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Abstract

3D printing is a widespread technology in different fields, such as medicine, construction, ergonomics,
and the transportation industry. Its diffusion is related to the ability of this technique to produce
complex parts without needing for assembly of different components or post-processing. However, the
quality of the parts produced by additive manufacturing could be affected by the fabrication process,
thus leading to the development of different kinds of defects such as porosity or inclusions. Understand-
ing the role played by these defects and promoting strategies that could help reduce their occurrence
represents a key point to allow using 3D printing for structural applications. In this work, 3D printed
parts have been subjected to porosity characterization by using experimental tests on Dogbones sam-
ples subjected to plastic deformation. In particular, X-ray computed micro-tomography (u-CT) has
been employed as an investigation tool for the identification of fabrication defects and for analyzing
the crack growth mechanism that occurs after subjecting samples to quasi-static loading conditions.

Keywords: Additive manufacturing, Selective laser sintering, u-CT analysis, polymer

1 Introduction or energy [3], as well as biomedical [4], ergonomic
[5], or food [6] areas. This occurrence is related

In the last decay, Additive Manufacturing (AM) to the possibility to obtain parts characterized by
has received a growing interest in different engi-

neering fields such as automotive [1], aerospace [2]



Springer Nature 2021 ETEX template

complex shapes in a quite simple way thus reduc-
ing the time-to-market requirements. The method
allows obtaining final parts layer by layer [7] from
different raw materials, e.g., metals [8], polymers
[9], or ceramics [10], as well as it could be employed
for composite fabrication [11, 12], through dif-
ferent fabrication strategies. Among them, Power
Bed Fusion (PBF) is one of the most intresting
techniques since it allows obtaining parts charac-
terized by high accuracy by employing different
kinds of materials. In particular, Selective Laser
Sintering (SLS) is one of the most widespread
methods that permit the fabrication of a 3D
object by an overlay of 2D profile layers. The
powdered material is placed on a printing plate
and a high-power laser is employed to selectively
melt the material. Afterward, the printing plate
descended of one-layer thickness, a new powder
layer is deposited and the scan process is cycli-
cally repeated until the last layer is printed. The
reliability of parts obtained through the SLS tech-
nique is influenced by the process itself [13-16] and
by the quality of the powder [17, 18]. In particu-
lar, 3D printed parts are subjected to geometrical
error [19] and, even more crucial, to the develop-
ment of inner defects, such as porosity or inclusion
[20-22].

Due to that, the spread of 3D printed parts
for structural applications is strictly related to
the understanding of the mechanism that led to
defects developing during the fabrication process,
as well as the role played by them during mechan-
ical loading [19, 23-25]. The role played by these
kinds of defects on mechanical properties has been
evaluated for different kinds of materials, e.g.,
composites [12, 26], metals [8, 27], or polymers [28,
29]. Different strategies have been employed in the
last years for predicting mechanical characteristics
starting from porosity measurement, e.g., analyti-
cal formulations [30, 31] or models developed from
experimental measurements [10, 12, 32]. Typically,
the models developed for predicting AM mechan-
ical properties need to be corrected to take into
account real pores geometry and distribution that
have proven to have a high influence on mechanical
properties [10, 33, 34].

For this reason, it is really important employ-
ing an adequate investigation strategy to per-
mit defects measurement and quantification. In
this way, it could be possible to improve the

mechanical properties and the 3D printing pro-
cess. Among different approaches proposed for
porosity measurements, the y-CT represents one
of the most interesting techniques since it allows
the reconstruction of the defects shapes and their
distribution [35, 36]. Moreover, u-CT allows iden-
tifying the presence of unmelted powder in 3D
printed parts [21]. Overall, u-CT is used in vari-
ous fields of science, such as biology [37], material
science [38, 39|, geology [40], archaeology, cul-
tural heritage [41], and engineering [42], to obtain
quantitative and qualitative information.

In this paper, morphological characterization
of the PA12 samples realized through SLS tech-
nology is presented. In particular, micro-computed
tomography (u-CT), has been employed for the
identification of inner features of 3D printed sam-
ples. Moreover, in order to analyze the role of
porosity during crack propagation, 3D printed
parts have been subjected to quasi-static loading
conditions to induce plastic strain. The mechan-
ical test has been stopped at different plastic
strain levels to carry out an ex-situ u-CT analysis.
This approach allows following the mechanisms
that rule porosity deformation during mechanical
loading, as well as their shapes and distribution.

2 Materials and method
2.1 Material

3D printed samples have been fabricated using
the EOS Forminga P110 3D printer (Eos, Ger-
many), available at the Laboratory of Physical
Prototyping (LPF @QSTAR lab) at the Univer-
sity of Calabria, with a commercial nylon powder
(EOSITIN P/PA2200). The 3D printer’s effective
building volume is equal to 200 mm x 250 mm x
330 mm, while the building speed is 20 mm3/h.
The laser type used for sintering is CO5, 30 W.

PA2200 is a fine powder of polyamide 12 with
a nominal average grain size equal to 56 yum. The
material properties are reported in Tab.1 (referred
to the sintered parts) [43].

Samples have been fabricated with a mixing
ratio of virgin and recycled powder. The process
parameters employed during sample fabrication
are for the inner volume: laser power (P) 21 W,
scanning speed (v) 2500 mm/s, layer thickness (§)
0.1 mm, the hatching scan spacing (HSS) 0.25 mm,
and the chamber temperature (T) 168°C. For the
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Table 1: Mechanical and thermal properties of
sintered parts obtained from PA2200 powder.

Value Unit
Melting temperature 184 °oC
Density 0.90-0.95  g/em?
Tensile modulus 1700150 MPa
Tensile strength 4543 M Pa
Elongation at break 2045 %
Flexural modulus 1240+130 MPa
Ball indentation Hardness 77.61+2 N/mm?
Glass transition temperature  45+3 M Pa

outer surface, i.e., a skin of 300 pm thickness, dif-
ferent values have been employed for both laser
power and scanning speed, i.e., P = 16 W and v
= 1500 mm/s. Therefore, the laser energy density
per unit area, i.e., F4 could be calculated by using
the following equation [36]:

P

vx HSS (1)

Ey=
By using the equation, the following values have
been obtained for the skin and the inner vol-
ume (defined as ”core”) respectively: 42.6 m.J/m?
and 33.6 m.J/m?2. Overall, by considering the per-
centage of total volume printed with each energy
density, a value of 36.3 m.J/m?, obtained as a
weighted average of the two previous values, has
been considered as the reference value for com-
paring results obtained in this work with data
available in the literature for samples fabricated
with similar energy density values.

2.2 Sample geometry and
mechanical tests

The morphological characteristics of the sintered
parts were studied using dogbone-shaped spec-
imens. Samples dimensions have been chosen
according to the standard ASTM-D 638-14 [44].
In particular, the type IV [44] sample geome-
try, has been selected for our purpose. Specimen
dimensions are reported in Fig. 1 (a).

Mechanical tests have been carried out using
an electromechanical testing machine, i.e., MTS
model 42 (MTS Systems Corporation, USA)
equipped with a 5 kN loading cell. From mechani-
cal tests on dogbones samples, stress-strain curves
were obtained. The Digital Image Correlation
(DIC) technique was employed to evaluate the

effective strain. The images were acquired by a
GigE camera (Prosilica GT) with a maximum res-
olution of 2448 x 2050 pixels and a pixel size equal
to 3.45 pm x 3.45 pm, a maximum frame rate of 15
fps, and a 2/3” CCD sensor (Sony ICX625). The
camera, interfaced with a commercial software
(Vic-Snap, Correlated Solutions), acquire images
through a frame grabber (DAQ-STD-8D, National
Instruments). Images have been acquired every 2
s. A workstation with a VIC-2D software package
(Correlation Solution Inc., version 2009.2.0) was
used to analyze the speckle images. Tensile tests
have been carried out at a displacement rate equal
to 0.5 mm/min. A schematic of mechanical tests
carried out to follow the crack propagation mech-
anism is reported in Fig. 1 (b). In particular, the
sample has been subjected to A = 10 mm elon-
gation and, after that, the load has been removed
and a u-CT analysis has been carried out. After
each unloading phase, residual plastic deformation
has been detected on the sample. The procedure
has been repeated until sample failure. Tests have
been carried out on two different samples. For sim-
plicity, the reported results are referred to one
sample since similar results have been obtained for
both dogbones.

2.3 p-CT analysis

X-ray computed micro-tomography analysis has
been carried out to identify morphological char-
acteristics of 3D printed parts. A conventional
X-ray source has been employed for u-CT acquired
data. The experimental setup, @QSTAR Lab at the
University of Calabria, consists of a microfocus X-
ray source (Hamamatsu L12161-07), a flat panel
detector (Hamamatsu C7942SK-05) with a pixel
size of 50 pm, and a sample positioning system.
The X-Ray source emits a conical X-ray beam
with a focal spot of 5 pm and an aperture angle
of 43°.

The X-ray source parameters have been care-
fully calibrated in order to obtain high-quality
images of the samples under study. The following
values have been selected for the current and tube
voltage respectively, i.e., 120 kV and 84 pA and,
therefore, a 10 W value for the beam power, while
the exposure time has been fixed to 500 ms. The
sample-detector and the source-sample distance
have been fixed to 200 mm. In this way, the opti-
cal magnification was equal to 2, thus obtaining
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an equivalent pixel size of 25 pym. A schematic of
the steps followed during p-CT analysis for sam-
ple 3D reconstruction is reported in Fig. 2. We
acquired 1800 projection images with an angu-
lar step equal to 0.2 degrees 2 (b). Subsequently,
the acquired projections are normalized using flat
and dark images and reconstructed 2 (c) using
the Feldkamp-Davis-Kress algorithm [45]. The 3D
rendering 2 (d) and the images analysis have been
carried out by using software dedicated: Fiji [46]
an open-source software, and Avizo a commercial
one.

The tomographic reconstructions of the sample
were aligned in order to identify the same area of
interest for the different loading step conditions
(undeformed, steps 1-5).

The pores characteristics of the dogbone-
shaped specimens have been determined by gray
levels segmentation.

We have eliminated from the pu-CT analysis
results the smallest pores, i.e., pores with a volume
lower than 23 voxels.

3 Results and discussion

3.1 Mechanical test

Tensile tests have been carried out to produce
plastic deformation on samples and to identify the
mechanical properties of additive manufactured
parts. As assessed before, dogbones have been sub-
jected to different loading-unloading steps until
sample failure occurs. The Young modulus and
Poisson coefficient have been obtained through
Digital Image Correlation (DIC). The stress-strain
curve obtained at the first loading step is reported
in Fig. 3(a). In the same figure, is also reported
the measured roughness value (R,) and a typical
sample profile obtained through a contact pro-
filometer. It is possible to observe that the sample
surface is characterized by a very irregular profile,
with several peaks and valleys. Moreover, the R,
value, obtained as the arithmetic average of pro-
file points vertical distance from the mean line, is
significantly higher than typical values obtained
for nylon realized with traditional techniques,
i.e., even below 1 pm [47]. The high measured
roughness could promote cracks development and
reduces the sample mechanical proprieties. This
aspect will be analyzed in the next paragraph.
Elastic properties have been obtained through

DIC analysis. Analyzing the stress-strain curve of
the first step, the following parameters have been
obtained: the Young modulus F = 1.61 GPa, the
Poisson’s coefficient v = 0.4, and the yield stress
Sy = 34 MPa, in agreement with results obtained
in a previous study [43, 48].

Stress-strain curves for all steps are reported
in Fig. 3 (b). By considering the global behavior
obtained by combining stress-strain curves for dif-
ferent steps, it is possible to reconstruct a typical
stress-strain curve of PA12, as shown in Fig. 3 (b)
by the dashed-line curve. Moreover, it is possible
to observe a reduction of the plateau of the plas-
tic strain after the first step. In the elastic region
it is possible to observe the occurrence of a slope
change after the second step. In fact, it is possi-
ble to observe an initial stiff region followed by a
more compliant zone. Moreover, the slope change
point occurs for lower stress values by increasing
the step. This mechanism has been attributed to
material softening due to damage accumulation
and to the occurrence of high-dimension defects.
Similarly, Nizina et al., [49] found a significant
variation in the stress-strain curve of the sample
characterized by the presence of structural defects.
All results are referred to the sample 1 but similar
results have been obtained for the second one.

3.2 Porosity analysis

PA12 3D printed samples, fabricated through SLS
and dogbone shaped, have been employed for
morphological characterization. The inner defect
evolution in function of plastic strain has been
evaluated by subjecting the sample to loading-
unloading steps. After each loading-unloading
step, the sample has been investigated by u-CT.
Porosity has been characterized qualitatively and
quantitatively by considering the volume, diame-
ter, and sphericity of the pores.

The porosity volume percentage measured at
each loading-unloading step is reported in Fig. 4
(a). In particular, the total porosity volume per-
centage has been calculated as global pores volume
divided by sample volume. Moreover, since differ-
ent printing parameters have been employed for
sample skin and core, porosity percentages have
been calculated also in these areas. Specifically,
the core porosity has been obtained as the volume
of pores measured into the inner volume divided
by core volume. Similarly, the skin porosity is
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obtained as the volume of pores observed on the
outer volume divided by skin volume. We mea-
sured a total porosity percentage of around 2.8%
in the as-built condition, i.e., before the applica-
tion of the external load. However, by considering
only the core volume, this value increase up to
3.7% while for the skin it was found a very low
porosity value, i.e., 1%, demonstrating a reduction
of pores occurrence in correspondence of sample
outer surface that could be attributed to the dif-
ferent printing parameters. In Fig. 4 (b) we show
xy, ©z, and yz sections of the undeformed sample
to emphasize the pore distribution in the core vol-
ume (in gray) and in the skin volume (in orange).
Overall porosity volume percentage obtained on
the undeformed sample for the core is in agree-
ment with results obtained on the same material
by other authors [28, 50, 51] for samples fabri-
cated with similar energy density values, as shown
in Fig. 5. A summary of the main parameters
employed in each work for samples fabrication is
reported in Tab. 2.

As might be expected, porosity percentage
increases by increasing the loading step, i.e., sam-
ple plastic deformation. The total porosity per-
centage value increases up to 4.5% at the last
loading step, with an increase of 60% if com-
pared with the undeformed sample measurement.
Similarly, increments have been also observed for
the core and the skin, i.e., 62% and 53% respec-
tively. This result could be addressed to two
different mechanisms: (i) an increase of the pores
volume due to an external load and (ii) micro-
crack development that leads to pores coalescence
mechanisms. Moreover, by increasing the plas-
tic deformation, the porosity percentage increase,
and the pore size become detectable: in the unde-
formed sample, some pores are lower than the
u-CT resolution. However, it is also possible to
notice a small decrease in the porosity percent-
age value for both total porosity and skin porosity
at the last loading step, i.e., before sample fail-
ure (Fig. 4 (a)). This result has been explained by
considering the occurrence of a large crack in the
last loading step at the outer surface. In fact, it
is well known that, during crack propagation, the
stored energy is released. For this reason, some
small pores could be re-closed during crack propa-
gation, thus they are not still detachable by p-CT
analysis. This mechanism has been further ana-
lyzed by considering porosity variation measured

at three different sections, i.e., the crack section
(A1), a section far from the fracture (A3), and,
finally, a generic section between the previous ones
(A2). Results are reported in Fig. 6. It is possi-
ble to notice an increase in the porosity in section
A1 for all the analyzed loading steps that could
be attributed to the crack propagation as well as
to the two mechanisms described above. On the
opposite, for both A2 and A3, it was observed a
decrease in porosity at step 5, i.e., just before sam-
ple failure. This result confirms that the decrease
is related to the energy release that occurs during
crack propagation.

The occurrence of pores growth and coales-
cence, discussed above, is confirmed by results
reported in Fig. 7. The sections shown in Fig. 7
are referred to a generic 3D cutting plane of the
same sample at different loading steps, i.e., in the
undeformed condition, before the load application,
and at the last step, before sample failure. In Fig.
7, it is possible to notice the increase in the pore
volume after sample plastic deformation. In par-
ticular, for the pore indicated by the black arrow,
volume variation has been evaluated. It was found
a volume increase of 92%.

Moreover, in Fig. 7 is reported the coales-
cence mechanisms observed after sample loading-
unloading steps. This mechanism contributes to
the development of inner cracks, characterized by
an irregular shape, that could act as stress concen-
tration points [27]. As before, volume increase has
been evaluated and it was found a 53% increase in
the overall volume.

3.3 Pores geometrical characteristics

The influence of external loading on porosity
has been globally evaluated considering porosity
geometrical parameters, i.e., pores volume, diam-
eters, and sphericity. In particular, the diameter
of the pores (d) and sphericity (S) were evaluated
employing the following equations:

36V

a= /¥ @)
7T1/3(6V)2/3
S=—"1" 3)

where V and A are the pores’ volume and
pores’ surface respectively. Results are reported
in Fig. 8 (a), (b), and (c¢) while in Table 3 it
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Table 2: Printig parameters employed for samples fabrication in comparison with those employed
by Pavan et al. [28], by Dewful et al., [50] and by Stichel et al. [51].

Laser Scanning Scan Energy layer

power [W] speed [mm/s] spacing [mm] Density [mJ/mm?] thickness [pm]
This work (core) 21 2500 0.25 33.6 100
This work (skin) 16 1500 0.25 42.6 100
Pavan 31.5 3000 0.3 35 120
Dewulf 44 4190 0.3 35 120
Stichel 21 2500 0.25 33.6 100

has been reported the weighted average values
of each parameter for all steps, (the parameters
have been weighted with respect to the num-
ber of pores observed in each class). Results are
referred to the total sample, i.e., skin and core
have not been evaluated separately. In fact, even
if pore concentration is different for the two areas,
no substantial geometrical differences have been
observed between pores that occur at the skin
and at the core. Parameters have been reported in
function of the percentage of pores, calculated as
the number of pores of each class divided by the
total number of pores multiplied by 100. The anal-
ysis allows identifying the mechanism that rules
samples’ failure in relationship with fabrication
defects.

Table 3: Weighted average values of pores vol-
ume, diameter and sphericity obtained after
different loading steps.

step volume [um3]  diameter [um]  sphericity
Undeformed 1.34x106 126.05 0.62
Step 1 1.45x106 129.73 0.61
Step 2 1.72x10° 138.23 0.60
Step 3 1.89x106 142.36 0.59
Step 4 2.16x106 146.71 0.57
Step 5 2.16x10° 147.10 0.59

As regards the number of pores-volume plot,
by moving from the undeformed condition to step
5, the number of pores characterized by a small
volume decreases while the number of high vol-
ume pores increases (Fig. 8 (a)). It is important to
highlight that in steps 4 and 5 has been noticed the
occurrence of some pores that are characterized by
a very high volume, i.e. higher than 8x10° um?3.

The development of these large pores is related
not only to the increase of their volume due to
plastic deformation but also to the coalescence
phenomenon and crack propagation described pre-
viously. Moreover, as reported in Tab. 3, the
volume weighted average value increases by 61 %,
from 1.34x10° pm? in the undeformed condition
to 2.16x10°% um? at the last step.

The diameter distribution is reported in Fig. 8
(b). The weighted average value of pores diame-
ters in the undeformed condition was found equal
to 126 pm. Overall, by increasing sample plas-
tic deformation, it was found an increase in the
pores that are characterized by higher diameters
thus confirming the mechanism described above.
Moreover, the average pore diameter value at the
last step was found to be equal to 147 pum, with
an increase of 17% if compared with the initial
value. The global behavior was found to be close
to results obtained on the same material by other
authors [28, 50, 51] with similar values of energy
density employed during 3D printing, as shown in
Fig. 9. In particular, by comparing results with
data obtained by Stichel et al. [51], a very simi-
lar modal value has been obtained while this value
is quite lower than those obtained by the other
works [28, 50]. Overall, the global distribution of
the diameter curve is similar and, as obtained by
Dewful et al [50] and by Stichel et al. [51], the
percentage of pores that are characterized by the
modal value is around 60%.

Finally, the pores’ aspect ratio in function
of the loading step has been analyzed through
sphericity, as shown in Fig. 8 (c¢) and Table 3. After
sample plastic deformation, the pores’ aspect ratio
is modified, resulting in lower sphericity values.
However, moving from step 4 to step 5, it is
possible to notice an inversion of the trend, i.e.,
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the sphericity weighted average value increases,
as reported in Tab. 3. This behavior could be
attributed to energy release due to crack propaga-
tion. In fact, pores deformation has an elastic com-
ponent that is released during crack propagation
thus permitting pores to regain a more spherical
shape. Overall, by moving from the undeformed
conditions to the last loading step, pores geome-
try is modified, resulting in higher diameters and
more irregular shapes, i.e., the sphericity weighted
average value decreases by 5%, from 0.62 to 0.59.

The main interesting parameters have been
correlated to further highlight the geometric mod-
ification of pores during tensile tests, as shown
in Fig. 10. In particular, sphericity and surface
pores’ are reported in function of their volume
for undeformed conditions (Figs. 10 (a) and (c))
and for the last step (Figs. 10 (b) and (d)). It is
possible to notice a significant increase in pores’
surface after sample plastic deformation as well
as a decrease in the sphericity parameter. This
behavior is accompanied by an increase in the
pores’ volume.

3.4 Crack propagation mechanism

The pu~-CT analysis allows also to follow the crack
propagation mechanism. Fig. 11 shows the crack
evolution on 3D views for different loading steps.
The reported 3D cutting plane of the same sample
at different loading steps are referred to sections
where the main crack occurs, i.e., the crack that
leads to sample failure.

Cracks develop typically from the sample sur-
face. The occurrence of porosity near to outer
surface contributes to crack propagation through
the coalescence mechanism. Different macroscopic
cracks have been observed and, almost all of them
originated from surface roughness. Moreover, the
presence of inner defects, originated from large
pores, modifies the sample failure mechanism. In
fact, polymers typically exhibit a ductile failure
mechanism, with the occurrence of a large necking
area before sample fracture. Conversely, for PA12
samples it was observed a fragile failure mech-
anism, i.e., sudden sample collapse without any
necking. Moreover, fracture surfaces are character-
ized by dimple morphology, with a large presence
of pores. Overall, the entire section is subjected
to reduction as shown by the graph reported in
Fig. 12 (a). Sample profiles have been further

extracted and average values at each step have
been compared. It is clearly noticeable a reduction
in both sample width and thickness by increasing
the loading step ( Fig. 12 (b)).

4 Conclusions

Additive manufactured sample morphology has
been characterized through u-CT analysis in order
to evaluate the presence of production defects,
i.e., porosity, as well as their influence on failure
mechanism. Analysis reveals the presence of a high
percentage of porosity in 3D printed parts, due to
the fabrication process. Plastic deformation leads
to an increase of the porosity percentage mea-
sured even if, right before sample failure, a slight
decrease was observed due to the energy release
mechanism. Plastic strain modify pores volume
and their aspect ratio resulting in more elongated
defects and, in some cases, leads to the coales-
cence of two or more pores into a single bigger one.
That mechanism could be dangerous for structural
parts since it leads to the development of macro-
defects that reduce significantly sample resistance.
Moreover, high roughness acts as a crack initia-
tion point. Overall, sample failure is dominated
by a fragile behavior, due to the high porosity
percentage.
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Fig. 1: (a) Schematic of Dogbones samples employed for mechanical characterization and (b) loading
steps representation.
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Fig. 10: (a) Pores volume in function of sphericity (where 1 is obtained for a perfect sphere) and (b)
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