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Abstract

Open-pollinated (OP) mating is frequently used in forest tree breeding due to the relative temporal 

and financial efficiency of the approach. The trade-off is the lower precision of the estimated 

genetic parameters. Pedigree/sib-ship reconstruction has been proven as a tool to correct and 

complete pedigree information and to improve the precision of genetic parameter estimates. Our 

study analyzed an advanced generation Eucalyptus population from an OP breeding program 

using single-step genetic evaluation. The relationship matrix inferred from sib-ship reconstruction 

was used to rescale the marker-based relationship matrix (G matrix). This was compared with a 

second scenario that used rescaling based on the documented pedigree. The proposed single-step 

model performed better with respect to both model fit and the theoretical accuracy of breeding 

values. We found that the prediction accuracy was superior when using the pedigree information 

only when compared with using a combination of the pedigree and genomic information. This 

pattern appeared to be mainly a result of accumulated unrecognized relatedness over several 

breeding cycles, resulting in breeding values being shrunk toward the population mean. Using 

biased, pedigree-based breeding values as the base with which to correlate predicted GEBVs, 

resulted in the underestimation of prediction accuracies. Using breeding values estimated on 

the basis of sib-ship reconstruction resulted in increased prediction accuracies of the genotyped 

individuals. Therefore, selection of the correct base for estimation of prediction accuracy is critical. 

The beneficial impact of sib-ship reconstruction using G matrix rescaling was profound, especially 

in traits with inbreeding depression, such as stem diameter.

Keywords:  Eucalyptus nitens, hidden relatedness, inbreeding depression, sib-ship reconstruction, single-step evaluation

Precise estimation of genetic parameters is essential to perform an 

accurate selection of genetically superior individuals and best prac-

tice management of genetic diversity in operational breeding pro-

grams. To achieve these goals, pedigrees that are both error-free and 

complete across generations should be established. Documenting 

and maintaining complete pedigrees in forest tree breeding is 

time-consuming and labor-intensive. In many cases achieving 

crossing, designs are technically challenging due to biological con-

straints, differential temporal sexual maturation or the differen-

tial size of reproduction organs physically preventing a successful 

cross (Potts and Dungey 2004). Costs of tracking parents mean that 

progeny tests based on open-pollinated (OP) mating are preferred  
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(Burdon and Shelbourne 1971). OP strategies can not fully track 

pedigree and so do suffer from the presence of hidden relatedness, 

the proportion of which is affected by conditions under which 

reproduction was performed (i.e., wild stands vs. breeding arbore-

tum vs. polymix breeding). Hidden relatedness can affect the accu-

racy of genetic parameter estimation and rankings of estimated 

breeding values (Squillace 1974; Askew and El-Kassaby 1994; 

Namkoong et al. 1988; Vidal et al. 2015; Tambarussi et al. 2018). 

The development of highly polymorphic genetic markers, such as 

simple sequence repeats, has enabled pedigree reconstruction to be 

performed, eliminating the deleterious effect of hidden relatedness 

on accuracy of genetic parameters and breeding values in genetic 

evaluations (Lambeth et al. 2001; Grattapaglia et al. 2004; Doerksen 

and Herbinger 2010; Hansen and McKinney 2010; El-Kassaby et al. 

2011).

More recently, the development of next-generation sequencing 

technologies has facilitated the development of genomic resources, 

even for organisms with missing reference genomes such as for-

est trees (Elshire et al. 2011; Chen et al. 2013; Neves et al. 2013; 

Plomion et  al. 2014; Silva-Junior et  al. 2015). These technologies 

generate abundant genome-wide genetic markers, such as single 

nucleotide polymorphisms (SNPs), which allow the construction 

of a marker-based relationship matrix (Nejati-Javaremi et al. 1997; 

VanRaden 2008). Such matrices provide a tool to track Mendelian 

segregation (Visscher et  al. 2006; Zapata-Valenzuela et  al. 2013), 

historical relatedness before base population de�ned by pedigree 

(Powell et al. 2010) and linkage disequilibrium (LD) between mark-

ers and quantitative trait loci (QTLs) (Habier et al. 2013). In particu-

lar, tracking LD improves the ability to estimate genetic covariance 

and helps achieve the more accurate estimation of genetic variance 

(Lippert et al. 2013). The marker-based relationship matrix can then 

be used as a tool to predict phenotypes for individuals with geno-

types through genomic selection (GS) models (Resende et al. 2012; 

Beaulieu et al. 2014; Muñoz et al. 2014; Gamal El-Dien et al. 2015; 

Ratcliffe et al. 2015; Bartholomé et al. 2016; Isik et al. 2016).

Forest tree species are a challenge as they are often characterized 

by high genetic diversity, large effective population size, and rapid 

LD decay, which requires genotyping of large training populations to 

fully utilize all the bene�ts of the genomics approach. The complete 

genotyping of a forest tree progeny test is currently cost-prohibitive 

due to their large dimensions (thousands of trees), and a reasonable 

alternative should be used (Beaulieu et  al. 2014). El-Kassaby and 

Lstibůrek (2009) proposed a partial pedigree reconstruction as an 

ef�cient alternative to full pedigree reconstruction to improve the 

comparative precision of genetic parameters (El-Kassaby et al. 2011). 

Single-step evaluation (Legarra et al. 2009; Misztal et al. 2009) can 

be seen as a genomic-based equivalent of the above mentioned par-

tial pedigree reconstruction to reasonably implement genomics into 

forest tree testing schemes. This strategy has already been success-

fully applied in animal breeding and also in some forest tree genetic 

evaluations (Christensen and Lund 2010; Meuwissen et  al. 2011; 

Christensen et  al. 2012; Cappa et  al. 2017, 2018; Ratcliffe et  al. 

2017). The rescaling of the marker-based relationship matrix to that 

inferred from the documented pedigree is the greatest challenge in 

single-step genetic evaluation to avoid any inaccuracy of genetic 

parameter estimates. Usually, the marker-based matrix G is adjusted 

regarding differences of average diagonal and average off-diagonal 

elements to its pedigree-based counterpart. Nevertheless, the rescal-

ing effects are highly variable and depend on the method used for G 

matrix construction (Forni et al. 2011). Several rescaling approaches 

have already been developed (Forni et al. 2011; Vitezica et al. 2011; 

Gao et al. 2012). However, there is lack of knowledge on the effect of 

incomplete pedigree information on accuracy of predicted breeding 

values in single-step evaluation. The rescaling of the G matrix based 

on incomplete pedigree-based relationship appears to be causing an 

issue. Individuals with shallow, single-generation pedigrees are caus-

ing the G matrix elements to be larger, on average, compared with 

the pedigree-based matrix A. In contrast, individuals with deep pedi-

grees have, on average, G matrix elements that are smaller (Misztal 

et al. 2013). The strategy to avoid this issue is through implement-

ing patterns of population history. Misztal et al. (2013) developed a 

strategy based on implementation of unknown parental groups in 

a multibreed population. We found this strategy, however, unsuit-

able in our case due to the lack of isolation in mating events and 

rather we focused on reconstruction of hidden relatedness. A previ-

ous study performed on the material used in the current study was 

focused on sib-ship reconstruction and found a reasonable propor-

tion of relatedness (including sel�ng), unrecognized by documented 

pedigree. The implementation of the relationship matrix based on 

sib-ship reconstruction improved the precision of genetic parameters 

and response to selection especially in traits suffering from inbreed-

ing depression (Klápště et  al. 2017). This study, therefore, investi-

gates the ef�ciency of single-step genetic evaluation in an advanced 

generation of a Eucalyptus nitens breeding population, with an only 

partially tracked pedigree. It compares the effect of using related-

ness inferred from sib-ship reconstruction versus the documented 

pedigree in the process of marker-based relationship matrix rescal-

ing. In addition, the pedigree-based matrix was modi�ed to take into 

account the probability of sel�ng in an attempt to further improve 

the accuracy of this strategy.

Methods

Material

The studied population is a third generation breeding population, 

derived from 2 seed orchards (Klápště et al. 2017). The experiment 

includes 3593 individuals structured into 116 half-sib families, of 

which 691 were randomly selected, representing 72 tested families 

analyzed through sib-ship reconstruction in previous study (Klápště 

et al. 2017). The individuals were measured for diameter at breast 

height (DBH) and scored for straightness (STR) using a 9° scale 

from 1—crooked to 9—straight and malformation (MAL) coded as 

a binary trait where 1 is perfectly formed and 0 otherwise.

Genetic markers were generated through EUChip60K SNP chip 

(Silva-Junior et  al. 2015) and �ltered for GenTrain score > 0.5, 

GenCall > 0.15, minor allele frequency (MAF) > 0.05 and SNP call 

rate > 0.6 which generated 13 844 markers.

Statistical Analysis

Pedigree-Based Analysis

Genetic parameters such as additive genetic variance and heritabil-

ity were estimated using a linear mixed model, implemented in the 

ASReml-R package (Butler et al. 2009) as follows:

 y = X + Za + Zr + Zr(s) + eββ

where y is the vector of observations, β is the vector of �xed effects 

such as intercept and seed orchard, a is the vector of random 

effects for breeding values following var( ~ ( , )a A) N a0 2σ , where A 

is the average numerator relationship matrix (Wright 1922) which 

is substituted by the combined relationship matrix H using both 
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pedigree and marker information in the single-step evaluation (see 

below) and σ a
2  is the additive genetic variance, r is the vector of 

random replication effects following var( ~ ( , )r I) N r0 2σ , where I is 

the identity matrix and σ r
2  is the replication variance, r(s) is the 

vector of random set nested within replication effects following 

var(r I( )) ~ ( , )( )s N r s0 2σ  (set represents incomplete block within rep-

lication having �xed number of families from each seed orchard), e 

is the vector of residuals following var( ~ ( , )e I) N e0 2σ , where σ e
2  is 

the residual variance, X and Z are incidence matrices assigning �xed 

and random effects to observations in vector y.

Single-Step Genetic Evaluation

Since the marker-based relationship matrix is re�ecting both tem-

poral and historical relatedness (Powell et al. 2010), the reference 

(base) population is different compared with the pedigree-based 

counterpart. Such discrepancies can result in biased estimations 

of genetic parameters and reduced accuracy of breeding values 

(Vitezica et al. 2011). Therefore, the adjustment of the marker-based 

relationship matrix is the most crucial step in the single-step evalu-

ation. The marker-based relationship matrix G was constructed fol-

lowing (VanRaden 2008):

 G
ZZ

=
′

∑ −2 1j j jp p( )

where Z = M − P, M is the matrix of genotypes coded 0, 1, and 2 

as reference allele homozygote, heterozygote, and alternative allele 

homozygote, respectively, and P is the vector of doubled frequencies 

for alternative alleles, p
j
 is the frequency of the alternative allele at 

jth loci. The rescaling of the marker-based relationship matrix to 

adjust for a base population de�ned by the documented pedigree 

was performed following (Gao et al. 2012):

 Avg.diag Avg.diag

Avg.offdiag Avg.offdiag

( ) ( )

( ) (

G A

G

β α
β α

+ =
+ =

22

AA22)





Since the investigated �eld experiment is derived from a 3rd gen-

eration breeding population in a program with incomplete tracking 

of relatedness, 2 A
22

 matrices were implemented to rescale the G 

matrix: 1) based on tracked pedigree (HBLUP1), and 2) based on 

sib-ship reconstruction performed in a previous study (Klápště et al. 

2017) (HBLUP2). We hypothesize that the implementation of a rela-

tionship matrix based on sib-ship reconstruction should result in a 

more precise adjustment of the marker-based relationship matrix to 

pedigree. The G matrix is usually not positive semi-de�nite, which 

is one of the mixed linear model assumptions, and weighting of the 

genomic and pedigree-based relationship matrices is required as 

follows:

 G G w A w
w 22

= ( )1− +

Alternatively, the pedigree-based relationship matrix was modi�ed 

to take into account partial sel�ng following (Dutkowski et al. 2001; 

Gilmour and Dutkowski 2004). This pedigree-based matrix was 

produced by using the “sel�ng” option in “asreml.Ainverse” func-

tion, implemented in the ASReml-R package (Butler et al. 2009).

The H matrix, implementing both marker and pedigree-based 

information, was constructed as follows:

 H =
A + A A (G - A )A A A A G

G A A G

11 12 22
-1

w 22 22
-1

21 12 22
-1

w

w 22
-1

21 w











where A
11

 is the relationship matrix for nongenotyped individuals, 

A
12

 and A
21

 are the relationship matrices between genotyped and 

nongenotyped individuals and A
22

 is the pedigree-based relationship 

matrix for genotyped individuals, G is the marker-based relationship 

matrix which is only available for genotyped individuals.

Narrow-sense heritability for continuous traits was estimated as 

follows:

 ˆ ˆ

ˆ ˆ
h a

a e

2
2

2 2
=

+
σ

σ σ

and its alternative for binary trait was estimated as follows:

 
ˆ ˆ

ˆ
h a

a

2
2

2
2

3

=
+

σ

σ φ
π

where φ  is the over/under dispersion coef�cient. The theoretical 

accuracy of breeding values was estimated as follows:

 r
Fi a

= −
+

1
1 2

PEV

( )σ

where PEV is prediction error variance (Mrode 2014), and F
i
 is the 

inbreeding coef�cient of the ith individual. The leave-one-out cross-

validation strategy was implemented as an independent evaluation 

of the tested models. Prediction accuracy for continuous traits was 

estimated as the correlation between breeding values estimated in 

the pedigree-based analysis and those predicted in the cross-valida-

tion procedure. Additionally, the predicted genomic breeding val-

ues for genotyped individuals were correlated with breeding values 

estimated in the independent analysis using the relationship matrix 

based on information from sib-ship reconstruction. Correlations 

were only estimated using the set of genotyped individuals. The area 

under a ROC curve (AUC) was used to estimate prediction accuracy 

for binary traits.

Results

The pedigree-based analysis resulted in heritability from 0.05 (MAL) 

to 0.28 (STR) for form traits and 0.22 (DBH) for the growth trait 

analyzed. The estimates for all traits were found to be statistically 

signi�cant with regard to their standard errors (α = 0.05). The accur-

acy of the breeding values was moderate and reached 0.54 for the 

growth trait DBH and from 0.32 to 0.58 for form traits (MAL and 

STR) (Table 1). The LD in our population decayed to an r2 of 0.2 

within 3 kb, which is a common pattern in forest trees (Figure 1). 

The comparison of marker-based and sib-ship reconstruction-based 

relationship coef�cients showed a clear de�ation of marker-based 

estimates across the whole spectrum of relationship coef�cients 

(Figure  2). The marker-based relationship matrix G was rescaled 

following Gao et  al. (2012), using pedigree-based and sib-ship 

reconstruction-based relationship matrices. The parameters α and β 

reached values of 0.005090189 and 1.322984116 in the pedigree-

based scenario and 0.01343057 and 1.33787272 in the sib-ship 

reconstruction scenario.
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The single-step evaluation resulted in heritability estimates 

ranging from 0.05 to 0.28 in the documented pedigree-based sce-

nario and from 0.05 to 0.28 in the sib-ship reconstruction scenario. 

A slight increase in heritability from 0.22 to 0.24 was observed in 

the HBLUP1 scenario for DBH but was not accompanied by any 

concurrent increase in model �t. STR was the only trait to show 

improvement in the theoretical accuracy of breeding values when 

using information from sib-ship reconstruction to rescale the G 

matrix compared with the pedigree-based scenario. The trend in 

the theoretical accuracy of the breeding values, however, is a re�ec-

tion of the trend in heritability, which was not always a re�ection of 

the model �t. The prediction accuracy was investigated through a 

leave-one-out strategy only in the default scenario (no sel�ng prob-

ability and 0.05 weight on pedigree information). Our study found 

Figure 1. LD decay in population under study.

Table 1. Variance components, heritability, their standard errors in parentheses, breeding values accuracy, their prediction accuracy (PA) 

in parentheses [2 prediction accuracies are reported for genotyped individuals regarding base to which are correlated (a) documented 

pedigree-based breeding value estimates; (b) sib-ship–based breeding value estimates—bold], and model fit for pedigree-based model 

(ABLUP), single-step evaluation where G matrix is rescaled to documented pedigree (HBLUP1) and single-step evaluation where G matrix 

is rescaled to information from sib-ship reconstruction (HBLUP2) under no selfing probability

Model Parameter DBH STR MAL

ABLUP Additive genetic var. 132.4 (28.88) 0.488 (0.096) 0.218 (0.078)

Replicate var. 0.000 (0.000) 0.074 (0.025) 0.011 (0.013)

Rep(set) var. 0.000 (0.000) 0.016 (0.011) 0.000 (0.000)

Residual var. 480.5 (26.81) 1.280 (0.052) 1.000 (0.000)

Heritability 0.216 (0.045) 0.278 (0.052) 0.050 (0.017)

Acc (PA)—total 0.54 (0.69) 0.58 (0.68) 0.32 (0.56)

Acc (PA)—mother 0.54 (NA) 0.56 (NA) 0.35 (NA)

Acc (PA)—offspring 0.54 (0.69) 0.58 (0.68) 0.31 (0.56)

AIC 25153.28 5290.2 8271.75

HBLUP1 Additive genetic var. 147.7 (31.47) 0.484 (0.086) 0.216 (0.077)

Replicate var. 0.000 (0.000) 0.073 (0.025) 0.011 (0.013)

Rep(set) var. 0.000 (0.000) 0.017 (0.013) 0.000 (0.000)

Residual var. 469.8 (27.75) 1.277 (0.076) 1.000 (0.000)

Heritability 0.239 (0.048) 0.275 (0.047) 0.050 (0.017)

Acc (PA)—total 0.57 (0.66) 0.59 (0.64) 0.34 (0.56)

Acc (PA)—mother 0.55 (NA) 0.56 (NA) 0.36 (NA)

Acc (PA)—offspring NonGen 0.55 (0.66) 0.58 (0.68) 0.32 (0.56)

Acc (PA)—offspring Gen 0.63 (0.58, 0.37) 0.65 (0.47, 0.58) 0.40 (0.57)

AIC 25148.78 5286.23 8272.943

HBLUP2 Additive genetic var. 131.9 (28.39) 0.488 (0.088) 0.231 (0.078)

Replicate var. 0.000 (0.000) 0.074 (0.025) 0.011 (0.013)

Rep(set) var. 0.000 (0.000) 0.017 (0.011) 0.00 (0.000)

Residual var. 480.2 (25.85) 1.272 (0.077) 1.000 (0.000)

Heritability 0.215 (0.044) 0.277 (0.047) 0.053 (0.017)

Acc (PA)—total 0.55 (0.67) 0.59 (0.64) 0.34 (0.56)

Acc (PA)—mother 0.54 (NA) 0.56 (NA) 0.36 (NA)

Acc (PA)—offspring NonGen 0.53 (0.66) 0.58 (0.68) 0.32 (0.56)

Acc (PA)—offspring Gen 0.62 (0.58, 0.42) 0.66 (0.47, 0.58) 0.39 (0.57)

AIC 25137.04 5283.96 8275.39
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the highest prediction accuracy was reached in the pedigree-based 

analysis (ABLUP), ranging from 0.68 to 0.69. Similar prediction 

accuracies were found in the HBLUP1 and HBLUP2 scenarios for 

individuals without genomic information, ranging from 0.66 to 

0.68. The lowest prediction accuracy was obtained among individu-

als with genomic information and ranged from 0.47 to 0.58 in both 

the HBLUP scenarios when predicted genomic breeding values were 

correlated with breeding values estimated in ABLUP. However, when 

the predicted genomic breeding values were correlated with breed-

ing values estimated using relationships from sib-ship reconstruction 

(performed in only genotyped sample), the prediction accuracy in 

DBH increased from 0.37 obtained in HBLUP1 to 0.42 obtained in 

HBLUP2. The prediction accuracy in STR remained constant across 

both scenarios (Table 1). The reduced accuracy of predicted breeding 

values was caused by the fact that while sib-ship–based estimated 

breeding values were estimated using only genotyped individuals, 

predicted breeding values are biased because nongenotyped individ-

uals are also used in the prediction process and representing 80% of 

the total population size.

The increase of sel�ng probability in the pedigree-based rela-

tionship matrix resulted in a decrease in heritability across all inves-

tigated traits. The different weights applied to the pedigree-based 

information did not affect the heritability, except for MAL, where a 

higher weight set on the pedigree-based relationship matrix resulted 

in a decrease in heritability, with a more obvious pattern in the sib-

ship reconstruction scenario (Supplementary File 1). The theoret-

ical accuracy of breeding value estimations was slightly higher in 

the single-step evaluation compared with the pedigree-based alter-

native, mainly due to the noted improvement in the accuracy of 

genotyped individuals. The sib-ship scenario in MAL, however, also 

improved the accuracy of mothers and nongenotyped offspring. The 

introduction of sel�ng probability followed the pattern observed in 

heritability and decreased with the increase of sel�ng probability. 

Similarly, the increased weight of the pedigree-based relationship 

matrix in the rescaling process resulted in a reduction of breeding 

value accuracy, with the most noticeable trend for the trait MAL 

(Supplementary File 1).

Discussion

Controlled pollination in forest tree breeding is expensive, time-

consuming, and labor-intensive and its ef�ciency is affected by 

both biological and environmental limitations. Therefore, open pol-

lination has been preferred in forest tree breeding programs, such 

as in the case of the E. nitens program in New Zealand (Burdon 

and Shelbourne 1971). However, this strategy comes at the cost 

of incomplete knowledge of genealogy, likely to cause the estima-

tion of genetic parameters in quantitative genetic evaluations that 

are less reliable (Ratcliffe et al. 2017). The development of genetic 

markers has allowed recovery of missing relatedness and genealogy 

through pedigree/sib-ship reconstruction (Askew and El-Kassaby 

1994; Lambeth et al. 2001; Vidal et al. 2015). Dense marker arrays 

have also allowed the construction of realized relationship matri-

ces (Nejati-Javaremi et  al. 1997; VanRaden 2008), which usually 

increase the accuracy of genetic parameter estimates and allow for 

more ef�cient selection of superior genotypes (Resende et al. 2012; 

Gamal El-Dien et  al. 2015; Ratcliffe et  al. 2015, 2017; Suontama 

et al. 2018).

El-Kassaby and Lstibůrek (2009) and El-Kassaby et  al. (2011) 

found partial pedigree reconstruction as a feasible and cost-effective 

alternative to full pedigree reconstruction to improve the precision 

of genetic parameters. Our previous study (Klápště et  al. 2017) 

focused on the effect of sib-ship reconstruction to improve genetic 

parameters. A signi�cant bene�t was demonstrated for those traits 

suffering from inbreeding depression, achieved by recognizing selfs 

in the population, consequently leading to an increase in additive 

genetic variance, heritability, and improvement in estimated genetic 

gain. Improvement in breeding value accuracy was also observed for 

traits free of inbreeding depression due to the recovery of hidden 

relatedness and potential correction of pedigree errors. The analysis 

found 630 pair-wise relationships originally de�ned as half-sibs to be 

unrelated (See �gure 2 in Klápště et al. 2017). However, de�ning all 

pedigree errors was not possible due to an inability to assign parents 

to each individual in the sib-ship reconstruction strategy. Similarly, 

the current study found a bene�t when rescaling the marker-based 

G matrix according to the relationship matrix based on information 

from sib-ship reconstruction, rather than the documented pedigree. 

The bene�t seen in the improved model �t (Table 1) and breeding 

values accuracy (Table 1—bold numbers) was more evident in pro-

duction trait (DBH), which was more likely to suffer from inbreeding 

depression (Hardner and Tibbits 1998). Therefore, parentage/sib-

ship reconstruction should be performed before G matrix rescaling 

in single-step evaluations, when applied in OP breeding programs. 

However, the low correlations between breeding values estimated 

on the basis of sib-ship reconstruction with those predicted in sin-

gle-step evaluation is a result of the high in�uence of unrecognized 

relatedness and pedigree errors from nongenotyped individuals (con-

tributing by 80% of the total population size) on breeding values 

predicted from single-step evaluation. On the other hand, there was 

no improvement in the accuracy of breeding values estimated in 

the nongenotyped part of the population after implementation of 

genomic information. This can be again caused by a high level of 

uncertainty in relatedness (coming from both the hidden relatedness 

and pedigree errors) across the population. In this case, we recom-

mend the pedigree/sib-ship reconstruction of the whole population 

to reach a higher accuracy of predicted breeding values.

Results presented in this study showed that accumulation 

of unrecognized relatedness and pedigree errors across several 

Figure  2. Correspondence of sib-ship and marker-based relatedness/

self-relatedness.
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generations of breeding cycles resulted in virtually nonexistent 

between-family variation, with the main source of genetic variation 

generated by within-family variation (Figure 3). In contrary, the ana-

lysis using traits having similar level of heritability but complete 

pedigree information found large proportion of the genetic variance 

attributed to between-family variance (Thistlethwaite et al. 2017). 

Therefore, the missing pedigree information on the paternal side of 

the current progeny population, as well as for the parents in pre-

vious generations, appears to undermine the ability of the REML 

algorithm to differentiate families, and breeding values are shrunk 

toward the population mean (Figure 3) (Henderson 1975; Garrick 

et al. 2009). On the other hand, using genomic markers allowed the 

recovery of hidden relatedness and pedigree errors, resulting in a 

more disperse distribution of genomic breeding values compared 

with their pedigree-based equivalents (Figure 4). There are several 

strategies developed in animal breeding to overcome uncertain 

paternity using phenotypic data (Sapp et al. 2007) or construction of 

a sire probability matrix (Henderson 1988). However, the probabil-

ity for many possible males (as would be the most likely scenario in 

forest trees) assigned to each nongenotyped offspring is not suf�cient 

to increase the accuracy of genetic parameter estimates (Konigsberg 

and Cheverud 1992). The purpose of GS is primarily the approxima-

tion of pedigree-based breeding values through the implementation 

of genetic markers (Meuwissen et al. 2001). When the pedigree-based 

estimates of breeding values are imprecisely estimated, however, the 

resulting prediction accuracy (in terms of correlation between ped-

igree-based estimated and marker-based predicted breeding values) 

will undermine the ef�ciency of genomic predictions. Under such 

conditions, we would highly recommend implementation of genetic 

markers across the whole population and perform either pedigree or 

sib-ship reconstruction to obtain relatedness structure approaching 

the reality. The breeding values estimated on the basis of pedigree/

sib-ship reconstruction will reach higher accuracy and provide a bet-

ter base for the estimation of prediction accuracy.

The construction of a relationship matrix based on informa-

tion from genetic markers allows tracking of not only temporal 

relatedness, as de�ned by the pedigree-based base population, but 

also Mendelian sampling (Visscher et al. 2006; Zapata-Valenzuela 

et  al. 2013) and historical relatedness (Powell et  al. 2010). This 

is highly bene�cial in species in the initial phase of domestica-

tion, where pedigrees are shallow and simple, such as forest trees. 

Additional information from all genotyped individuals increases the 

precision of breeding values considerably (Table 1). Ratcliffe et al. 

(2017) investigated the effect of genotyping intensity in a single-

step evaluation in white spruce and found continuous improvement 

in the accuracy of genetic parameters and model �t with increas-

ing genotyping intensity. The study demonstrates the high value of 

genomic information, implemented in the initial phase of breeding 

programs, where pedigrees are simple and incomplete. Similarly, we 

found a large increase in the theoretical accuracy of breeding val-

ues for genotyped individuals compared with those without geno-

types showing no improvement (Table 1). However, the prediction 

accuracy of genotyped individuals increased only when sib-ship 

reconstruction-based breeding values were used as a base. The fact 

that nongenotyped individuals reached higher prediction accuracy 

than genotyped individuals can be explained by the highly biased 

estimates of family means targeted in pedigree-based predictions 

(Zapata-Valenzuela et al. 2013). On the other hand, within-family 

variation targeted by genomic-based prediction is largely unreliable 

due to accumulated unrecognized relatedness and pedigree errors 

Figure 3. Distribution of pedigree-based breeding values within each family.
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across the breeding cycles. Therefore, genomic approaches remain 

a very attractive option in forest species even where shortening of 

the breeding cycle is not possible due to late �owering. Gains can be 

made instead through a more complete understanding of underlying 

relationships and more accurate estimation of genetic parameters.

The precision of marker-based estimates of genetic parameters 

remain sensitive to selection, and a combination of marker and pedi-

gree information is still recommended (Ducrocq and Patry 2010; 

Vitezica et  al. 2011). In addition, the de�nition of the reference 

population in marker-based relationship matrices is rather arbitrary 

(Speed and Balding 2015) and should be rescaled with respect to the 

pedigree. de los Campos et al. (2015) argued that total heritability 

can be recovered only when all QTLs are included in the marker 

array, and is partially lost due to imperfect LD when only SNPs 

surrounding QTLs are available. Lippert et al. (2013) investigated 

the effect of using both QTL and non-QTL markers to construct a 

marker-based relationship matrix and found that only using QTL 

markers provides the most accurate estimate of additive genetic 

variance and heritability. Our analysis was performed using a mul-

tispecies Eucalyptus SNP chip (Silva-Junior et al. 2015), and ~10k 

markers were informative in this E. nitens population. The decay in 

LD was fast, as is common in forest tree species, and disappeared 

within ~3  kb (Figure  1). Therefore, capturing markers linked to 

QTLs is rather unlikely, and relatedness with co-segregation is 

probably the major source of capturing QTL effects. On the other 

hand, using an overwhelming amount of the genomic data does not 

increase the accuracy of prediction model after reaching saturation 

(Habier et al. 2013) and trait speci�c SNP prioritization should be 

applied (Lippert et  al. 2013). However, the genetic complexity of 

the investigated traits can prohibit the reliable selection of causal 

variants, and therefore, prediction models rely rather on related-

ness and co-segregation (Habier et  al. 2007, 2013). Our previous 

analysis (Suontama et al. 2018) found that the sample coming from 

Tinkers (seed orchard undergoing more intensive selection) had a 

higher GEBV accuracy compared with the sample coming from the 

Waiouru seed orchard (seed orchard established as a clonal arch-

ive having broader genetic diversity), which was reached thanks to 

slower LD decay, capturing longer effective chromosomal fragments. 

Due to the fact that sample from Waiouru seed orchard had twice 

the sample size and produced lower accuracy of GEBVs, we found 

that the model didn’t reach a saturation point where any additional 

markers wouldn’t increase accuracy of GEBVs. Therefore, there 

appeared to still be space for improvement of genomic resources in 

Eucalyptus species to create a robust genomic prediction model.

The recovered relatedness through genetic markers in the set of 

genotyped individuals was underestimated compared with expec-

tations (Figure  2). This can be caused by several cycles of selec-

tion and a lack of unrelated individuals to provide a reference for 

inferring actual relatedness among related individuals (Speed and 

Balding 2015), and had to be rescaled with respect to the ped-

igree-based counterpart before blending with the pedigree-based 

relationship matrix. The rescaling of the marker-based relation-

ship matrix with respect to the pedigree-based equivalent is the 

most crucial step in single-step genetic evaluation. The difference 

in the scale of relationship coef�cients between marker-based and 

pedigree-based counterparts causes a decrease in the accuracy of 

genomic breeding values (Ducrocq and Patry 2010; Forni et  al. 

2011; Vitezica et al. 2011). We tested 2 scenarios: 1) rescaling of 

the marker-based relationship matrix with regard to the docu-

mented pedigree and 2)  rescaling the marker-based relationship 

matrix with regard to the relationship matrix derived from sib-ship 

reconstruction. The implementation of information from sib-ship 

reconstruction in the G matrix rescaling process resulted in a con-

siderable improvement in model �t compared with the model that 

used the documented pedigree. This trend is especially observed in 

traits suffering from inbreeding depression, such as DBH (Hardner 

and Tibbits 1998). These improvements were achieved in spite of 

the fact that the sib-ship reconstruction could only recover higher 

classes of relatedness, such as full-sibs and half-sibs, but not �rst 

and second order cousins as found in the documented pedigree. 

This means that the greater degree of relatedness recovered by sib-

ship reconstruction has a more signi�cant impact on the improve-

ment of genetic parameter estimates through the G matrix rescaling 

process than ignored or undiscovered lower degrees of relatedness. 

Therefore, pedigree/sib-ship reconstruction is highly recommended 

prior to G matrix rescaling in the single-step genetic evaluation, 

especially in species with an OP breeding program, where selfs are 

viable. However, we could not utilize the full potential of related-

ness recovered by sib-ship reconstruction due to loss of connectiv-

ity with the remainder of the pedigree, as a simple blending of the 

sib-ship reconstruction-based relationship matrix (sib-ship–based 

A
22

) into the pedigree-based relationship matrix would cause 

the resulting matrix not to be positive de�nite. Therefore, newly 

obtained relatedness information should be used only in the rescal-

ing, but not in the weighting step. A more useful strategy would be 

to perform parentage analysis instead of sib-ship reconstruction 

when genomic information is also available for parental popula-

tions. In this case, consistency between original pedigree and the 

Figure 4. Density of EBV/GEBV values distribution for continuous traits DBH (left plot) and STR (right plot) under the various models tested in population of 

genotyped individuals. Horizontal lines represent peak of the breeding values distributions for each scenario.
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reconstructed part would remain and positive de�nite nature of 

resulting relationship matrix warranted.

In some cases, marker information is not suf�cient to capture all 

additive genetic variance, and residual polygenic effects have to be 

included in the prediction model (Aguilar et al. 2010; Christensen 

and Lund 2010). In addition, the implementation of a residual 

polygenic effect reduces the bias in SNP effects and increases their 

transferability over generations (Solberg et  al. 2009). Similarly, in 

the single-step genetic evaluation, the weighting of marker and pedi-

gree information is applied. We tested a broad range of weights 

from 0.05 to 0.5 for the pedigree information, but any increase 

resulted in a decrease in breeding value accuracies for genotyped 

individuals, while no effect was observed in nongenotyped individu-

als (Supplementary File 1).

Our previous analysis identi�ed ~4% sel�ng in the genotyped 

sample (Klápště et al. 2017) and, therefore, we modi�ed the pedi-

gree-based matrix for sel�ng probability as proposed by Dutkowski 

et al. (2001) before blending with the marker-based G matrix. The 

modi�ed sel�ng probability did not result in any additional improve-

ment in the accuracy of breeding values, with decreases observed 

once probability exceeded 3% (Supplementary File 1). These results 

con�rm our �nding of 4% sel�ng in previous sib-ship reconstruction 

analysis (Klápště et al. 2017), it is, therefore, bene�cial to implement 

sel�ng probability in any single-step genetic evaluation in species 

where there is strong evidence of viable sel�ng.

In this study, we have shown how the increase in connectivity 

between genotyped individuals through genomic similarity has a big 

impact on the resulting accuracy of breeding values compared with 

information from a sparse pedigree. In addition, implementation of 

genomic information in a quantitative genetic evaluation can dis-

sect genetic and environment effects more precisely (Gamal El-Dien 

et  al. 2016). Modi�cation of the relationship matrix for sel�ng 

before blending and/or rescaling was found to be important in our 

population and would be recommended for other OP tree breeding 

programs.
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