝑣

𝜕2𝑢

𝜕𝜂2           (21) 

n- momentum 

𝜕𝑃

𝜕𝜂
=  0                                                                            (22) 

Bernoulli equation:  

1

𝜌

𝑑𝑃

𝑑𝑠
=  𝑈(𝑠) 𝑣

𝑑𝑈s

𝑑𝑠
                                         (23) 

The energy equation is  

𝜕𝑢

𝜕𝑠
+ 𝑣

𝜕𝑢

𝜕𝜂
=  𝛼

𝜕2𝑇

𝜕𝑛2           (24) 

The stress tensor is the sum of the isothermal 

pressure and the deviation stress tensor  

Therefore      

𝜎 = −𝑝𝑙 + 𝜏                       (25) 

For the incompressible fluids the extra stress 

tensor is related to the rate of deformation tensor 

as 

𝜏 = 2𝜂𝜖          (26) 

Where 𝜖 is te component of the rate of strain 

tensor, given by  

𝜖 =
1

2
[(∇𝑈) + (∇𝑈)2]        (27) 

For the fluid the viscosity is given by  

𝜂 = 𝑚(
𝑙2

2
)

𝑛−1

2                      (28) 

2.4. The Boundary Conditions: 

The boundary conditions defined by Khan et al. 

(9) are as follows 

The Inlet Boundary Conditions  

The uniform flow in the x direction and uniform 

fluid temperature are imposed at the inlet as  

Ux  = Uo,   Uy = 0 and T = T0                       (29) 

On the surface of the cylinder 

The standard no slip condition is used and the 

cylinder is heated so that its surface is maintained 

at constant temperature Tw 

Ux = 0, Uy = 0, T = Tw            (30) 

 

At the Exit Boundary 

The default outflow boundary conditions, a zero-

diffusion flux is considered. When there is no 

change in area at the outflow boundary, the 

gradients in the cross-stream directions may still 

exists at the outflow boundary. This is similar to 

the Neumann conditions. i. e. 

𝜕∅

𝜕𝑡
+ 𝑈0

𝜕∅

𝜕𝑡
= 0 where ∅ = 𝑈𝑥, 𝑈𝑦 and 𝑇   (31) 

The hydrodynamic Boundary Conditions [9] 

At the cylinder surface,  𝜂  =0 

U  =  0  and  
𝜕2𝑢

𝜕𝜂2 =
1

𝜇

𝜕𝑃

𝜕𝑠
             (32) 

At the edge of the boundary layer i.e. at 𝜂 = 𝛿(𝑠) 

U = U(s), 
𝜕𝑢

𝜕𝜂
= 0 𝑎𝑛𝑑 

𝜕2𝑢

𝜕𝜂2 = 0           (33) 

The Thermal Boundary conditions  

The boundary conditions for the uniform wall 

temperature (UWT) and the uniform wall flux 

UWF) are; 


























UWFfor
k

qT

UWTforTT

f

w



 ,0

                      (34) 

0,),( 






 

T
andTTs            (35) 

Velocity Distribution 

Assuming a thin boundary layer around the 

cylinder, the velocity distribution in the boundary 

layer can be approximated by a fourth order 

polynomial as suggested by Pohlhausen [15] 

𝑢

𝑈(𝑠)
= (2𝜂𝐻 − 3𝜂2

𝐻 + 3𝜂4
𝐻) +

𝜆

6
 (𝜂𝐻 −

3𝜂2
𝐻 + 3𝜂3

𝐻 − 4𝜂4
𝐻)          (36) 

Where 0 ≤ 𝜂𝐻 =
𝜂

𝛿(𝑠)
≤ 1 and λ is the pressure 

gradient parameter given by  

λ = 
𝛿2

𝑣

𝑑𝑈(𝑠)

𝑑𝑠
                         (37) 

Temperature distribution 

Assuming a thin thermal boundary layer around 

the cylinder, the temperature distribution in the 
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thermal boundary layer can be approximated by a 

third order polynomial 

𝑇−𝑇𝑎

𝑇𝑤−𝑇𝑎
= 1 −

3

2
𝜂𝑇 +

1

2
𝜂3

𝑇
           (38) 

for the isothermal boundary conditions  

The Reynolds number(Re) and Prandtls 

number (Pr) 

The Reynolds number and Prandtls number for 

power flow fluids are defined as  

𝑅𝑒 =
𝜌𝐷𝑛𝑈0

2−𝑛

𝑚
 𝑎𝑛𝑑 𝑃𝑟 =

𝑚𝑐𝑝

𝑘
{

𝑈0

𝐷
}

𝑛−1
         (39) 

Fluid flow 

The first parameter of interest is fluid friction 

which manifests itself in the form of the drag force 

FD, where FD is the sum of the skin friction drag 

Df and pressure drag Dp. Skin friction drag is due 

to viscous shear forces produced at the cylinder 

surface, predominantly in those regions where the 

component of shear force in the flow direction is 

given by 

𝐷𝑓 = ∫ 𝜏𝑤
𝐷

2
 sin𝜃𝑑𝜃                         (40) 

Where 𝜏𝑤 is the shearing stress along the cylinder 

wall, which can be determined by the Newton’s 

law of viscosity  

Then 𝜏𝑤 = {𝜇
𝜕𝑢

𝑑𝑦
} at y = 0           (41) 

In dimensionless form it can be written as  

𝐶𝑓 =
𝜏𝑤

1/2
𝜌𝑈2                        (42) 

The friction drag coefficient can be defined as  

𝐶𝑑𝑓 =

∫ 𝐶𝑓𝑠𝑖𝑛𝜃𝑑𝜃 =
𝜋

0 ∫ 𝐶𝑓𝑠𝑖𝑛𝜃𝑑𝜃 +
𝜃(𝑠)

0 ∫ 𝐶𝑓𝑠𝑖𝑛𝜃𝑑𝜃
𝜋

𝜃(𝑠)
     

                                                                     (43) 

Since the shear stress on the cylinder surface after 

the boundary layer separation is negligible. The 

angle of separation depends upon the velocity 

distribution outside the boundary layer. Khan et al. 

[8] have shown that for infinite flow condition the 

separation occurs at 𝜃(𝑠) = 107.71   degrees. By 

applying the boundary conditions (29-35). By 

applying the boundary conditions from 32-38, the 

value of drag coefficient be simplified. The 

second integral will be zero and the frictional drag 

coefficient [9] can be written as  

Cdf = ∫ Cfsinθdθ =
π

0

5.786

√Reynold number
         (44) 

Pressure drag is due to the unbalanced pressure 

which exists between the relatively high pressures 

and the upstream surfaces and the lower pressures 

on the downstream surfaces. In dimensionless 

form it can be written as  

𝐶𝐷𝑝 = ∫ 𝐶𝑝
𝜋

0
𝑐𝑜𝑠𝜃𝑑𝜃           (45) 

The pressure difference ∆𝑃 is obtained by 

integrating 𝜃-momentum equation with respect to 

𝜃. In dimensionless form it is written as  

∆𝑃
1

2
𝜌𝑈2

= 2(1 − 𝑐𝑜𝑠𝜃) +
8

𝑟𝑒𝑦𝑛𝑜𝑙𝑑 𝑛𝑜
(1 − 𝑐𝑜𝑠𝜃)                       

                                                                     (46) 

Heat Transfer 

 According to Khan [10] The second parameter of 

interest in this study is the dimensionless average 

heat transfer coefficient NuD, for large Prandtl 

numbers ≥ 0.71. This parameter is determined by 

integrating (24) from the cylinder surface to the 

thermal boundary layer edge. Assuming the 

presence of a thin thermal boundary layer T along 

the cylinder surface, the energy integral equation 

for the isothermal boundary condition can be 

written as 

𝑑

𝑑𝑠
∫ (𝑇 − 𝑇𝑎)𝑢𝑑𝜂 = −𝛼

𝜕𝑇

𝜕𝜂

𝛿𝑇

0
 𝑎𝑡 𝜂 = 0         (47) 

The local surface temperatures [9] for the two 

regions can be obtained from the temperature 

distribution (38) as  

∆T1(θ) =
2qδr1

3kf
 and ∆T2(θ) =

2qδr2

3kf
         (48) 

The local heat transfer coefficient can now be 

obtained from (48)  i. e.   

h1(θ) =
q

∆T1(θ)
 and h2(θ) =

q

∆T2(θ)
         (49) 

Assumption for energy equation: 

By the law of conservation of energy, It is neither 

created nor destroyed. But it is conserved in the 

system of flow. The heat energy supplied from 

the source is partially converted into kinetic 

energy and in overcoming friction. However, the 

following assumptions are done in energy 

equation. 

a. Axial conduction is neglected. 
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b. Entry temperature profile is assumed 

constant over the flow cross-section. 

c. Constant wall flux and constant wall 

temperature boundary conditions are 

considered. 

d. Natural convection effects are neglected. 

e. Viscous dissipation is considered. 

f. Fluid properties other than viscosity are 

assumed to remain constant. 

Assumption for Momentum Equation:  

By the law of conservation of momentum, the 

total momentum remains conserved in the flow. 

In case of momentum following assumptions are 

done. 

a. Steady laminar flow is assumed. 

b. The entry flow is assumed fully developed. 

c. Radial pressure variations are neglected. 

d. Temperature varying viscosity is included. 

e. Radial velocities are assumed significant and 

two-dimensional flows is considered. 

3. Results and Discussion: 

The present study aims to study the various 

dimensions when a cylindrical pipe with a 

laminar flow is heated from all sides.  The results 

are obtained as follow; 

 

Figure 5: Velocity profile of the liquid 

The velocity of the fluid along the center of the 

pipe is given by equation (11). This is the 

maximum velocity and as the length of the radius 

increases, the velocity is reduced. The 

relationship between the distance of the lamina 

from the center and its velocity is given in Fig. 5. 

This graph is based in assuming the pressure 

drop, coefficient of viscosity to be constant for 

unit length. The significant change also appears 

in the rate of volume flow. This is expressed in 

Fig. 6. Governed by the equation (12). Obviously, 

the rate of flow is directly proportional to the 

square of the distance from the center of the pipe. 

 

Figure 6: Volume flow analysis of the liquid 

 

 

Figure 7: Relationship between Reynold number 

and frictional factor 

Another influencing factor for the laminar flow of 

the pipe is the friction. The relationship between 

Reynold number and frictional factor is given by 

equation (18) and is expressed in Fig. 7. In 

laminar flow, the effect of frictional factor is high 

whereas in turbulent it is less effected. When the 

Reynold number approaches to zero, the 

frictional factor is nearly infinity. 

Frictional factor directly affects the Frictional 

drag coefficient. The relationship between 
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frictional drag coefficient and Reynolds number 

is given by equation (44) and pictorially 

expressed in Fig. 8. The similarity is directly seen 

among the two figures. 

 

Figure 8: Relationship between Reynolds number 

and frictional drag coefficient 

The temperature distribution along the radius of 

the pipe for the flow of the pipe is given by 

equation (38) and is expressed graphically in Fig. 

9. The relationship between the coefficient of 

viscosity and temperature distribution is not a 

linear one but it can be deduced that the coefficient 

of viscosity inversely affects the temperature 

distribution in a pipe. 

 

Figure 9: Relationship between coefficient of 

viscosity and temperature distribution 

Apart from the above results, the entire study can 

be summarized as follows; 

a. The velocity profile is directly proportional 

to the change in pressure gradient and 

inversely proportional to the length. 

b. The centerline velocity of the fluid is directly 

proportional to the radius of the pipe and 

inversely proportional to the length of the 

pipe. 

c. In a horizontal pipe, the flow rate is directly 

proportional to the pressure drop, inversely 

proportional to the viscosity, inversely to the 

pipe length, and proportional to the pipe 

radius to the fourth power. Further, the rate 

of transfer of heat from the source to the fluid 

is directly proportional to the heat transfer 

coefficient of the materials, and the specific 

heat capacity of the materials. The Reynold 

number and the Nusselt number and 

Prandtl’s numbers cannot be ignored. 

4. Limitation of Study:  

This research is totally based in the laminar flow 

of the viscous fluid. Under this study the 

following factors are not considered: 

a. The turbulent flow 

b. The flow in the rectangular pipe 

c. If the soluble substances are mixed in the 

fluid, then their effect in the flow is also 

ignored.  

If the pipe is not uniformly cylindrical then the 

effect caused by the irregularity is not considered 

5. Limitation of Study:  

The problem of temperature-varying properties of 

the fluid is more complex than that of constant 

properties. The different property ratio 

correlations of different fluids increase the 

complexity of the variable-temperature properties 

problem. It is also difficult to give a correction for 

the temperature-dependent behavior of all 

viscous liquids in all tubes. The viscosity varies 

more markedly than the other thermo-physical 

properties for most liquids, so little work appears 

to have been done for the pipe flows involving 

temperature-dependent viscosity and velocity in 

the field of heat transfer. Therefore, the proposed 

study has significant importance on fluid flow 

and heat transfer for temperature-dependent 

thermo-physical properties in straight tubes with 

circular cross section for finding the correlation 

among those properties. 

Furthermore, this study is best fitted in the 

following cases: 
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a. Expansion of Mercury and Alcohol in the 

thermometer to minimize the error due to 

constriction of clinical thermometer. 

b. Effect of heat in water pipes in summer 

system in water distribution system. 

c. Delivery of petroleum substances in districts 

transportation though pipelines outlets. 
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