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Abstract Digital material characterisation from microstructural geometry is
an emerging field in computer simulation. For permeability characterisation,
a variety of studies exist where the lattice Boltzmann method has been used
in conjunction with CT imaging to simulate fluid flow through microscopic
rock pores. Whilst these previous works show that the technique is applicable,
the use of binary image segmentation and the bounceback boundary condition
results in a loss of grain surface definition when the modelled geometry is
compared to the original CT image.

We apply the immersed moving boundary condition of Noble & Torczyn-
ski as a partial bounceback boundary condition which may be used to better
represent the geometric definition provided by a CT image. The immersed
moving boundary condition is validated against published work on idealised
porous geometries in both 2D and 3D. Following this, greyscale image seg-
mentation is applied to a CT image of Diemelstadt sandstone. By varying
the mapping of CT voxel densities to lattice sites, it is shown that binary
image segmentation may underestimate the true permeability of the sample.
A CUDA-C based code, LBM-C, was developed specifically for this work and
leverages GPU hardware in order to carry out computations.
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1 Introduction

Computational material characterisation represents a useful tool in a number
of industries. From a single digital sample multiple tests may be carried out.
Though the generation of such a digital sample may be destructive, the indi-
vidual tests are not. This work is concerned with computational permeability
analysis of rock material, where the proposed methodology involves the use
of the lattice Boltzmann method to simulate the flow of fluid through the
microstructural geometry of rock material.

Various authors have used the lattice Boltzmann method (LBM) to deter-
mine, computationally, the permeability of rock material [1–4]. In these works
computed tomography (CT) imaging is used to gain an approximate represen-
tation of the micro-structure of a rock sample. Though the produced image
is greyscale, these authors apply binary image segmentation to the images to
separate them into regions representing solid and void space. This approach is
attractive as it enables the use of the simple bounceback boundary condition
to represent the porous geometry.

Solid

Void

Fig. 1: CT Image Slice

A major drawback of binary image segmentation is that the definition of
the solid/void interface provided by a CT image is lost in the process. CT
images are not binary in nature, and are instead a grey-scale representation of
the rock geometry. This is demonstrated in figure 1, where the bitmap shown
is a slice of a typical CT image of Diemelstadt sandstone. Regions shown in
red correspond to high density voxels, where blue regions correspond to low
density voxels. Where the rock grains intersect a voxel, we observe a density
intermediate to that of the void and solid regions.

In an attempt to better represent the geometric definition provided by CT
imaging, Ahrenholz et al. [2] applied the marching cubes algorithm to define
a boundary surface mesh of the porous geometry from the CT image data.
They then applied an interpolated no slip boundary condition developed by
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Ginzburg & d’Humières [5]. Both determining the surface mesh, and voxelisa-
tion of this mesh, are computationally expensive operations. Additionally, the
resultant mesh is a smoothed representation of the solid surface boundary.

Once a CT image has been segmented, computational limitations may re-
quire the image to be scaled so that the resulting flow model is computationally
feasible. This is especially true on limited memory architectures such as GPU’s,
where it may not be possible to fit a high resolution representative elementary
volume on to a single graphics card. Using standard image scaling techniques,
reducing the resolution of a CT image is straightforward. However, application
of binary image segmentation to a scaled image will result in a further loss
of geometric definition, causing significant changes in image porosity. If the
greyscale definition of the image is preserved, the porosity of the image should
at least remain constant through scaling. It is not clear however if consistent
permeability results may be gained as the image is coarsened

In this work, we have used the Immersed Moving Boundary Condition
(IMB) developed by Noble & Torczynski [6] to represent those voxels which
appear to be intersected by the rock grains. We begin with an initial valida-
tion of the IMB for permeability assessment of idealised porous geometries.
Following this, we carry out permeability assessment on a Diemelstadt sand-
stone sample. By varying the mapping of CT image data to model geometry,
we demonstrate that the choice of image segmentation approach and scaling
factor have a significant impact on the overall approximation of sample perme-
ability. Following this, we look at the way in which permeability may vary due
to flow regime in the porous sample. In order to expedite these computations, a
CUDA-C based code, LBM-C, was developed to exploit the advantages offered
by GPU hardware.

2 Methodology

In this work we use the lattice Boltzmann method to simulate the flow of fluid
through porous geometries. In the section that follows, the lattice Boltzmann
method and relevant boundary conditions is described. The use of the partial
bounceback boundary condition is supported through validation with idealised
porous geometries. Finally, the preprocessing and segmentation of a CT image
for permeability analysis is discussed.

2.1 The Lattice Boltzmann Method

A review by Aidun & Clausen demonstrates that the LBM has found applica-
tions in a variety of fields including, multiphase flow, particle suspensions, and
microfluidic devices [7]. This flexibility has led to the methods popularity in
modelling flow through porous media, where it has been applied by a number
of authors [1,2,8,9].

The LBM is derived from the Boltzmann equation [10], which describes
the statistical likelihood that a particle exists with some momentum at any
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given point in space and time. These origins set the LBM apart from con-
temporary Finite Difference, Finite Volume, and Finite Element techniques
which derive instead from the Navier-Stokes [11] set of equations. Despite the
differing origins of the two approaches, it is possible to derive the full set of
Navier-Stokes equations by applying the Chapman-Enskog expansion to the
lattice Boltzmann equation [12]. We provide here a brief description of the
method, a comprehensive review of the associated theory is provided by Chen
& Doolen [13].

The LBM began as an extension to the family of methods known as the
Lattice Gas Automata [14]. The LGA received much attention during the 80’s,
especially for flows through complex geometries. An example of this is given
by Rothman, who applied the LGA to flow through porous media [15].

The LGA typically operates on hexagonal lattice, due to the lack of ro-
tational invariance in square lattice. The existence of particles at a lattice
site, travelling in the direction parallel to a lattice link, was indicated with a
boolean variable. As particles arrive at a lattice site, a simple collision process
is carried out. Where the results produced from this algorithm demonstrate
it’s ability to simulate the flow of fluids.

In an attempt to reduce the statistical noise present in LGA simulations,
McNamara & Zanetti replaced the boolean particle populations in the LGA
with real valued particle distribution functions [16]. Further efforts in method
development focused on moving away from schemes developed for the LGA.
Higuera & Jiménez introduced the notion of a relaxation toward an equilib-
rium state for particle collision [17]. Finally, in 1992, by using the simplified
Bhatnagar-Gross-Krook (BGK) collision operator [18] both Qian et. al [19]
and Chen et. al [20] independently developed the scheme which is now com-
monly referred to as the BGK lattice Boltzmann method.

In comparison to classical continuum techniques, the LBM has two primary
difference.

First, the LBM operates on a regular grid of computational cells. Using a
regular grid avoids the complexities of generating body fitted meshes typically
used with continuum methods. The use of a regular grid also simplifies the
implementation of the method since the grid can be represented by a multidi-
mensional array.

The second difference lies in the simple, local, nature of the lattice Boltz-
mann equation. Solution calculation consists of a series of simple arithmetic
operations involving no differential terms. The result of this is that an LBM
code is relatively short when compared to a typical continuum based code.
The LBM algorithm is also particularly well suited to parallel execution.

The standard BGK lattice Boltzmann equation is given by

fi(x + ei∆t, t + ∆t) − fi(x, t) =
1

τ
(feq

i (ρ,u) − fi(x, t)) (1)

in which the terms fi and feq
i are particle and equilibrium distribution func-

tions respectively; τ is the non-dimensional relaxation time; x is the nodal
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position; ei are lattice vectors; ρ is macroscopic density; u is macroscopic ve-
locity; t is time, and ∆t is the time step. Further discussion on the lattice
Boltzmann equation and associated variables is given by Feng et. al [21].

The lattice Boltzmann equation assumes that for an ensemble average of
particles at a point in space, there exists some equilibrium state. While the
equation encapsulates two processes, streaming and collision.

During the streaming step particle distribution functions propagate to ad-
jacent lattice sites. During the collision step the set of particle distribution
functions arriving at a lattice site are relaxed toward some equilibrium state.
The strength of this relaxation process is defined by the relaxation time.

In the same year as the introduction of the BGK lattice Boltzmann method,
d’Humières proposed the generalized lattice Boltzmann method [22]. Also
known as the Multiple Relaxation Time (MRT) method, this technique re-
quires that particle collision occurs in moment space where a set of relax-
ation times exist corresponding to each moment. This is as opposed to the
single relaxation time used in equation (1). The primary advantage of the
MRT method stems from these additional relaxation times. Hydrodynamic
and non-hydrodynamic relaxation times may be set independently, and the
non-hydrodynamics terms may be set to improve stability without affecting
the hydrodynamic solution.

Pan et. al carried out a comparison of collision operators used in perme-
ability approximation [23]. They applied both the MRT and BGK methods,
in conjunction with a number of no-slip boundary conditions. Of most signif-
icance is their observation that permeability non-physically varies with fluid
viscosity if the MRT method is not used. This phenomena is further confirmed
by d’Humières & Ginzburg, who provide guidance on appropriate selection of
relaxation rates [24].

In this work the BGK lattice Boltzmann method is used. This choice is
appropriate only because all tests are carried out with a constant viscosity,
corresponding to a constant relaxation time of τ = 1.0. The findings we present
would be equally applicable to an MRT method used in combination with the
partial bounceback boundary condition described in this section.

Bounceback

Solid surface boundaries may be accounted for by using the bounceback bound-
ary condition. Descriptively named, the bounceback boundary condition dic-
tates that a particle distribution function which is inbound to some solid sur-
face has its direction reversed. This process occurs instead of the collision step
for lattice sites which are on the solid surface interface. For these lattice sites
the lattice Boltzmann equation is adjusted so that

fi(x + ei∆t, t + ∆t) = fi(x, t) (2)

where i is the index of the lattice vector which is oriented in the opposite
direction to the vector of index i.
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(a) (b)

Fig. 2: Alternative representations of a circle mapped to a grid, (a) Staircase,
(b) Greyscale with solid fractions

As the computational grid is generally regular in an LBM model, arbitrarily
shaped and oriented boundaries are represented by a staircase approximation.
Figure 2a is an example of the actual geometry modelled when a circular
object is required on a coarse grid. Due to this, the LBM experiences an order
of magnitude loss in accuracy when dealing with curved or otherwise arbitrary
bounceback boundaries [25].

Partial Bounceback

Noble and Torczynski’s immersed moving boundary for partially saturated
computational cells was developed to overcome the staircase nature of curved
boundaries in the LBM. Named partial bounceback herein, this boundary con-
dition requires a modification to the lattice Boltzmann equation such that

fi(x + ei∆t, t + ∆t)− fi(x, t) = [1 − B(τ, ϵs(x))]ΩBGK
i + B(τ, ϵs(x))ΩS

i (3)

where the solid weighting function B(τ, ϵs(x)), varies from 0 − 1 and defines
the strength of the boundary condition. ϵs(x) is a scalar field of solid fractions,
which are the proportion of which each lattice site is intersected by the solid
boundary. The relaxation time normalised form for the solid weighting func-
tion [6] is used in this work since it was shown to exhibit second order grid
convergence when compared with alternatives [26].

ΩBGK
i is simply the BGK collision operator, given by the right hand side of

equation (1). ΩS
i is the solid collision operator, accounting for the interaction

between the fluid and the solid boundary.

ΩS
i = fi(x, t) − fi(x, t) + feq

i (ρ,us) − feq

i
(ρ,us) (4)

The form of this equation was proposed by Holdych [27] and validated by
Strack Cook [28]. For a static porous medium the boundary velocity is zero,
i.e. feq

i (ρ,us) = feq

i
(ρ,us). Therefore equation (3) reduces to
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fi(x + ei∆t, t + ∆t) − fi(x, t) = [1 − B(τ, ϵs(x))]
1

τ
(feq

i (ρ,u) − fi(x, t))

+ B(τ, ϵs(x)) (fi(x, t) − fi(x, t))
(5)

The use of this form is convenient because it results in an interpolation
between the bounceback boundary condition and the regular lattice Boltzmann
collision operator. When ϵs(x) = 0 the equation reduces to equation (1), and
when ϵs(x) = 1 the equation reduces to equation (2).

Partial bounceback enables a more accurate definition of a boundary sur-
face when compared with the bounceback boundary condition. Comparison of
figures 2a and 2b demonstrates this visually.

2.2 Computational Implementation

The results presented in this paper were generated using the open source lattice
Boltzmann code LBM-C1. Implemented in CUDA C, LBM-C was developed
specifically for this work and leverages graphics hardware in order to carry out
computations. Whilst this choice is advantageous in terms of computational
time per simulation, it presents a significant limitation in memory available
for storage of simulation variables. We discuss herein only the approach which
was taken to accommodate larger models on GPU hardware. For performance
comparisons between GPU and CPU hardware, see the works of Ye et. al [29]
and Bailey et. al [30].

On traditional computing platforms, where the CPU is used to carry out
computations, the solver uses system memory to store simulation variables.
The theoretical maximum amount of host memory is constantly increasing,
where on modern hardware it is possible to install in excess of 768GB of
RAM. When using graphics chips for computation, use of system memory is
not optimal due to constraints of latency and bandwidth between the graphics
device and host system memory. Code running on a graphics device is there-
fore limited to use of device memory, where the current maximum amount
of memory per graphics chip is 12GB on nVidia’s current generation Kepler
architecture.

The maximum model size achievable given a limitation on memory is de-
termined by the number of particle distribution functions and macroscopic
variables which must be stored. However, due to the streaming part of the
LBM algorithm, a race condition can occur when particle distribution func-
tions are propagated to neighbouring cells. This happens when the algorithm
is written so that the information must be moved in memory. In this case
the data may be written to a location in memory corresponding to a lattice
site where the distribution functions from the previous timestep have not yet
been read. A simple approach to avoiding this requires duplication of particle

1 http://github.com/brucedjones/lbm-c
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distribution function storage, so that data is read and written to alternating
data structures on alternating time steps.

t = 1 t = 2

t = 3 t = 4

Fig. 3: The Lagrangian location (blue) of a distribution function given it’s
Eulerian location (grey) in a 1D lattice as simulation time, t, advances.

A number of alternative data layout and streaming implementations exist
to minimise or eliminate the need for duplication of data in the LBM. In this
work, we use a technique called Lagrangian streaming [31]. As an LBM simu-
lation proceeds, individual distribution functions stream in a single direction
with a fixed step size. Viewed with an Eulerian reference frame, a distribution
functions coordinates are constantly changing. However, if we view a distri-
bution function with a Lagrangian reference frame, we can assign it a single
location in memory. We then simply need a function to map a distribution
functions Eulerian coordinates to Lagrangian coordinates, the relationship be-
tween which is illustrated in figure 3. For a cubic domain this is given by

xl = (xe − teix)%Lx

yl = (ye − teiy)%Ly

zl = (ze − teiz)%Lz

(6)

where subscripts l and e denote coordinates in the Lagrangian and Eulerian
frame respectively. L is the length of the domain, and % denotes the modulo
operator.

2.3 Validation with Ideal Geometries

Two ideal porous geometries have been investigated to assess the performance
of the partial bounceback boundary condition. These are periodic arrays of
cylinders in 2D and spheres in 3D, arranged in a body-centered cubic configu-
ration. Shown in figure 4, these geometries are deemed ideal as their definition
is exact, and their permeability is well studied.
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Fig. 4: Validation geometry, (a,b) 2D case with cylinders, (c,d) 3D case with
spheres

The lattice Boltzmann method has been validated for permeability ap-
proximation of such geometries by a number of authors. In 2001 Hill et. al

presented a study of arrays of packed spheres [32,33]. Using Ladds half-way
bounceback boundary condition [34] they compared simulation results to var-
ious expressions for permeability, including those of Ergun and Carman which
are to be discussed subsequently. The investigation of Hill et. al found that
their LBM simulations offered a greater insight into the mechanisms governing
permeability in such geometries. Further validation using this methodology in
the Stokes flow regime was carried out by Van der Hoef et. al, who found their
results to be within 3% of those already reported in the literature [35].

Based on these previous works, the lattice Boltzmann method with alter-
nate boundary conditions is well validated for flow through sphere arrays. For
the immersed boundary condition used in this work, validation was carried out
in the Stokes flow regime by Leonardi et. al [36] where the model is reported to
be accurate when compared with the results of Zick & Homsy [37]. In this sec-
tion we extend this validation to include flows at moderate Reynold’s number.
We begin first with a discussion of semi-empirical expressions used to predict
the permeability of both cylinder and sphere arrays.

The problem of flow through pack columns has been extensively explored
in published literature for at least 100 years. The first popular study of such
flows was carried out by Kozeny [38], who’s work was subsequently extended
upon by Carman [39]. The result of these studies was the well known Carman-
Kozeny equation, which describes the Darcy permeability of a porous media
under the Stokes flow regime. Later, Ergun the Darcy-Forcheimer permeability
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of sphere packed beds by experimentation with a number of materials, arriving
at Ergun’s equation [40].

d2

k
+ FRed = C1

(1 − ϕ)2

ϕ3
+ C2

(1 − ϕ)

ϕ3
Red (7)

where the expression has been normalised by sphere diameter. 150 and 1.75
have been used as values of C1 and C2 respectively [41].

By extending the Ergun’s equation, Liu et. al developed a new semi-
empirical expression for Darcy-Forcheimer permeability [42]. The motivation
for this new expression was to unify the work of Ergun and Carman-Kozeny.
The result, is an expression which scales with ϕ−11/3(1 − ϕ)2 as opposed to
ϕ−3(1 − ϕ)2 as in the orginal Carman-Kozeny expression. Later, Jeong et. al

applied the lattice Boltzmann method to simulate the flow of fluid through
a representative unit cell of packed spheres [43]. In their work, Jeong et. al

noted that agreement with Ergun’s expression was limited to the case where
porosity is low and the spheres are either contacting, or almost contacting.
Since the sphere packing’s in Ergun’s experiments had consolidated under the
action of gravity, this make sense. As a result, Jeong et. al propose the follow-
ing expression, representing a curve fit to their data which follows the form of
the equation of Liu et. al.

d2

k
+ FRed = (162.4 + 3.0Red)

[

ϕ11/3

(1 − phi)
2

]

−0.709

(8)

Jeong et. al calibrated this expression using lattice Boltzmann models with
a resolution of 60×60×60 lattice sites. To represent the solid boundaries they
used the half-way bounceback condition [34], as opposed to an interpolated
bounceback as is used in this work.

Whilst these equations are a good approximation for permeability of sphere
packed columns, they are not directly applicable to the periodic cylinder ar-
rays shown in figure 4. To investigate such a configuration Lee & Yang [41]
constructed a numerical unit cell model of a periodic geometry consisting of
cylinders of diameter, d. To approximate permeability they solved, implicitly,
the equations of momentum and continuity. Their tests were carried out for a
range of grain Reynolds numbers (0 < Red < 50). Results were summarised
by a curve fit which corresponds to their data within an average difference of
5%.

kF =
d2ϕ3(ϕ − 0.2146)

31(1 − ϕ)1.3

F =
(1 − ϕ)1.4

ϕ3(ϕ − 0.2146)

3
∑

n=1

3
∑

m=1

amnϕm−1Ren−1

d

[amn] =





4.825 −0.1660 0.00177
−17.754 0.5893 −0.006160
15.911 −0.4736 0.004836





(9)
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where Lee & Yang used the form of Ergun’s expression as a basis for their own
approximation.

The lattice Boltzmann models which have been constructed are based upon
the methodology used by Lee & Yang. For both the 2D and 3D cases, a unit cell
geometry was used and these are shown in figure 4. Flow through these geome-
tries is modelled, and the results are used to approximate permeability within a
range of Reynold’s numbers (0 < Red < 50) and porosities (0.43 ≤ ϕ ≤ 0.93).

Periodic cylinders

Variation of permeability with Reynold’s number for a packed column of cylin-
ders is shown in figure 5. These models were run at a resolution of 250 × 250
lattice sites, with a constant relaxation time of τ = 1.0. Solution proceeded
until models achieved a steady state, when the change in total system energy
between timesteps is sufficiently small. The average difference in permeability
computed using the LBM and equation (9) is approximately 9.6%. However,
if we restrict this comparison to porosities less than 0.74, then the average
difference is approximately 5.7%. Since Lee & Yang’s expression matches their
own results to within 5%, we can conclude that the accuracy of the LBM is on
a par with the more traditional implicit solution carried out by Lee & Yang.

Red

d
2 /K

0 10 20 30 40 50
100

101

102

103

φ = 0.43
φ = 0.50
φ = 0.60
φ = 0.74
φ = 0.85
φ = 0.93

Fig. 5: Permeability results for a periodic array of cylinders. ( ) Lee & Yang’s
expression, ( ) LBM results.
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Periodic spheres

Permeability tests were carried out for a periodic array of spheres under similar
conditions as those for the periodic array of spheres. Due to computational
limitations the model resolution in this instance was 100×100×100 lattice sites,
with a fixed relaxation time of τ = 1.0. Variation of computed permeability
with Reynold’s number is shown in figure 6, where expression (8) is also plotted
for comparison.

Red

d
2 /K

0 10 20 30 40 50
100

101

102

103

φ = 0.43
φ = 0.50
φ = 0.60
φ = 0.74
φ = 0.85
φ = 0.93

Fig. 6: Permeability results for a periodic array of spheres. ( ) Expression of
Jeong et. al, ( ) LBM results.

Within the limit of low Reynold’s number, our results are in better agree-
ment with expression (8). Best agreement with expression (8) is achieved in
the lower porosity cases. Our results begin to diverge from the expression as
Reynold’s number increases. This discrepancy could be potentially due to the
difference in porosities explored in our analysis and that of Jeong et. al, where
their expression appears to be calibrated against results for porosities of 0.3952
for the case of hexagonally packed spheres. In addition to this we expect the
lower lattice resolution, and choice of boundary condition, to further influence
the agreement between results.



Effect of Image Scaling and Segmentation in Digital Rock Characterisation 13

Impact of boundary condition

To demonstrate the benefit of an immersed boundary condition, as opposed
to the bounceback boundary condition, an analysis was carried out using the
periodic cylinder array model. In this analysis the Reynold’s number, relax-
ation time, and porosity were kept constant, while the domain resolution was
varied with a side length of 5-250 lattice sites. Permeability approximations
computed using this model are compared with equation (9) in figure 7, where
normalised permeability is plotted against the ratio of pore throat width, T,
to grid spacing, ∆x.

T/∆x

d
2 /K

4 8 12 16 20 24 28 32

20

40

60

80

100

120

140

Lee & Yang
Bounceback
Partial Bounceback

Fig. 7: Variation of Results with Increasing Geometric Definition

Comparing the boundary conditions in this way shows that computed per-
meability results begin to stabilise at pore throat widths of 5 and 12 lattice
units for the partial bounceback and bounceback boundary conditions respec-
tively. In the stabilisation region, for throat widths between 4 and 24 lattice
units, the solution error is less than 5% with partial bounceback, and 15%
with bounceback. Both sets of results converge to a solution with an error of
less than 1%.

The greater variation in results exhibited by the bounceback boundary
condition is clearly due to the discretisation of the cylindrical boundary. As the
domain resolution is varied the effective radius of the cylinder varies in a step-
wise fashion, in some cases this effective radius is larger than the desired radius,
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and vice versa. In the case of the partial bounceback condition this problem is
avoided, however the lattice sites intersected by the boundary become porous
due to the partial application of the bounceback condition. This is desirable
when the obstacle is sufficiently larger than the lattice spacing, as it is required
to more accurately capture the intersection of the obstacle and lattice sites.
But in the case that the obstacle consists of only a small number of lattice
sites, the obstacle may become completely porous, yielding an artificially high
permeability as seen in the figure.

In this work, we are seeking to apply the LBM to permeability analysis
of porous rock microstructures. The microstructure of sandstone contains ge-
ometric features with characteristic length approaching (and below) the size
of individual CT image voxels. The scale of surface roughness for instance is
typically a number of orders of magnitude smaller than that of the grain ra-
dius. This is especially pertinent if the CT images are downscaled. This test
therefore demonstrates that the partial bounceback condition may offer a sig-
nificant improvement over the bounceback boundary condition in capturing
these smaller scale geometric features, with the provision that pore throat
width is typically greater than 5 lattice units.

2.4 Digital Rock Analysis

This analysis is carried out on a sample of Diemelstadt sandstone supplied
by the School of Earth and Environment, Leeds University, UK. Diemelstadt
sandstone has a typical porosity of 0.24, and average grain radius of 80µm [44].
The nominal permeability of similar sandstones is reported as approximately
1D, and is typically isotropic [3,45,46,4]. From this sample a CT image with
a resolution of 1000vx3 (where vx denotes a voxel unit) was obtained. This
sample is shown in figure 8a, with each voxel a cube of width 2µm. It should be
noted that the porosity and permeability of the samples is unlikely to match
exactly the nominal porosity and permeability of Diemelstadt sandstone due
to the heterogeneous nature of rock material.

The voxelised geometry obtained through CT imaging is defined by a se-
ries of densities corresponding to each voxel. By plotting a histogram of these
densities in figure 9a, we see that the image includes two peaks in voxel den-
sity which define the void and solid space within the sample. Voxel densities
throughout the sample are, in general, normally distributed about these peaks.
However, by plotting the histogram on a log scale in figure 9b we can see a
broad range of voxel densities which do not fall in to these normal distribu-
tions. These anomalous voxel densities are likely to be artifacts produced by
the imaging process, and may be due to metallic inclusions in the sample [47].

The spatial distribution of anomalous voxel densities is shown in figure 8b.
With artifacts present it is not possible to simply use the voxel densities to
scale the partial bounceback boundary condition, as doing so would result in
a domain that includes almost no solid lattice sites. Additionally, since these
artifacts are spread throughout the sample it is not possible to sample a smaller
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(a) (b)

Fig. 8: Diemelstadt sandstone CT scan showing (a) grain geometry and (b)
imaging artifacts

0 0.5 1 1.5 2

(a)

0 0.5 1 1.5 2

(b)

Fig. 9: Voxel density histograms with a (a) linear and (b) log scale
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geometry from the domain which would not include them. We therefore begin
the analysis by filtering the artifacts.

Referring to figure 10b, we have defined three characteristic voxel densities,
Vv, I, and Vs, representing a void, intermediate, and solid density respectively.
To filter out the imaging artifacts we reassign the corresponding voxel densities
to either Vv or Vs, depending on their magnitude. If the artifact density exceeds
Vs its density is replaced with that of Vs. Conversely, if the artifact density is
less than Vv its density is replaced with that of Vv.

0 0.5 1 1.5 2

(a)

V
v

I V
s

(b)

Fig. 10: Voxel density histograms following filtering of artifacts, with a (a) log
scale and (b) linear scale annotated with segmentation parameters

Segmentation

Following filtering of artifacts the voxels must be segmented into void, solid
and boundary regions so that they may be mapped to an LBM domain. In the
works of [1,3,4] binary segmentation is applied, so that voxel densities above I
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are deemed solid, and those below I are deemed void. Since we intend to apply
the partial bounceback boundary condition to represent grey areas between
solid and void space, a new process of segmentation must be defined which
yields a mapping between the voxel density and β in equation (5).

To do this we introduce an upper and lower threshold to the voxel densities,
Tu and Tl respectively. We then specify that voxel densities below Tl map to
β = 0.0, and voxel densities above Tu map to β = 1.0. Voxel densities between
Tl and Tu are normalized to this range.

To asses the impact on segmentation on permeability approximation a
threshold scaling parameter, α, is used to scale the upper and lower segmen-
tation thresholds between Vv and Vs so that

Tl = I − α(I − Vv)

Tu = I + α(I − Vs)
(10)

With this approach, binary segmentation is achieved when α = 0. As α
increases the grain surfaces become more diffuse.

Scaling

In this work we use a GPU computing platform with a limited amount of RAM
(6GB). In order to consider the entire sample geometry the CT image must
be rescaled to a coarser resolution. To rescale the image, voxel densities in the
destination were computed as the average density of the source image voxels
they contained. Where the scaling process is carried out after segmentation
has been applied. While the segmentation approach described is required in
order to make use of the partial bounceback boundary condition, scaling is
only required when a domain must be computed on a platform with limited
memory.

(a) (b)

Fig. 11: Illustration of image scaling from (a) source to (b) destination image



18 B. D. Jones, Y. T. Feng

The scaling process employed is illustrated in figure 11. The average den-
sity of the destination voxel is computed by taking weighted averages of the
overlapped source voxels. The weights in this case are taken simply as the
normalised volume of source and destination voxel intersection.

250vx
3 200vx

3

150vx
3 100vx

3

Fig. 12: Rescaling of CT image, where the initial 250vx3 image is subsampled
from the original unscaled image

The effect of rescaling on geometric definition is demonstrated visually in
figure 12, where a 250vx3 subsample from the original CT image was incremen-
tally rescaled to a resulting 100vx3 image. In applying this scaling algorithm
the overall porosity of the image is maintained, as shown in figure 13. Con-
sidering the dependence of permeability on porosity, this feature is key if any
consistent measurements are to be achieved through image scaling.

Use of the partial bounceback boundary condition is advantageous when
the CT image must be scaled, since the scaled voxel densities may be used
directly and the consistence in porosity is maintained. This is not the case
where the bounceback boundary condition is used as the image would require
segmentation after scaling is applied, altering the porosity of the scaled image
when compared with the source.
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Fig. 13: Measured image porosity through rescaling

3 Results

Using the lattice Boltzmann method and the partial bounceback boundary
condition, a number of models have been built to assess the impact of image
segmentation and scaling.

Segmentation

Using a scaled 200vx3 CT image (scaled from 1000vx3), the threshold scaling
parameter was varied across the range of valid values (0 ≤ α ≤ 1.0) in
increments of 0.05. The LBM models were executed with a relaxation time of
τ = 1.0, where the Reynold’s number was fixed at Re = 0.01. The choice of
Reynold’s number was made so as to ensure a Stokes flow regime.

Figure 14a shows the variation of computed permeability with threshold
scaling parameter. Figure 14b shows the corresponding change in effective
porosity, where only pores which conduct fluid are included in porosity com-
putation. The results show that the change in permeability is qualitatively
related to the change in effective porosity, however the permeability changes
at a much greater rate. A turning point is observed when α exceeds 0.75, figure
15 shows that at this point the grains themselves become porous.

These results are significant as they show that inclusion of only a small
grey region between the grains and void space can have a pronounced effect
on permeability approximation. Choosing α = 0.1 for instance results in a per-
meability change of approximately 10%, where the change in effective porosity
is only 2%.

While the change in permeability varies with porosity, the two parameters
are not varying in proportion with one another. Thus, there is some amount
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Fig. 14: Variation of (a) permeability and (b) effective porosity with α

(a) (b)

Fig. 15: CT image slices following segmentation for: (a) α = 0.5, (b) α = 0.75,
Red = Solid, Blue = Void

of the permeability increase which is not due to the porosity increase. Further
analysis of the segmented CT images shows a potential cause.

In figure 16 a CT image slice is shown following application of segmentation
for two different values of alpha, 0.0 and 0.5. A single contour level has been
added to the images, with a threshold of 0.75, where for voxel densities below
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(a) (b)

Fig. 16: Contoured CT image slices following segmentation for: (a) α = 0.0,
(b) α = 0.5. Colours have been adjusted to provide contrast to contour lines
indicating grain boundaries

this value an appreciable volume of fluid may be conducted. These contours
follow the effective grain boundaries.

We can see in the figure that, in general, pore radius is maintained. More
significant however, is the change in pore connectivity. For the case of α = 0.0
a number of pores are separated by only a very thin boundary, when alpha is
increased, this boundary becomes conductive, increasing the pore connectivity.
This effect is most noticeable in the upper right corner of the images, were a
relatively large system of pores becomes connected as α increases.

To account for this, percolation theory must be considered. Percolation
theory suggests that the permeability of a porous medium may be related to
porosity using a power law relationship [48] in which

k(ϕ) = C (ϕ − ϕcr)
µ

(11)

where C and µ are constants unique to the porous medium. ϕcr is the critical
porosity, the porosity below which percolation may not theoretically occur. In
percolation theory, the critical porosity is known as the percolation threshold.
For a lattice of potentially connected voids the percolation threshold is in-
versely proportional to the average number of connected neighbours [49] each
void has, or coordination number, Z.

ϕcr ∝
1

Z
(12)

From these equations it is known that if the connectivity between pores
increases, the percolation threshold decreases with a resultant increase in per-
meability, as observed in these results. So if binary segmentation is applied,
the pore connectivity of the image may be artificially reduced.
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Whilst it is clear that the threshold scaling parameter should be set such
that α < 0.75, it is not possible to determine an exact value from this analysis.
A reasonable estimate would be possible if the sample were tested for perme-
ability. However heterogeneity in the sample will lead to a range of measured
permeabilities, so α could only be defined within a corresponding range. Ul-
timately, the best way to find an exact value for α would be to test only the
part of the sample that was imaged for modelling, and repeat the analysis we
have carried out here to find a value of α which yields a model with correct
permeability. While such a procedure would be possible, it was not feasible for
this study.

In the absence of a more rigorous process for determination of α, visual
analysis was used to select an appropriate value for the results which follow.
This value was chosen as α = 0.5, where it is shown in figure 15 that this
choice results in solid grains with a grey region at the grain/void boundary.

Image scaling

By taking a random series of 250vx3 subsamples from the original CT image,
we looked at the effect a change in resolution through image scaling has on
permeability approximation. 5 subsamples were scaled in increments of 50vx3

from 250vx3 to 50vx3, yielding a set of 25 model geometries. Using a lattice
Boltzmann model, permeability was approximated for a fixed Reynold’s num-
ber and a relaxation time of τ = 1. In addition to approximating permeability
effective porosity was also measured, as the investigation into segmentation
showed results will be sensistive to any change in effective porosity.

Results for computed permeability and effective porosity are shown in fig-
ure 17. In the figure, each curve shown represents results from a single original
subsample. The general trend observed was one of increasing permeability as
the image was coarsened, however the trend is not smooth. Permeability was
observed to achieve a maximum for the 150vx3 models. It is expected that
this would correspond to a maximum in effective porosity, however at this
resolution the effective porosity of the model geometry was typically at it’s
lowest.

The general increase in permeability relative to the unscaled image is most
likely attributed to lack of a reasonable number of lattice sites at the pore
throats. In addition to this, as the image was coarsened the grain surfaces
became smoother. The inconsistency in permeability variation also indicates
that image scaling fails to maintain a consistent connectivity between pores.
Finally, image scaling leads to a more diffuse grain boundary, further affecting
the pore throat diameter.

Based on these results it is our recommendation that permeability assess-
ment on such CT images be carried out at the highest feasible resolution,
maintaining a sufficient number of lattice sites across the pore throats. The
simple arithmetic averaging approach to image scaling used in this work lead
to highly inconsistent behaviour, which appear to be essentially random. Fu-
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Fig. 17: Variation of (a) effective porosity and (b) permeability with scaling
resolution, each curve represents a random sample fromt he original CT image.

ture attempts at coarsening CT images should focus not just on maintaining
overall porosity, but also on surface roughness and pore connectivity.

Non-Darcy Permeability

Through the course of running these tests it became apparent that Reynold’s
number can also be a significant factor affecting permeability approximation,
even if Stokes flow is assumed. In figure 18 computed permeability is plotted
against Reynolds number, for two values of alpha. To produce the results
for the figure, Reynolds number was varied in the range 0.01 ≤ Re ≤ 0.25,
corresponding to a maximum flow rate of 5 × 10−4 m/s.

The observed increase in permeability across the range of Reynold’s num-
bers tested was less extreme for the case of binary thresholding. It was however
not insignificant, comparing the flow of Reynold’s number 0.25 with that of
0.01, an increase in permeability of approximately 32% is found.

A potential source of the observed permeability increase may lie in the
weakly compressible assumption of the LBM. For the LBM to accurately re-
produce Navier-Stokes flow, the Mach number must be sufficiently low to avoid
compressibility effects. Where such effects would introduce strongly non-linear
behaviour in the flow solution. In these tests however the Mach number never
exceeded 8.3 × 10−4.

Non-Darcy behaviour in porous rock models has been previously observed
by both Sukop et. al and Yang et. al. Through modelling of vuggy limestone
using the LBM with binary segmentation, Sukop et. al observed decreases in
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Fig. 18: Comparison of permeability-Reynolds number relationship for α = 0.0
( ) and α = 0.5 ( )

permeability for Reynold’s numbers above 0.01 [50]. Yang et. al numerically
approximated the permeability of waste water flocs using FLUENT 6.0 (Flu-
ent Inc., USA). Yang et. al found that, given a Reynold’s number greater than
1, permeability may increase, decrease, or remain constant [51]. Where the ex-
act nature of permeability changes was dependent on differences in tortuosity
between larger and smaller pore channels.

In this work, and those cited, the modelled flow rates are sufficiently low to
ensure laminar flow. Though none of these works are in exact agreement on the
nature of permeability changes, it is generally agreed that flow rate dependent
permeability may be observed at Reynold’s numbers typically associated with
a purely Darcy flow regime.

4 Conclusion

It has been shown by various authors that it is possible to compute accurate ap-
proximations of permeability from CT images of porous rock microstructures
using the LBM. However the choice of boundary condition and associated
segmentation used in these studies may lead to an underestimation of pore
connectivity when compared with the raw CT image data. We have proposed
that instead of using the bounceback boundary condition, the IMB condition
of Noble & Torczynski should be used as a partial bounceback boundary con-
dition so that the grey regions of the CT image data may be considered in the
model.

Validation of the partial bounceback boundary condition for permeabil-
ity approximation was carried out by simulating flows through ideal porous
geometries consisting of cylinders and spheres. Comparison with the work of
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Lee & Yang and Jeong et. al shows that this boundary condition is able to
accurately reproduce their permeability approximations, whilst outperforming
the bounceback boundary condition where model resolution is low.

The partial bounceback boundary condition was then applied to simulate
the flow of fluid through rock microstructures, obtained through CT imaging.
We varied the mapping of CT image data to the solid volume fraction pa-
rameter in the partial bounceback boundary condition. Particular attention
was paid to image segmentation and scaling. It was shown that correct im-
age segmentation is vital if accurate permeability results are to be obtained,
our results suggest that binary segmentation can lead to underestimation of
permeability and pore connectivity. Where image scaling was applied, perme-
ability was not found to vary consistently with changes in model resolution.
To resolve this, a scaling technique which maintains the effective porosity and
pore connectivity should be devised. Whilst the partial bounceback condition
shows promise in the ability to apply a more flexible approach to segmenta-
tion, the image scaling investigated in this work is not recommended if absolute
accuracy is to be achieved.

Ultimately, this investigation shows that small changes in boundary defi-
nition may have a significant impact on the computed permeabilities, where
the change in effective porosity may still be small.
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17. F. J Higuera and J Jiménez. Boltzmann Approach to Lattice Gas Simulations. Euro-
physics Letters (EPL), 9(7):663–668, 2007.

18. P. L. Bhatnagar, E. P. Gross, and M. Krook. A model for collision processes in gases. i.
small amplitude processes in charged and neutral one-component systems. Phys. Rev.,
94:511–525, May 1954.

19. Y H Qian, D D’Humières, and P Lallemand. Lattice BGK Models for Navier-Stokes
Equation. EPL (Europhysics Letters), 17:479, 1992.

20. Hudong Chen, Shiyi Chen, and William H. Matthaeus. Recovery of the Navier-Stokes
equations using a lattice-gas Boltzmann method. Physical Review A, 45(8):R5339–
R5342, April 1992.

21. Y T Feng, K Han, and D R J Owen. Coupled lattice Boltzmann method and discrete
element modelling of particle transport in turbulent fluid flows: Computational issues.
International Journal for Numerical Methods in Engineering, 72(9):1111–1134, 2007.

22. D’Humieres. Generalized lattice-Boltzmann equation. In Rarefied Gas Dynamics: The-
ory and Simulations, pages 440–458. ICASE, 1992.

23. Chongxun Pan, Li-Shi Luo, and Cass T. Miller. An evaluation of lattice Boltzmann
schemes for porous medium flow simulation. Computers & Fluids, 35(8-9):898–909,
September 2006.

24. Dominique D’Humières and Irina Ginzburg. Viscosity independent numerical errors for
Lattice Boltzmann models: From recurrence equations to ”magic” collision numbers.
Computers and Mathematics with Applications, 58(5):823–840, 2009.

25. Xiaoyi He, Qisu Zou, Li-Shi Luo, and Micah Dembo. Analytic solutions of simple flows
and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model.
Journal of Statistical Physics, 87(1):115–136, 1997.

26. Christopher Ross Leonardi. Development of a Computational Framework Coupling
the Non-Newtonian Lattice Boltzmann Method and the Discrete Element Method with
Application to Block Caving. PhD thesis, Swansea University, 2009.

27. D. J. Holdych. Lattice Boltzmann methods for diffuse and mobile interfaces. PhD
thesis, University of Illinois at Urbana-Champaign, 2003.

28. O Erik Strack and Benjamin K Cook. Three-dimensional immersed boundary conditions
for moving solids in the lattice-Boltzmann method. International Journal for Numerical
Methods in Fluids, 55(2):103–125, 2007.

29. Yu Ye, Peng Chi, and Yan Wang. An efficient implementation of entropic lattice boltz-
mann method in a hybrid cpu-gpu computing environment. In Kenli Li, Zheng Xiao,
Yan Wang, Jiayi Du, and Keqin Li, editors, Parallel Computational Fluid Dynamics,
volume 405 of Communications in Computer and Information Science, pages 136–148.
Springer Berlin Heidelberg, 2014.

30. P. Bailey, J. Myre, S.D.C. Walsh, D.J. Lilja, and M.O. Saar. Accelerating lattice boltz-
mann fluid flow simulations using graphics processors. In Parallel Processing, 2009.
ICPP ’09. International Conference on, pages 550–557, Sept 2009.

31. F. Massaioli and G. Amati. Achieving high performance in a LBM code using OpenMP.
In The Fourth European Workshop on OpenMP, Roma, Italy, 2002.

32. Reghan J. Hill, Donald L. Koch, and Anthony J. C. Ladd. The first effects of fluid
inertia on flows in ordered and random arrays of spheres. Journal of Fluid Mechanics,
448:213–241, November 2001.

33. Reghan J. Hill, Donald L. Koch, and Anthony J C Ladd. Moderate-Reynolds-number
flows in ordered and random arrays of spheres. Journal of Fluid Mechanics, 448:243–
278, 2001.



Effect of Image Scaling and Segmentation in Digital Rock Characterisation 27

34. AJC Ladd. Numerical simulations of particulate suspensions via a discretized Boltz-
mann equation. Part 2. Numerical results. Journal of Fluid Mechanics, 271:285–309,
1994.

35. M. a. Van Der Hoef, R. Beetstra, and J. a. M. Kuipers. Lattice-Boltzmann simulations
of low-Reynolds-number flow past mono- and bidisperse arrays of spheres: results for
the permeability and drag force. Journal of Fluid Mechanics, 528:233–254, 2005.

36. Christopher R Leonardi, Bruce D Jones, David W Holmes, and John R Williams. Simu-
lation of complex particle suspensions using coupled lattice Boltzmann-discreet element
methods. In 6th International Conference on Discrete Element Methods (DEM6), 2013.

37. G M Homsy. Stokes flow through periodic arrays of spheres. Journal of fluid mechanics,
115:13–26, 1982.
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