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Abstract—Computer speech recognition of individuals with
dysarthria, such as cerebral palsy patients, requires a robust
technique that can handle conditions of very high variability and
limited training data. In this study, a hidden Markov model
(HMM) was constructed and conditions investigated that would
provide improved performance for a dysarthric speech (isolated
word) recognition system intended to act as an assistive/control
tool. In particular, we investigated the effect of high-frequency
spectral components on the recognition rate of the system to
determine if they contributed useful additional information to
the system. A small-size vocabulary spoken by three cerebral
palsy subjects was chosen. Mel-frequency cepstral coefficients
extracted with the use of 15 ms frames served as training input
to an ergodic HMM setup. Subsequent results demonstrated that
no significant useful information was available to the system for
enhancing its ability to discriminate dysarthric speech above
5.5 kHz in the current set of dysarthric data. The level of vari-
ability in input dysarthric speech patterns limits the reliability of
the system. However, its application as a rehabilitation/control
tool to assist dysarthric motor-impaired individuals such as cere-
bral palsy subjects holds sufficient promise.

Key words: cerebral palsy, communication disorder, dysar-
thric speech, hidden Markov model, high-frequency spectral
components, human-machine interfaces, Mel-frequency ceps-
tral coefficients, rehabilitation, speech and motor disabilities,
speech recognition.

INTRODUCTION

Speech articulatory disability or dysarthria can arise
from a number of conditions, including cerebral palsy,
multiple sclerosis, Parkinson’s disease, and others [1]. In

this study, we investigated 3 subjects exhibiting dysar-
thria due to cerebral palsy, since this condition accounts
for a large number of dysarthric patients. But the results
of this work may be equally relevant to noncerebral palsy
individuals with dysarthria. Hence, to emphasize a gener-
ality, we shall use the term “dysarthric speech” to
describe speech that is difficult to understand as a result
of the speaker’s disability and that is characterized by
distortions, substitutions, and omissions. Dysarthric
errors result from a disruption of muscular control due to
lesions of either the central or peripheral nervous sys-
tems. Some people with dysarthric speech, like cerebral
palsied individuals, are also severely motor-impaired,
with limited or no control of their local environment [2].

Abbreviations: DXD = digit data for subject X, DXW = word
data for subject X, HMM = hidden Markov model, MFCC =
Mel-frequency cepstral coefficient, ND = digit data for normal
speech, NW = word data for normal speech, RR = recognition
rate.
This material was based on work supported in part by the
Whitaker Foundation (Rosslyn, Virginia) special opportu-
nity award in Rehabilitation Engineering and Human-
Computer Interfaces and by the School of Engineering at
Virginia Commonwealth University (Richmond, Virginia).
*Address all correspondence to Prasad D. Polur, Department of
Biomedical Engineering, Virginia Commonwealth University,
1112 E. Clay St., Room 220B, Richmond, VA 23298; 804-852-
4624; fax: 804-828-4454. Email: pbpolur@vcu.edu
DOI: 10.1682/JRRD.2004.06.0067
363



364

JRRD, Volume 42, Number 3, 2005
In general, cerebral palsied individuals lack articulatory
precision. Simple “steady-state” phonemes, such as vow-
els, are physically the easiest to produce since they do not
require dynamic movement of the articulatory structures.
However, phonetic transitions, i.e,. consonants, are most
difficult to produce since they require fine motor control
to precisely move the articulators. Severely impaired
speakers and mildly impaired speakers differ in degree of
disability rather than quality [2].

Application of speech-recognition technology to dys-
arthric speech would enable the people affected by such
speech to electronically enhance their intelligibility. It
can also benefit them in control applications. Such appli-
cations would be immensely useful to these individuals,
since they seem to prefer a natural mode of communica-
tion and control as represented by speech [3]. The prob-
lem of computer recognition of dysarthric speech
involves several challenges that are not encountered in
normal speech. The enormous variability and nonconform-
ity of such speech imposes high constraints on the recog-
nition system and, hence, methods to improve recogni-
tion either through signal modification or model
variation, among other means, is an ongoing process. 

Several investigations have identified the applicability
of speech-recognition technology to dysarthric speech.
Sy and Horowitz evaluated the degree of speech impair-
ment and the utility of computer recognition to such
speech using a statistical causal model [4]. They pre-
sented a case study of a dysarthric speaker compared
against a normal speaker serving as a control. They
reported that dysarthric speech is perceived as articula-
tory error patterns in comparison with normal speech.
Further, they identified that the sources of error in terms
of the manner of articulation primarily originate from
either stops or fricatives. They concluded that a recogni-
tion system could effectively serve as an augmentative
communication/control device when the system appro-
priately exploits the characteristic of dysarthric speech
patterns by using words that require less dynamic move-
ment of speech articulators for such speakers. Patel
investigated the application of such technology to
severely dysarthric speakers by examining prosodic
parameters like frequency and intensity contours [5].
This technology may provide additional channels of
communication since dysarthric speakers are unable to
use devices such as keyboards or mice because of
impaired motor control. Patel reported that commercial
speech-recognition technology was more applicable to,

or can be more reliably applied to, mild and moderate
dysarthric speakers than to severely dysarthric speakers.
Goodenough and Rosen performed a similar investiga-
tion and reported that speech-recognition performance
rapidly deteriorated for vocabulary sizes greater than
30 words, even for persons with mild to moderate dysar-
thria [6]. Jayaram and Abdelhamied also investigated the
commercial IntroVoice speech-recognition system and
reported that it had a low recognition rate (RR), while a
dedicated small vocabulary system developed and trained
on the same data produced better results [7]. Further, they
reported that large multisyllable words with higher con-
sonant content produced greater recognition error than
words with low number of syllables owing to inconsis-
tency in articulation.

In view of these previous investigations, the current
study used the speech of cerebral palsy patients who were
subjectively classified as moderately dysarthric by a
trained clinician. We restricted the vocabulary to fewer
than 30 utterances for the subjects’ convenience and also
to limit the amount of data to be analyzed. The words
were chosen such that they were recognizable by the sub-
jects and had only one normal pronunciation. The utter-
ances had a limited number of syllables with low
complexity to reduce articulation inconsistency. Another
important consideration was that words had a real-world
application for the dysarthric individuals, such as envi-
ronmental or mobility controls. In mobility control appli-
cations, such as a wheelchair and in appliance control
such as television, radio, or telephone, a menu structure
with simple command words as well as digits would be
highly practical. Some other simple words like “my,”
“is,” etc., were chosen for initial simplification of analy-
sis. The utterances chosen were a subset of the words
used in previous research.

The most popular and successful tool/model in speech
recognition applications is the hidden Markov model
(HMM). Several investigations have adapted HMMs
toward dysarthric speech recognition and identified meth-
ods to enhance recognition of such speech using signal
modifications, among other techniques. Deller et al. used a
vector quantized HMM approach to model isolated dysar-
thric speech, in which they reported that a full structured
HMM, along with clipping of transitional regions of
speech, improved recognition [8]. They reported that tran-
sitional regions of speech might be detrimental to the rec-
ognition process, indicating that dysarthric speech
characteristics might be treated differently than normal
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speech from a computer recognition point of view. Deller
et al. suggest that the use of Mel-cepstral coefficients and
inclusion of high-frequency spectra may hold promise for
improved recognition of such speech. Chen and Kostov
used a statistical approach and reported that the direction of
the formant transitions might provide important acoustic
cues/contrasts, which permit enhanced discrimination [9].
They also indicate that lower energy high-frequency com-
ponents might play a positive role in the recognition pro-
cess. Kain et al. investigated voice transformation systems
for dysarthria, with the goal of implementing intelligibility-
enhanced speech in a wearable device [10]. They estimated
the formants and energies of a dysarthric speech set and
modified the trajectories to more closely approximate
desired targets. Kain et al. performed this initial investiga-
tion to enhance speech intelligibility through signal modifi-
cation, where they reported that removal of vocal fry
improved perceived quality. They identified that such
speech exhibited both distortions and very high levels of
variability, thereby showing significant spectral deviation
from normal speech. 

One could infer that in addition to the low-band, the
high-band components above 4 kHz might also play a role
in enhancing resynthesis accuracy and in recognizing this
type of speech. Moreover, we investigated the spectrum of
the current data using Sound Forge 6.0 professional audio
software (Sony Media Software, Madison, WI), revealing
that although most of the high-energy components were
present in the frequency band below 5.5 kHz, significant
frequency components of lower energy for most utterances
were still present above this band. These ranged from
6.5 kHz for some utterances to 14 kHz for a few others and
were not regularly encountered to the same extent in the
normal speech set/calibration set.

Most commercial systems, e.g., Dragon Naturally
Speaking, band limit the signal to approximately 5 kHz
for normal speech applications. This ensures reduced
processing power and faster response. Since some dysar-
thric speech characteristics were different from normal
speech from a computer recognition point of view, we
felt that an investigation into the utility of these higher
frequency components for the current data was necessary.
Even though a subset of the vocabulary and not all the
words were expected to have potentially useful high-fre-
quency information, such investigation using the current
limited data set might provide sufficient direction at this
preliminary stage. We adopted a Mel-cepstral HMM
approach for this investigation, since it could provide

good statistical representation for this data type. This
study is thus part of an early effort to develop an artifi-
cially intelligent communication/control tool for speech-
and motor-impaired individuals.

METHODS

Data Acquisition and Signal Processing
Three male cerebral palsy patients were chosen whom

a trained clinician subjectively classified as moderately
dysarthric. Their speech was recorded in multiple sessions
after obtaining informed consent from each. The subjects
were asked to read aloud a set of 10 digits and a set of 15
words in a normal manner. Each utterance was repeated
12 times in a low-noise environment to reduce acoustic
interference. The recording was performed at a sampling
rate of 44.1 kHz with an Audio-Technica (Stow, OH)
AT3525 cardioid condenser microphone that was con-
nected to the TASCAM (Montebello, CA) DA-P1 digital
tape recorder. The microphone had a flat frequency
response ranging from 30 Hz to 20 kHz. The recorded
speech was loaded into the computer through an M-Audio
(Irwindale, CA) 24-bit DIO 2448 input/output card. The
data were segregated and individually stored as .wav files
with the use of Sound Forge 6.0. 

To study the effect of high-frequency components on
recognition, we investigated the signal at two levels. One
set had a sampling rate of 44.1 kHz band-limited to
15 kHz, referred to henceforth as “set H.” Another set had
a down-sampled rate of 11.025 kHz band-limited to
5.5 kHz, referred to henceforth as “set L.” The MATLAB-
generated (The MathWorks, Natick, MA) spectrogram of
the speech samples is shown in Figure 1 for illustration of
spectral content. Of these sample files, only the first eight
repetitions per utterance were used in the training/testing
phase, because we noticed that the last few repetitions
introduced excess variability caused by physical fatigue
and frustration of the dysarthric individual. Hence, we
deemed these inappropriate for use. Four randomly chosen
repetitions of each digit or word were used as training data
and the remaining four for testing/recognition. The test
data were designated digit data for dysarthric subject X
(DXD) and word data for dysarthric subject X (DXW).
Thus, set H had DXD and DXW with higher frequency
components, and set L had DXD and DXW with fre-
quency components limited to 5.5 kHz. A vocabulary of
15 words and 10 digits, with 8 repetitions each, was
thereby created for each subject. The set of utterances are
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listed in Table 1. Additionally, we created a similar test set
using normal speech, i.e., digit data for normal speech
(ND) and word data for normal speech (NW) as a refer-
ence to verify the proper functionality of the recognition
system.

Feature Extraction
The recognition system was implemented in MAT-

LAB. The speech signal was divided into short 15 ms
frames segments with the use of a Hamming window for
further analysis. We experimentally determined in our

previous pilot study that 15 ms frames generated better
recognition than 10 ms frames for the available dysarthric
data. In general, dysarthric speakers have a slow rate of
articulation. Therefore, a larger frame size might provide
more nontransitional information to the statistical model
that enhances its ability to learn the characteristics of the
signal. However, we noted that no further significant
improvement was obtained for frame sizes larger than 15 ms,
and hence, we retained the frame size as such. The average
RR versus frame size is illustrated in Figure 2(a) for set L.
Further, we identified from the pilot study that a 10-state
ergodic HMM exhibited a high level of robustness in its
ability to handle the large amount of variability present in
dysarthric speech. An illustration of the effect of number
of states on average RR for DXW data of the Mel-cepstral
model is shown in Figure 2(b) for set L.

Mel frequencies are based on the known variation of
the human ear’s critical bandwidths with frequency fil-
ters spaced linearly at frequencies below 1 kHz and loga-
rithmically at higher frequencies. These scales have been
used to capture the phonetically important characteristics
of speech. Feature extraction involves the use of a filter
bank with center frequencies and bandwidths determined
by the Mel-frequency scale just described. The steps
involved in Mel-frequency cepstral coefficient (MFCC)
extraction are illustrated in Figure 3.

The MFCCs are calculated with

Figure 1.
Spectrogram of word “ten”’ from word data for subject 1 (D1W):
(a) from set H and (b) from set L. Significant spectral components
(lower energy) above 5.5 kHz can be seen.

Table 1.
List of utterances used in experiments.

Utterance Digits Words
1 One Back
2 Two Front
3 Three Go
4 Four Good
5 Five Is
6 Six Left
7 Seven My
8 Eight Name
9 Nine No

10 Ten Ok
11 — Right
12 — Start
13 — Stop
14 — Very
15 — Yes

Ci Xk πi k 0.5 ) ]/N}  for i 1, 2....P (1),=,–([{cos
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where Ci is the cepstral coefficients, P is the order, k is
the number of discrete Fourier transform magnitude coef-
ficients, Xk is the kth order log-energy output from the fil-
ter bank, and N is the number of filters (usually 20).
Thus, 14 coefficients and an energy feature were extracted,
generating a vector of 15 coefficients per frame. Addi-
tional information on cepstral coefficients can be obtained
from Noyes and Frankish [3] and Mak et al. [11].

Acoustic Model (HMM)
The feature vectors serve as input to an acoustic

model, namely, the HMM. A simplified description of an
HMM follows. Detailed descriptions of HMMs are avail-
able from several sources [8,12–13]. Markov models are
mathematical models of stochastic processes, i.e., pro-
cesses that generate random sequences of outcomes
according to certain probabilities. A simple example of a
stochastic process is a sequence of coin tosses, the out-
comes being heads or tails. We can construct Markov
models as a simple case using state diagrams, such as the
one shown in Figure 4.

In Figure 4, S1 and S2 represent the possible states
of the process we are trying to model, i.e., coin tossing,
and the arrows represent transitions between states. The
label on each arrow represents the probability of that
transition. At each step of the process, the model generates
an output, or emission, depending on which state it is in.

Figure 2. 
(a) Average recognition rate (RR) vs. frame size with Mel-cepstral
model for digit data for subject X (DXD) (circular points) and word
data for subject X (DXW) (triangular points) for set L, where one can
see that 15 ms frame model generates higher RR. (b) Effect of
number of states on average RR of model for set L DXW, where one
can see that 10-state model produces higher RR.

Figure 3.
Steps involved in Mel-frequency cepstral coefficients (MFCCs)
extraction.
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In this example of a sequence of coin tosses, the two
states are heads (S1) and tails (S2). The most recent coin
toss determines the current state of the model and each
subsequent toss determines the transition to the next
state. If the coin is fair, the transition probabilities are all
0.5. Thus there is a correspondence between the observa-
tions, i.e., heads or tails, O = H T H H …, and the states,
i.e., S1 or S2, S = 1 2 1 1…. In this example, the emission
at any moment in time is simply the current state. How-
ever, in more complicated models, the states themselves
can contain random processes that affect their emissions.

An HMM is a model in which we observe a sequence
of emissions, but we do not know the sequence of states
the model went through to generate the emissions. In this
case, the goal is to recover the state information from the
observed data. An HMM is characterized by the follow-
ing elements:

• S, the number of states in the model. The previous
coin-toss example contained two states, namely, S1
(heads) and S2 (tails). In speech application, the number
of states usually approximates the number of phonemes
or subphonemes in the word. Thus, for an utterance such
as “yes,” which may be viewed to contain three pho-
nemes, we can construct a three-state HMM model. Gen-
erally, the states are interconnected in such a way that any
state may be reached from any other state, i.e., an ergodic
model, or some restrictions may be imposed on how tran-
sitions can take place from one state to another.

• O, the number of distinct observation symbols per
state, i.e., the discrete alphabet size. The observation sym-
bols correspond to the physical output of the model. In the
coin toss example, the observation symbols were simply
heads or tails. In the case of speech, the observation sym-
bols are the 15 vectors per frame, since they are the para-
metric representation of the phonemes in the word model.

• T, the state transition probability distribution. This
governs the probability of transitioning from one state to
another in the model.

• B, the emission probability. This governs the likeli-
hood of emitting each possible sound (phoneme) while in
a particular state. For example, in a three-state HMM
with states S1, S2, and S3 modeling the word “yes,” the
emission probability for the phoneme /s/ would be much
higher in state 3 (S3) than in the other two states. This is
because it is the terminal state that corresponds to the ter-
minal phoneme in the word. In other words, a much
higher probability exists that the final state is responsible
for emitting the phoneme /s/.

• P0, the initial state distribution/probability. This
determines the initial probability for each state in the
model.

Thus, an HMM can be appropriately defined by speci-
fying S, O, T, B, and P0. Usually, we may specify the num-
ber of states (S) and the observation vector (O) for the
HMM. However computing the model’s other parameters is
difficult, since the states are not directly observable and tran-
sitions are probabilistic. One method used to tackle this is
the Baum Welch algorithm [12–13], which trains the HMM.
This algorithm finds the HMM parameters T, B, and P0,
with the maximum likelihood of generating the given sym-
bol sequence. To appropriately use the HMM for a speech-
recognition application, one must only decode this informa-
tion in the HMM. Although the states cannot be directly
observed, the most likely sequence of states for a given
sequence of observed outputs could be computed with the
Viterbi algorithm [12–14]. The Viterbi algorithm calculates
the likelihood for each HMM in the word model. In the iso-
lated word case, where each unique word is associated with
a unique HMM, the index of the HMM that produced the
highest likelihood corresponds to the recognized word.

Thus, we set up a 10-state ergodic model with a slight
left-to-right character, wherein the initial state is fixed. An
illustration of one such trained HMM used in the recogni-
tion system is shown in Figure 5. The HMM system com-
prised 25 trained individual HMMs, one for each word/
digit in the vocabulary. The index of the HMM that pro-
duced the highest likelihood corresponded to the recog-
nized word. The performance of the models was
determined by the RR, which is defined as the ratio of the
correctly recognized utterances to the total number of
utterances used in testing the system. To verify the func-
tionality of the system, we used a set of normal speech
data, i.e., ND and NW, to first train the HMM setup. The

Figure 4.
Markov model in coin-toss experiment. P = probability.
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RR of the system to normal test data of both the high and
lower sampled rates was verified to be 100 percent.

RESULTS

The MFCC feature vectors of the dysarthric speech
served as input (training/testing set) to the established
system. The results of this investigation are summarized
in Tables 2 and 3. Table 2 provides the mean values of
the RR for sets L and H. Table 3 provides a comparison
of the difference between the means of the two condi-
tions (digit data and word data) with the use of a paired
sample t-test. From these two tables, one can see that the
Mel-cepstral HMM model provided a slightly higher
mean RR when using set L than when using set H. The
two conditions have a sufficiently high correlation. Addi-
tionally, the paired t-test results indicate that the marginal
difference in the means of the two conditions is statisti-
cally significant.

DISCUSSION

From the results of our investigation, one can assume
that no significant useful information/cues are available to

the system above 5.5 kHz in the data set that would
enhance its ability to discriminate dysarthric speech. In
some cases, set H proved slightly detrimental to the recog-
nition task. This difference may be due to higher variabil-
ity in both lower and higher frequency components in
some utterances, e.g., “seven,” “start,” “front,” etc., which
may be due to the inability of the subjects to articulate
those terms consistently. The Mel-cepstral HMM model
depends on some level of consistency in the data during
its training phase to learn the underlying characteristics of
the word being modeled. This permits appropriate recog-
nition results during the testing phase. Even though vari-
ability exists in the lower frequency region, the presence
of variability in the high-frequency region might have an
additive detrimental effect on the recognition process. In
this respect, the set L model might be better able to cope
with the data by eliminating some of this high-frequency

Figure 5.
Ten-state ergodic model for word “yes” obtained from set L.
Transition probabilities from one state to another in trained model are
depicted.

Table 2.
Mean values of the recognition rate (RR) for sets L and H.

Dysarthric Data Set L (11 kHz)
(%)

Set H (44 kHz)
 (%)

D1D 92.50 87.50
D2D 97.50 95.00
D3D 95.00 95.00

Average DXD RR 95.00 92.50

D1W 86.70 83.30
D2W 91.70 92.00
D3W 90.00 90.00

Average DXW RR 89.47 88.33

Overall RR
 (for 25 utterances)

91.67 90.00

DXD = digit data for dysarthric subject X
DXW = word data for dysarthric subject X

Table 3.
Statistical analysis—paired sample t-test for sets L and H (N = 25).

 Set Mean ± SD SEM Correlation 
(L & H Pair)

L 91.67 ± 5.89 1.18 0.9
H 90.00 ± 6.80 1.36

95% CI
of Difference

L and H Paired
Differences

1.67 ± 2.95 0.59 0.45
(lower)

2.88
(upper)

Note: Significance paired = <0.01 and significance 2-tailed = <0.01
SD = standard deviation
SEM = standard error of mean

CI = confidence interval
df = degrees of freedom
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variability. Our study had limitations in the vocabulary
size, nature of disability, and amount of data used. Hence,
we may cautiously interpret our results to indicate that in
a subset of dysarthria, the high-frequency components
may not be contributing any new information to a Mel-
cepstral HMM recognizer. Thus, a lower sampling rate
maybe adequate for this subset. This has significant posi-
tive cost-benefit implications in a control application.

Additionally, we noted that the mean recognition of
digit data was marginally higher than the mean for word
data for both sets H and L. This conforms to previous
research by Deller et al., who showed that mean word rec-
ognition was somewhat lower than mean digit recognition,
due to phonemes that require extreme articulatory posi-
tions [8]. These are found more often in words owing to
the greater number of phoneme combinations possible. In
our study, even though words like “yes,” “my,” “no,”
“go,” etc., are less complex or have similar complexity to
the digit set, the presence of other words of greater com-
plexity reduces the overall RR compared to the digit set.
Moreover, we had a greater number of words (15) than
digits (10), which also has an effect on mean RR.

CONCLUSION

This study investigated the usefulness of high-frequency
spectral components toward recognition of dysarthric
speech. Here, we used a Mel-cepstral-based HMM to
develop a small vocabulary recognition system intended
for a practical control application. We noted that no signi-
ficant useful discriminant information was available to the
system above 5.5 kHz in the data set. The result of this
preliminary study provides clues to the direction that may
be taken when dealing with such dysarthric speech. Here,
the current set of data represents only a subset of dysar-
thria. Hence, investigation using similar techniques in
data sets including data of severely dysarthric subjects
with utterances having more vowel and consonants com-
binations might provide greater definition and validity.
Data from three cerebral palsy individuals were used to
test the model. However, the results may also be equally
applicable to dysarthric individuals other than those with
cerebral palsy, such as individuals with neurogenic com-
munication disorders. Further development of this study
could include investigation into a neural network/HMM
hybrid structure. Such structures have been reported to
provide equivalent or better performance than pure HMM

structures in normal speech. They may also be more con-
ducive to hardware implementation for control applica-
tions. The equivalent performance obtained at lower-band
limiting/sampling rate for the current dysarthric speech
set has a favorable cost-benefit implication, particularly in
such a structure. This study is thus part of an effort to
develop an artificially intelligent communication/control
tool, either in stand-alone mode or in conjunction with
other methods such as eye-tracking, etc., for speech- and
motor-impaired individuals.
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