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The present work presents a theoretical investigation of an MHD mixed convection flow in a vertical 

microchannel formed by two electrically non-conducting infinite vertical parallel plates. The influence of an 

induced magnetic field arising due to motion of an electrically conducting fluid is taken into consideration. The 

governing equations of the motion are a set of simultaneous ordinary differential equations and their exact 

solutions in dimensionless form have been obtained for the velocity field, the induced magnetic field and the 

temperature field. The expressions for the induced current density and skin friction have also been obtained. The 

effects of various non-dimensional parameters such as rarefaction, fluid wall interaction, the Hartmann number 

and the magnetic Prandtl number on the velocity, the induced magnetic field, the temperature, the induced current 

density, and skin friction have been presented in a graphical form. It is found that the effect of the Hartmann 

number and magnetic Prandtl number on the induced current density is found to have a decreasing nature at the 

central region of the microchannel. 
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1. Introduction 

 
 Studies associated with a mixed convection flow of an electrically conducting fluid in the presence 

of an external magnetic field have received considerable interest due to the enormous applications in various 

branches of industry, science and technology such as fire engineering, combustion modelling, geophysics, 

the cooling of nuclear reactors, operation of magnetohydrodynamic (MHD) generators, plasma studies, etc. 

Application of a magnetic field has been found to be effective in controlling the melt convection during 

crystal growth from melts under terrestrial conditions and has now been widely used in metal and 

semiconductor industries. Several studies have been reported on an MHD convective flow under different 

physical situations. Record of such investigations can be found in the works of Cramer and Pai [1], Chawla 

[2], Das et al. [3], Sheikholesslami and Gorgi-Bandpy [4], Sheikholesslami et al. [5], Sheikholesslami et al. 

[6], Chauhan and Rastogi [7], Ibrahim and Makinde.[8], Farhad et al. [9-10].  

 Although there are many studies on natural convection flow of an electrically conducting fluid in 

channels, there are only a few studies regarding natural and mixed convection flow of an electrically 

conducting fluid in a microchannel and annular microchannel. In recent years, the present authors and their 

collaborators have carried out a number of studies on MHD natural convection covering several aspects. For 

instance, Jha et al. [11] analytically studied the fully developed steady natural convection flow of a 

conducting fluid in a vertical parallel plate microchannel in the presence of a transverse magnetic field. The 

effect of the Hartmann number was reported to decrease the volume flow rate. The combined influence of an 

externally applied transverse magnetic field and suction/injection on a steady natural convection flow of 

conducting fluid in a vertical microchannel was carried out by Jha et al. [12]. In another work, Jha et al. [13] 

examined the effect of wall surface curvature on the transient MHD free convective flow in a vertical micro-
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concentric-annuli. Jha et al. [14] studied exact solution of a steady fully developed natural convection flow 

of a viscous, incompressible, and electrically conducting fluid in a vertical annular microchannel. Rececntly, 

Jha and Aina [15] presented the MHD natural convection flow in a vertical micro-porous-annulus (MPA) in 

the presence of radial magnetic field. Also, the MHD natural convection flow in vertical micro-concentric-

annuli (MCA) in the presence of radial magnetic field has been analyzed by Jha et al. [16]. 

 The above studies on MHD natural convective heat and mass transfer in a vertical microchannel and 

annular microchannel have been limited to the cases in which the induced magnetic field is neglected in 

order to facilitate the mathematical analysis of the problem. However, the induced magnetic field also 

generates its own magnetic field in the fluid and as a result it modifies the applied magnetic field and motion 

of the fluid. Therefore, it is known that in several physical situations, it will be necessary to include the effect 

of the induced magnetic field in the MHD equations when the magnetic Reynolds number is large enough 

[1]. Singh et al. [17] presented numerical studies on the hydromagnetic free convective flow in the presence 

of induced magnetic field. Jha and Sani [18] presented the MHD natural convection flow of an electrically 

conducting and viscous incompressible fluid in a vertical channel due to symmetric heating in the presence 

of an induced magnetic field. A study on hydromagnetic free convective flow in the presence of an induced 

magnetic field was carried out by Ghosh et al. [19]. In another related work, Kumar and Singh [20] studied 

the unsteady MHD free convective flow past a semi- infinite vertical wall by taking into account the induced 

magnetic field. Recently, Sarveshanand and Singh [21] analytically studied the MHD free convective flow 

between vertical parallel porous plates in the presence of an induced magnetic field and found that the 

induced current density profile increases with an increase in the magnetic Prandtl number. 

 The induced magnetic field has many important applications in the experimental and theoretical 

studies of the MHD flow due to its use in many scientific and technological phenomena, for example in 

MHD electrical power generation, geophysics, purification of crude oil, glass manufacturing, etc. The role of 

the induced magnetic field is important when the magnetic Reynolds number is large enough [1]. 

 The objective of this work is to present a comprehensive theoretical study of a steady hydromagnetic 

fully developed mixed convection flow in a vertical microchannel formed by two infinite vertical parallel 

plates in the presence of an induced magnetic field. Both walls of the microchannel are electrically non-

conducting and maintained at different temperatures.  

 

2. Mathematical analysis 

 
 A steady laminar fully developed mixed convection flow of an electrically conducting, viscous 

incompressible fluid in a vertical microchannel formed by two electrically non-conducting infinite vertical 

parallel plates is considered. The x   axis is taken vertically upward along the plates and the y   axis 

normal to it as presented in Fig.1. A magnetic field of uniform strength 0H   is assumed to be applied in the 

direction perpendicular to the direction of flow. Both plates y 0   and y b   are taken to be non-

conducting. As stated earlier, our emphasis in this study is to investigate the effect of an induced magnetic 

field on the flow formation inside the vertical microchannel. It is shown that the fluid flow and heat transfer 

at microscale differ greatly from those at macroscale. At macroscale, classical conservation equations are 

successfully coupled with the corresponding wall boundary conditions which are valid only if the fluid flow 

adjacent to the surface is in thermal equilibrium. However, they are not valid for the fluid flow at microscale. 

For this case, the fluid no longer reaches the velocity or the temperature of the surface and therefore a slip 

condition for the velocity and a jump condition for the temperature should be adopted. In the present study, 

the usual continuum approach is applied by the continuum equations with the two main characteristics of the 

microscale phenomena, the velocity slip and the temperature jump. The velocity slip is defined as [22] 
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where 
su  is the slip velocity,   is the molecular mean free path and v  is the tangential momentum 

accommodation coefficient, and the temperature jump is defined as [22] 
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where 
sT  is the temperature of the fluid at the wall, 

wT  is the wall temperature, and t  is the thermal 

accommodation coefficient, which depends on the gas and surface materials. However, for air, it assumes 

typical values near unity [22]. For the rest of the analysis, v  and t  will be assumed to be 1. 

 

 
 

Fig.1. Flow configuration and coordination. 

 

 In a sufficiently long channel, the velocity and temperature profiles will cease to change with 

distance along the channel, i.e., a fully developed flow will exist [23]. Assuming a hydrodynamically fully 

developed flow, the transverse velocity v  becomes equal to zero. Then, the continuity equation drops to 

.u x 0    Further, the viscous dissipation and compressibility effects in the fluid are neglected in order to 

derive the exact solution of the present physical situation. By taking into account the conducting fluid, 

transverse magnetic field and induced magnetic field and substituting the above conditions into the 

governing equations of the heat and fluid flow, we obtain the dimensional form 
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with the boundary conditions for the velocity, induced magnetic field and temperature field which are 
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 In the above Eqs (2.3) – (2.7), 'T  is the temperature of the fluid,  ' ', ,x 0H H 0  H  is the magnetic 

field,   is the kinematic viscosity, g  is the acceleration due to gravity,   is the coefficient of thermal 

expansion, e  is the magnetic permeability,   is the density, and   is the electrical conductivity of the fluid.  

 Using the following non-dimensional quantities 
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the governing equations in a non-dimensional form have taken the form 
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with the boundary conditions in a non dimensional form as 
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 Referring to the values of v  and t  given in Eckert and Drake [24] and Goniak and Duffa [25], the 

value of v  is near unity, and the value of t  ranges from near 1 to more than 100 for actual wall surface 
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conditions and is near 1.667 for many engineering applications, corresponding to v 1  , t 1  , .s 1 4   

and Pr .0 71   , .v t1 1 667    . 

 The physical quantities used in the above equations are defined in the nomenclature. 

 

3. Method of solution 

 
 Equations (2.9), (2.10), (2.11) are a coupled system of ordinary differential equations with constant 

coefficients. This system of linear ordinary differential equations has been solved in closed form by the 

theory of simultaneous ordinary differential equations. The expressions for the velocity field, the induced 

magnetic field and the temperature field in non-dimensional form are given by 
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 The induced current density is given by 
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where ,...,1 6C C  are all constants given in the Appendix. 

 Two important parameters for buoyancy – induced micro-flow are the volume flow rate  mQ  and 

skin friction   . The dimensionless volume flow rate is 
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 Using expression (3.1), the skin – friction on both microchannel walls in a dimensionless form are 

given by 
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4. Results and discussion 

 
 The present study on a magnetohydrodynamic mixed convection flow in a vertical microchannel 

formed by two electrically non-conducting infinite vertical parallel plates in the presence of an induced 

magnetic field is controlled by a number of physical parameters such as the mixed convection parameter 

 Gr Re , wall-ambient temperature difference ratio   ,  rarefaction  ,Kn  
fluid wall interaction  ,ln  

the Hartmann number (M), and the magnetic Prandtl number (Pm). The effects of these parameters on the 

velocity profile, induced magnetic field profile, induced current density profile and the skin friction are 

shown using the line graphs.  

 The expression for the temperature in Eq.(3.3), the effects of the rarefaction parameter   ,Kn and 

fluid wall interaction parameter  ln  on the temperature profile and rate of heat transfer which is expressed 

as the Nusselt number are exactly the same as those given by Chen and Weng [26]. 

 Figure 2 exhibit the effect of the mixed convection parameter  Gr Re  and wall-ambient temperature 

difference ratio   ,  on the velocity profile for a fixed value of
 

.v Kn 0 05  , ln . ,1 667 M . ,5 0  and 

Pm .0 5 . It is found that near the channel wall  y 0 , increasing the mixed convection parameter 

 Gr Re  leads to a reduction in fluid velocity while the result is just converse at the channel wall (y=1). Further, 

at the middle of the channel, the fluid flow is not affected by the mixed convection parameter  Gr Re . 

Physically speaking, increasing  Gr Re 0
 

means convection current and pressure gradient support each other, 

hence, an increase in the fluid velocity while  Gr Re 0
 shows natural convection opposing the effect of the 

pressure gradient. Furthermore, for large values of the mixed convection parameter  Gr Re  there exist reversed 

flow regions with negative velocity values at channel wall  y 0 . Also, an increase in the mixed convection 

parameter  Gr Re  increases this reversed flow region and the critical value of the mixed convection parameter 

 Gr Re  leading to the flow reversal is 
Gr

Re critical

110 . In addition, the flow reversal is possible at the channel 

wall (y=1) by considering negative values of mixed convection parameter. 

 Figure 3 illustrates the effects of the rarefaction parameter  ,Kn  
and wall-ambient temperature 

difference ratio   ,  on velocity profiles for fixed values of Gr Re ,100 ln . ,1 667 M . ,5 0  and 

Pm .0 5 . It is noticed that an increase in the rarefaction parameter and wall-ambient temperature 

difference ratio causes a pronounced enhancement in the velocity slip. This result yields an observable 

increase in the fluid velocity. This effect can be explained by the fact that as the rarefaction parameter 

increases, the temperature jump increases and this reduces the amount of heat transfer from the microchannel 

surfaces to the fluid. The reduction in velocity due to the reduction in heat transfer is offset by the increase in 

the fluid velocity due to the reduction in the frictional retarding forces near the microchannel surfaces. 
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Furthermore, as the wall-ambient temperature difference ratio   ,
 increases, the effect of the rarefaction 

parameter  ,Kn  on the microchannel slip velocity becomes significant. 
 

   
 

Fig.2. Variation of velocity with Gr/Re (M=5.0, 

Pm=0.5, Kn .0 05  , In=1.667). 

Fig.3. Variation of velocity with Kn  (M=5.0, 

Pm=0.5, Gr/Re=100, In=1.667). 

 

 Figure 4 illustrate the effects of the fluid wall interaction parameter  ln  as well as wall-ambient 

temperature difference ratio   ,  on velocity profiles for fixed values of Gr Re ,100 . ,Kn 0 05 
M . ,5 0  and Pm .0 5 . It is observed that the effect of the fluid wall interaction parameter is to enhance 

the fluid velocity at the microchannel wall  y 0
 and to reduce the fluid velocity at the microchannel wall 

(y=1). In addition, it is evident that there exist points of intersection inside the microchannel where the 

velocity profile is independent of the fluid wall interaction parameter. Also, the impacts of the fluid–wall 

interaction parameter on the microchannel slip velocity become significant with the decrease of the wall-

ambient temperature difference ratio. 

 

 
 

Fig.4. Variation of velocity with ln (M=5.0, Pm=0.5, Gr/Re=100, Kn .0 05  ). 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

0

0.5

1

1.5

2

2.5

Y

V
e
lo

c
it
y
 (

U
)

 

 

=1

=0

=-1

Gr/Re=0,50,100,150

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

0

0.5

1

1.5

2

2.5

Y
V

e
lo

c
it
y
 (

U
)

 

 

=1

=0

=-1

v
Kn=0.0,0.05,0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.5

0

0.5

1

1.5

2

2.5

Y

V
e

lo
c

it
y

 (
U

)

 

 

=1

=0

=-1
ln=0,5,10



574  B.K.Jha and B.Aina 

 Figures 5 and 6 exhibit the effects of the wall-ambient temperature difference ratio   ,  the 

Hartmann number (M), and the magnetic Prandtl number (Pm), respectively, on velocity profiles for fixed 

values of Gr Re ,100  . ,Kn 0 05  and ln .1 667 . It is evident from these figures that an increase in 

the Hartmann number and the magnetic Prandtl number causes a reduction in the fluid velocity at the 

microchannel wall (y=1). Physically speaking, the presence of a transverse magnetic field sets in a resistive 

type force (Lorentz force), which is a retarding force on the velocity field. It is further observed that there 

exist points of intersection inside the microchannel where the velocity field is independent of the Hartmann 

number and the magnetic Prandtl number and this behaviour is observed in the case of asymmetric heating 

 1   . Also, the influence of the Hartmann number and the magnetic Prandtl number on the 

microchannel slip velocity becomes significant with the increase of the wall-ambient temperature difference 

ratio. 

 

    
 

Fig.5. Variation of velocity with M (In=1.667, 

Pm=0.5, Gr/Re=100, Kn .0 05  ). 

Fig.6. Variation of velocity with Pm (In=1.667, 

M=5, Gr/Re=100, Kn .0 05  ). 

 

 Figure 7 shows the induced magnetic field with respect to the mixed convection parameter  Gr Re  

on the velocity profile for a fixed value of
 

ln .1 667 , . ,Kn 0 05   M . ,5 0 and Pm .0 5 . It is 

evident from Fig.8 that an increase in the mixed convection parameter causes a pronounced enhancement in 

the induced magnetic field.  

 Figure 8 depicts the distribution of the induced magnetic field with respect to the rarefaction 

parameter
 
 ,Kn  

and wall-ambient temperature difference ratio   . It is observed that, the rarefaction 

parameter influences the flow formation excluding the case of symmetric heating  1  . For the case of 

asymmetric heating  ,0 1   , it is found that the induced magnetic field increases with the increase in the 

rarefaction parameter. It is further noticed from Figure 6 that the role of the rarefaction parameter on the 

induced magnetic field is more pronounced with a reduction in the values of the wall-ambient temperature 

difference ratio. 
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Fig.7. Variation of induced magnetic field with Gr/Re 

(M=5.0, Pm=0.5, Kn .0 05  , In=1.667). 

Fig.8. Variation of induced magnetic field with Kn  

(M=5.0, Pm=0.5, Gr/Re=100, In=1.667). 

 

 Figure 9 shows the induced magnetic field with respect to the fluid wall interaction parameter  ln
 

and wall-ambient temperature difference ratio   . It is evident from Fig.8 that an increase in the fluid wall 

interaction parameter causes a pronounced reduction in the fluid velocity. Also, the impacts of the fluid–wall 

interaction parameter on the induced magnetic field become significant with the decrease in the wall-ambient 

temperature difference ratio. 

 The induced magnetic field profile is plotted in Figs 10 and 11 with various values of the Hartmann 

number (M) and the magnetic Prandtl number (Pm), respectively. It is interesting to note that the strength of 

the induced magnetic field is directly proportional to the strength of the Hartmann number as well as the 

magnetic Prandtl number near the channel wall at (y=0) while it is inversely proportional near the channel 

wall at  y 1 . Furthermore, there exist points of intersection inside the vertical channel where the 

induced magnetic field is independent of the Hartmann number and the magnetic Prandtl number.  

 

      
 

Fig.9. Variation of induced magnetic field with In 

(M=5.0, Pm=0.5, Gr/Re=100, Kn .0 05  ). 

Fig.10. Variation of induced magnetic field with M 

(In=1.667, Pm=0.5, Gr/Re=100, Kn .0 05  ). 
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Fig.11. Variation of induced magnetic field with Pm (In=1.667, 

M=5.0, Pm=5, Gr/Re=100, Kn .0 05  ). 

Fig.12. Variation of induced current density with Gr/Re 

(In=1.667, M=5, Pm=0.5, Kn .0 05  ). 
 

 It is evident from Fig.12 that increasing the mixed convection parameter  Gr Re  leads to a 

reduction in the fluid velocity at the channel wall (y=0) while the result is just converse at the channel wall 

 y 1 . Further, at the middle of the channel, the induced current density is not affected by the mixed 

convection parameter  Gr Re . 

 Figure 13 presents the variation of induced current density with respect to rarefaction parameter
 
and 

wall-ambient temperature difference ratio. It is seen that an increase in the rarefaction parameter leads to an 

increase in the induced current density. It is also found that there exist points of intersection inside the 

microchannel where the induced current density is independent of the rarefaction parameter.  

 The variation of the induced current density with respect to fluid wall interaction parameter  ln  and 

wall-ambient temperature difference ratio    is shown in Fig.14. The induced current density decreases 

with the increase in the fluid wall interaction parameter in one part of the microchannel and a reverse trend 

occurs in the other part.  
 

     
 

Fig.13. Variation of induced current density with Kn  

(In=1.667, M=5, Pm=0.5, Gr/Re=100). 

Fig.14. Variation of induced current density with In  

( Kn .0 05  , M=5, Pm=0.5, Gr/Re=100). 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

0

0.5

1

1.5

2

Y

In
d
u
c
e
d
 m

a
g
n
e
ti
c
 f

ie
ld

 (
H

)

 

 

data1

data2

data3

Pm=0.1,0.5,1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-6

-4

-2

0

2

4

6

Y

In
d
u
c
e
d
 c

u
rr

e
n
t 

d
e
n
s
it
y
 (

J
)

 

 

=1

=0

=-1

Gr/Re=0,50,100,150

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-4

-3

-2

-1

0

1

2

3

4

Y

In
d
u
c
e
d
 c

u
rr

e
n
t 

d
e
n
s
it
y
 (

J
)

 

 

=1

=0

=-1

v
Kn=0.0,0.05,0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5

-4

-3

-2

-1

0

1

2

3

4

Y

In
d
u
c
e
d
 c

u
rr

e
n
t 

d
e
n
s
it
y
 (

J
)

 

 
=1

=0

=-1

ln=0,5,10



Effect of induced magnetic field on MHD mixed convection... 577 

 Figures 15 and 16 exhibit the effects of the wall-ambient temperature difference ratio   , the 

Hartmann number (M) and the magnetic Prandtl number (Pm), respectively, on the induced current density 

for fixed values of . ,Kn 0 05   ln .1 667 . It is evident from these figures that the effect of the 

Hartmann number and the magnetic Prandtl number on the induced current density is found to have a 

decreasing nature at the central region of the microchannel while a reverse trend occurs at the microchannel 

plates. Moreover, it is interesting to note that the current density changes its behaviour with the Hartmann 

number and the magnetic Prandtl number at two different locations inside the microchannel. 

 

     
 

Fig.15. Variation of induced current density with M  

( Kn .0 05  , In=1.667, Pm=0.5, Gr/Re=100). 

Fig.16. Variation of induced current density with Pm  

( Kn .0 05  , In=1.667, M=5, Gr/Re=100). 

 

 Figures 17 and 18 illustrate the effect of the rarefaction parameter and mixed convection parameter 

on the skin friction at the microchannel walls y=0 and y=1, respectively. It is observed that the skin friction 

decreases with an increase in the mixed convection parameter and rarefaction parameter at the microchannel 

wall y=0 while a reverse trend occurs at the microchannel wall y=1. 
 

     
 

Fig.17. Variation of skin friction versus Kn  with 

Gr/Re (Y=0). 

Fig.18. Variation of skin friction versus Kn  with 

Gr/Re (Y=1). 
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 Figures 19 and 20 illustrate the effect of the fluid wall interaction parameter, rarefaction parameter, 

and wall-ambient temperature difference ratio on the skin friction. It is observed that the skin friction is 

enhanced with an increase in the fluid wall interaction at the microchannel wall y=0 while a reverse trend 

occurs at the microchannel wall y=1. Furthermore, it is found that the magnitude of skin friction is higher in 

the case of asymmetric heating in comparison with symmetric heating.  

 

    
 

Fig.19. Variation of skin friction versus Kn  with In 

(Y=0). 

Fig.20. Variation of skin friction versus Kn  with In 

(Y=1). 

 

 Figures 21, 22, 23 and 24 reveal the combined influences of the rarefaction parameter, the Hartmann 

number and the magnetic Prandtl number on the skin friction for different values of the wall-ambient 

temperature difference ratio at the microchannel walls y=0 and y=1, respectively. It is observed that an 

increase in the Hartmann number and the magnetic Prandtl number causes a reduction in the skin friction at 

the microchannel walls y=0 and y=1. It is further observed that the magnitude of the skin friction is higher in 

the case of asymmetric heating  ,0 1  
 in comparison with symmetric heating  1  . 

 

     
 

Fig.21. Variation of skin friction versus Kn  with M 

(Y=0). 

Fig.22. Variation of skin friction versus Kn  with M 

(Y=1). 
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Fig.23. Variation of skin friction versus Kn  with Pm 

(Y=0). 

Fig.24. Variation of skin friction versus Kn  with Pm 

(Y=1). 

 

Conclusions 

 
 The effect of an induced magnetic field on the MHD mixed convection flow of a viscous, 

incompressible and electrically conducting fluid in the presence of a transverse magnetic field in a vertical 

microchannel formed by two electrically non-conducting infinite vertical parallel plates has been 

investigated analytically. The effects of various parameters on the velocity, induced magnetic field, 

temperature, induced current density and skin friction profiles have been shown in line graphs. The main 

findings are: 

1. Increasing the value of the Hartmann number and the magnetic Prandtl number causes an 

enhancement in the induced magnetic field. 

2. There exist points of intersection inside the microchannel where the induced magnetic field is 

independent of the Hartmann number and the magnetic Prandtl number and these strongly depend on 

the wall-ambient temperature difference ratio. 

3. The effect of the Hartmann number and the magnetic Prandtl number on the induced current density 

is found to have a decreasing nature at the central region of the microchannel. 

4. The magnitude of the skin friction is higher in the case of asymmetric heating  ,0 1  
 in 

comparison with symmetric heating  1  .  

5. The effect of the Hartmann number on the skin friction can be useful in mechanical engineering for 

modelling a system. We can obtain a suitable value of the Hartmann number for which the value of 

the skin friction will be optimum. 

6. This study exactly agrees with the findings of Chen and Weng [31] in the absence of a magnetic 

field. 
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Nomenclature 

 
 b  gap between the plates  

 C   specific heat of the fluid at constant pressure  

 g  gravitational acceleration  

 H  dimensionless induced magnetic field  

 0H  
 
constant strength of the applied magnetic field 

 xH  
 
dimensional induced magnetic field  

 J  induced current density 

 Kn  Knudsen number  

 Ln  fluid wall interaction parameter 
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 M  Hartmann number  

 Pm  magnetic Prandtl number
  

 Pr  Prandtl number 

 mQ   dimensionless volume flow rate 

 T    temperature of the fluid
  

 0T  
 
temperature of the fluid and plates in the reference state 

 U  dimensionless velocity of the fluid  
 u   dimensional velocity of the fluid 

 y  dimensionless coordinate perpendicular to the plates  

 y   dimensional coordinate perpendicular to the plates  
    coefficient of thermal expansion  

 ,t v    dimensionless variables 

    ratio of specific heats  vC C  

    dimensionless temperature 

    molecular mean free path 

 e   magnetic permeability 

    density 

 v   fluid kinematic viscosity 

    thermal conductivity 

    electrical conductivity of the fluid 

 ,t v    thermal and tangential momentum accommodation coefficients, respectively 
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