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Effect of inelastic scattering on spin entanglement detection through current noise
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We study the effect of inelastic scattering on the spin entanglement detection and discrimination
scheme proposed by Egues, Burkard, and Loss [Phys. Rev. Lett. 89, 176401 (2002)]. The finite-
backscattering beam splitter geometry is supplemented by a phenomenological model for inelastic
scattering, the charge-conserving voltage probe model, conveniently generalized to deal with entan-
gled states. We find that the behavior of shot-noise measurements in one of the outgoing leads
remains an efficient way to characterize the nature of the non-local spin correlations in the incoming
currents for an inelastic scattering probability up to 50%. Higher order cumulants are analyzed, and
are found to contain no additional useful information on the spin correlations. The technique we
have developed is applicable to a wide range of systems with voltage probes and spin correlations.

PACS numbers: 73.23.-b, 03.65.Yz, 72.70.+m

I. INTRODUCTION

Electron spin has various crucial properties that make
it an ideal candidate for a robust carrier of quantum en-
tanglement in solid state systems. Its typical relaxation
and dephasing times can be much larger than any other
electronic timescale [1, 2], in particular in semiconductor
heterostructures, where its controlled manipulation be-
gins to be a reality [3]. This makes electron spin very
valuable not only in the context of spintronics [4], but
also in the path to a scalable realization of a potential
quantum computer.

Moreover, the possibility of demonstrating non-local
quantum entanglement of massive particles such as elec-
trons is of conceptual relevance in itself, since it is at the
core of the quantum world weirdness. Quantum optics
are far ahead in this respect, and present technology can
already entangle [5], teleport [6] or otherwise manipulate
quantum mechanically [7] the polarization state of pho-
tons, and even commercial solutions have been developed
[8] for completely secure cryptographic key exchange via
optical quantum communication.

In the context of solid state the equivalent feats are
far away still, due to the additional difficulties imposed
mainly by the fact that massive particles such as electrons
suffer from interactions with their environment, which
can be in general avoided in the case of photons. This in
turn leads to strong decoherence effects, which degrades
the entanglement transportation. Sometimes these dis-
ruptive effects can be minimized in the case of electron
spin with the proper techniques [3]. Still, the problem of
controlled spin manipulation and spin detection are two
great hurdles to be tackled in the long path to spin-based
quantum computation [9]. The main difficulty in the ma-
nipulation problem is that all the operations available
in usual electronics address electron charge, being com-
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pletely independent of the electron’s spin, unless some
additional mechanism involving, e.g., external magnetic
fields [4, 10], ferromagnetic materials [11], or spin-orbit
coupling [12, 13] are relevant. Such mechanisms usually
correlate spin states to charge states, which allows to
manipulate and detect the charge states via more con-
ventional means.

Several recent theoretical works have specifically stud-
ied the influence of an electromagnetic environment
[14, 15, 16] and the decoherence through inelastic pro-
cesses [17, 18] on orbital and spin-entangled states, such
as those that are the subject of the present work. Gen-
erally, in all of these cases some type of spin filter was
necessary to measure the Bell inequalities, which makes
their experimental realization rather challenging.

Another interesting possibility to manipulate and de-
tect spin states with electrostatic voltages is through
Pauli blocking, which appears as a spin-dependent ‘re-
pulsion’ between two electrons due to Pauli exclusion
principle, as long as the two electrons share all the re-
maining quantum numbers. This peculiarity is therefore
specific of fermions, and has no analog in quantum optics.
An example of the potential of such approach was illus-
trated in Ref. 19. It relied on the use of the mentioned
Pauli blocking mechanism in a perfect four-arm beam
splitter supplemented by the bunching (antibunching)
behavior expected for symmetric (antisymmetric) spatial
two-electron wavefunctions. This was done through the
analysis of current noise [19], cross-correlators [20], and
full counting statistics (FCS) [21]. It was also shown that
it is possible to distinguish between different incoming
entangled states [20, 22]. In Ref. 22 it was demonstrated
how the shot noise of (charge) current obtained in one
of the outgoing leads was enough to measure the precise
entangled state coming in through the two input arms,
and to distinguish it from a classical statistical mixture
of spin states. Finite backscattering and arbitrary mix-
tures in the spin sector were also considered in Refs. 23
and 24. Two channel leads and a microscopic description
of the spin-orbit interaction were also recently analyzed
in great detail [24].
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In this work we will analyze the robustness of the en-
tanglement detection scheme proposed in Ref. 22 in the
presence of spin-conserving inelastic scattering and finite
beam-splitter backscattering for various entangled cur-
rent states. Although the spin sector is not modified by
scattering, inelastic scattering changes at least the energy
quantum number of the scattered electrons, and since
Pauli exclusion principle does no longer apply to elec-
trons with different energy, we should expect such inelas-
tic processes to degrade the performance of the detection
scheme. From a complementary point of view, viewing
the entangled electron pairs as wavepackets localized in
space, it is clear that inelastic scattering will cause delays
between them that will in general make them arrive at
the detectors at different times, thereby lifting the Pauli
blocking imposed by their spin correlations [49].

Moreover, as noted in Refs. 23 and 24, the presence
of backscattering introduces spurious shot noise that is
unrelated to the entanglement of the source. Assuming
known backscattering but, in general, unknown inelastic
scattering rate we show that the scheme remains valid in
certain range of parameter space, and point to a modi-
fied data analysis to extract the maximum information
out of local shot noise measurements. We further study
the information that may be extracted from higher order
cumulants of current fluctuations.

We will work within the scattering matrix formalism,
and to describe inelastic scattering we will employ a mod-
ification of the fictitious voltage probe phenomenological
model [25, 26, 27] generalized to include instantaneous
current conservation [28] in the presence of spin corre-
lated states. This approach relies on phenomenological
arguments and defines a scattering probability α that
is used to parametrize inelastic effects. Elastic scatter-
ing has also been formulated within this language [29].
The validity of the model has been widely discussed, in
general finding good qualitative agreement with micro-
scopic models [30, 31, 32, 33] and experiments [34]. Re-
cently it was demonstrated to become equivalent to mi-
croscopic phase averaging techniques at the FCS level in
some limits and setups [35] (clarifying some apparent dis-
crepancies with classical arguments [36]). Also recently,
it has been applied to study the effect of spin relaxation
and decoherence in elastic transport in chaotic quantum
dots [37, 38]. The scheme remains attractive as a first
approximation to inelastic (or elastic) processes. Alter-
natively, it is a good model for a real infinite-impedance
voltage probe, a common component of many mesoscopic
devices. The generalization we present here is specifically
targeted towards the computation of the FCS of meso-
scopic systems with inelastic scattering and incoming
scattering states with arbitrary entanglement properties.
The problem of how to apply such decoherence model to
the particularly interesting case of non-locally entangled
input currents has not been previously discussed to the
best of our knowledge, except in Ref. 17, where current
conservation was not taken fully into account.

This paper is organized as follows. In Sec. II we discuss

FIG. 1: (Color online) The beam splitter geometry fed with
pairwise non-locally entangled electron currents or polarized
currents. The action of the spin rotation via Rashba spin-
orbit coupling in one of the input leads changes noise in the
output leads dramatically. Inelastic transport is modeled be-
tween the entangler and the spin rotation region by means of
one or more fictitious probes. Shot noise measured in termi-
nal R1 as a function of θ can be used to detect the nature of
the incoming electron correlations.

the beam-splitter device as an entanglement detector in
the presence of inelastic scattering. In Sec. III we give
a short account of the technique we will employ to com-
pute the FCS. Further details on our implementation of
the fictitious probe scheme can be found in Appendix A.
A second Appendix B clarifies the connection between
the Langevin approach and the employed technique in a
simple setup, and also illustrates to what extent it suc-
ceeds or fails when it spin-correlations are introduced.
The analysis of the obtained results for the operation of
the device are explained in Sec. IV. A summarized con-
clusion is given in Sec. V.

II. BEAM-SPLITTER DEVICE WITH

INELASTIC SCATTERING

The system we will study is depicted in Fig. 1. It is an
electronic beam splitter patterned on a two-dimensional
electron gas (2DEG) with two (equal length) incoming
and two outgoing arms, such that the transmission prob-
ability between the upper and the lower arms is T . The
beam splitter is assumed to have also a finite backscatter-
ing amplitude whereby electrons get reflected back into
the left leads with probability 1 − TB. We have consid-
ered two possibilities for backscattering: the technically
simpler case without cross reflection, for which electrons
scatter back always into their original incoming leads,
and which we will term simple backscattering; and the
fully symmetric case, whereby the probability of going
from any upper lead to any lower lead remains T , be
it on the left or the right, which we will call symmetric

backscattering. This distinction is only relevant when
there is a finite inelastic scattering on the leads, and
both give very similar results in any case, so we will focus
mainly in the simple backscattering case [50]. Other au-
thors [24] have previously studied the effect of backscat-
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tering in this geometry, although considering that only
the electrons in the lead with the backgates can backscat-
ter, whereas in our case the two incoming leads are equiv-
alent (the scattering occurs in the beamsplitter). The
effect, as we shall see, is however qualitatively equivalent
to their result, which is that backscattering effectively
reduces the oscillation amplitude of noise with the spin
rotation angle.

We connect the right arms to ground and the two in-
coming arms to a reservoir that emits non-local spin-
correlated electron pairs, biased at a voltage −V . For
definiteness we choose these pairs so that the ẑ spin com-
ponent of the electron coming at a given time through
lead L1 is always opposite to that of the corresponding
electron coming simultaneously through lead L2. They
could be or not be entangled, depending on the charac-
teristics of the source and the leads from source to split-
ter. Time coincidence of pairs is assumed to within a
timescale τ∆ that is shorter than any other timescale in
the system, such as ∆t ≡ h/eV . This implies two con-
straints. On the one hand, if the source is an entangler
such as e.g. that of Refs. 39, 40, 41, this would mean
that the superconductor emitting the correlated pairs has
a large gap ∆ as compared to the bias voltage. On the
other hand, the length of the leads connecting the entan-
gler to the beam-splitter device should be of equal length
to within vF ∆t accuracy.

A local spin-rotation in lead L1 is implemented by the
addition of backgates above and below a section of lead
L1. Applying a voltage across these backgates the struc-
ture inversion asymmetry of the 2DEG is enhanced, in-
ducing a strong Rashba spin-orbit coupling in that region
of the 2DEG in a tunable fashion without changing the
electron concentration [42]. This in turn gives rise to a
precession of the spin around an in-plane axis perpendic-
ular to the electron momentum, which we chose as the
ŷ axis, resulting in a tunable spin rotation of an angle θ
around ŷ after crossing the region with backgates.

The idea behind this setup is that the spin rotation can
change the symmetry of the spatial part of the electron
pair wavefunction, thus affecting the expected shot noise
in the outgoing leads, which is enhanced for even and
suppressed for odd spatial wavefunctions. The switch-
ing from bunching to antibunching signatures in the shot
noise as a function of θ is enough to identify truly en-
tangled singlets in the incoming current. Likewise, a θ
independent shot noise is an unambiguous signal of a
triplet incoming current, since a local rotation of a triplet
yields a superposition of triplets, preserving odd spatial
symmetry and therefore, antibunching. A current of sta-
tistically mixed anticorrelated electron spins can also be
distinguished from the entangled cases from the ampli-
tude of the shot noise oscillations with θ. Thus, this de-
vice was proposed as a realizable entanglement detector
through local shot noise measurements [22, 23, 24].

As discussed in the introduction, inelastic scattering
due to environmental fluctuations could spoil the phys-
ical mechanism underlying this detector, which is Pauli

exclusion principle, and should therefore be expected to
affect its performance in some way. The implementa-
tion of inelastic scattering in ballistic electron systems
can be tackled quite simply on a phenomenological level
through the addition of fictitious reservoirs within the
scattering matrix formalism [27]. The necessary gener-
alization to deal with entangled currents and a simple
scheme to derive the FCS in generic systems with addi-
tional fictitious probes is presented in appendix A. We
model spin-conserving inelastic scattering by the addi-
tion of two fictitious probes (one for spin-up and another
for spin-down) in lead L1, depicted as a single one in Fig.
1. We have numerically checked that the addition of an-
other two fictitious probes in lead L2 gives very similar
results for the shot noise through the system, so we will
take only two in the upper arm for simplicity. This is
also physically reasonable if we consider only decoher-
ence due to the backgates deposited on the upper arm to
perform the local Rashba spin-rotation, which provide a
large bath of external fluctuations that can cause a much
more effective inelastic scattering. The parameter that
controls the inelastic scattering probability is α ∈ [0, 1],
being α = 1 the completely incoherent limit.

In the following analysis we will inject into the input
arms of the device currents with different types of initial
non-local electron-pair density matrix,

ρ̂ =
1

2
(|L1↑; L2↓〉〈L1↑; L2↓| + |L1↓; L2↑〉〈L1↓; L2↑|)

+
β

2
(|L1↓; L2↑〉〈L1↑; L2↓| + |L1↑; L2↓〉〈L1↓; L2↑|) , (1)

namely, (i) statistical mixtures of up and down classically
correlated electrons (diagonal density matrix, β = 0),
which we will also call spin-polarized currents, (ii) EPR-
type singlet spin-entangled pure states (β = −1), and
(iii) idem with ms = 0 triplet states (β = 1). We will use
subindexes s, t, and m to denote the pure singlet, pure
ms = 0 triplet and statistically mixed incoming states.
Note that this expression refers to pairs of electrons that
arrive at the same time at the device, so that this density
matrix is actually expressed in a localized wavepacket
basis.

Our goal is to ascertain to what extent, for a split-
ter transmission T , a finite backscattering 1 − TB and
finite and unknown amount of inelastic scattering α in
the input leads, the shot noise in one of the output arms
(R1) as a function of rotation angle θ could still be used
to demonstrate the existence or not of initial entangle-
ment, and that way provide a means to distinguish truly
quantum-correlated states from statistically correlated
(unentangled) ones.

III. THE TECHNIQUE

In Appendix A we give a detailed account of the
method we have used, which can be employed to compute
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the FCS of a generic mesoscopic conductor with instanta-
neous current conservation (on the scale of the measuring
time) in the attached voltage probes, and generic spin
correlations in the incoming currents. We work within
the wave packet representation, whereby the basis for
electron states is a set of localized in space wavefunctions
[43]. A sequential scattering approximation is implicit,
which however yields the correct ω = 0 current fluctua-
tions in known cases with inelastic scattering, see, e.g.,
Appendix B. We summarize here the main points as a
general recipe for practical calculations.

Given a certain mesoscopic system with a number of
biased external leads connected to reservoirs, one should
add the desired voltage probes to model inelastic scatter-
ing (or real probes), and perform the following steps to
compute the long-time FCS of the system:

(i) Define the (possibly entangled) incoming states in
the external leads for a single scattering event without
the probes,

|in〉 = R[{â+}]|vac〉. (2)

Here R[{â+}] is an arbitrary combination of creation
operators a+

n of incoming electrons (in the localized
wavepacket basis) acting on the system’s vacuum. In
our case it would create state (1).

(ii) Add the N two-legged voltage probes (one chan-
nel per leg) with individual scattering matrices as in
Eq. (A1), and compute the total S-matrix of the multi-
terminal system, Snm. Note that Snm(t, t′) in our tem-
poral basis is assumed to be constant, i.e., independent
of t, t′, which corresponds to an energy independent scat-
tering matrix in an energy basis.

(iii) Define outgoing electron operators b̂+
n =

∑

m Snmâ+
m. To implement instantaneous current con-

servation we expand our Hilbert space with N integer

slave degrees of freedom ~Q = {Qi}, which result in the
following outgoing state after one scattering event,

|out; ~Q〉 ≡ R[{b̂+}]
N
∏

i

[

b̂+
pi;1′ b̂

+
pi;2′

]g(Qi)/2

|vac〉. (3)

These Qi are counters of total charge accumulated in the

probes. The notation here is that b̂+
pi;l

creates the scat-
tered state resulting from an electron injected through
leg l = {1′, 2′} of the two-legged probe i. g(Q) encodes
the response of the probe to a certain accumulated charge
Q. The specific form of g(Q) is not essential as long as
it tends to compensate for any charge imbalance in the
probe. One convenient choice is given in Eq. (A15),
which yields in our setup a minimal tripled-valued fluc-
tuation interval of Qi ∈ [−1, 1]. Note also that state

|out; ~Q〉 in the above equation is nothing but U∆t|φe
j
~Q〉

of Appendix A.
(iv) Compute the 3N × 3N W matrix

W ~Qb
~Qa

(~λ) = 〈out; ~Qa|P̂~Qb
χ̂j(~λ)|out; ~Qa〉, (4)

which we write in terms of the moment generating op-

erator χ̂j = ei
∑

n
λn(N̂out

n −N̂ in
n ), where N̂ are the number

operators of electrons scattering in event j. The opera-
tor P̂~Qb

projects onto the subspace of electron states that

have a total of Qbi−g(Qai) particles scattered into probe
i, i.e., states in which the probe i has gone from Qai to
Qbi excess electrons. If the incoming state is not a pure
state, one should perform the statistical averaging over

the relevant |out; ~Q〉 states at this point.
(v) Compute the resulting long-time current moment

generating function χI(~λ) by taking the maximum eigen-

value of matrix W . The charge generating function χ(~λ)

is obtained simply by taking the power M of χI(~λ), cf.
Eq. (A17), where M = eV t/h is the average number of
emitted pairs from the source after an experiment time t
at a bias V .

We make use of this method in our particular system
by setting a single counting field λ on output lead R1,
where we wish to compute current fluctuations. This way
we derive results for χI and current cumulants [see Eqs.
(A18) and (A19)] from the corresponding W matrix (4)
for the different types of injected currents of Eq. (1).

While explicit expressions for the current cumulant
generating function lnχI(λ) are in general impossible due
to the large dimensions of the W matrix (9 × 9 in this
case), it is always possible to write χI in an implicit form
that is just as useful to sequentially compute all cumu-
lants, namely, the eigenvalue equation

det
[

W (λ) − χI(λ)1
]

= 0, (5)

supplemented by the condition χI(0) = 1. By differenti-
ating this equation around λ = 0 a number of times and
using (A18), one can obtain the various zero-frequency
current cumulants on arm R1.

In the next section, instead of giving the general ex-
pression of W , which is rather large, we provide the ex-
plicit expressions for χI and shot noise obtained in vari-
ous useful limiting cases, together with plots of the first
cumulants in the {T, TB, α, θ} parameter space.

IV. RESULTS

In this section we will analyze the performance of the
beam splitter device of Fig. 1 as a detector of quan-
tum correlations in the incoming currents through the
shot noise or higher current cumulants induced in arm
R1. We will first make connection with the results in the
literature [22] by computing the shot noise in an elas-
tic splitter, and then we will generalize them to finite
inelastic scattering probabilities and finite backscatter-
ing. We will thus establish tolerance bounds for such
imperfections in the detector. Finally, we will address
the question of whether the measurement of higher order
current cumulants could improve the tolerance bounds of
the device.
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FIG. 2: (Color online) In the upper plot (a) we represent
the current shot-noise in units of e3V/h in lead R1 for the
singlet and ms = 0 triplet incoming states, as a function of
spin rotation angle θ and decoherence strength α. The same
for the polarized spin state case is presented in the lower plot
(b). Inter-lead transmission probability between upper and
lower arms T is fixed to 0.5, and no backscattering (TB = 1)
is assumed.

A. Shot noise

In the elastic transport limit α = 0 and with arbitrary
intralead backscattering strength 1 − TB, the following
expression for the shot noise is obtained,

S =
e3|V |

h
TB [1 − TB + (1 − β)TBT (1 − T )(1 + cos θ)] ,

(6)
where constant β corresponds to the different types of
incoming current, cf. Eq. (1). Note that this expression
holds for simple or symmetric backscattering (as defined
in Sec. II). As shown by Eq. (6), for α = 0 the amplitude
of the θ dependence is enough to distinguish between the
different types of states, if T and TB are known. As
could have been expected, the triplet current noise (β =
1) is θ independent, since the local spin rotation only
transforms the ms = 0 triplet to a different superposition
of the other triplet states, none of which can contribute
to noise since each electron can only scatter into different
outgoing leads due to the Pauli exclusion principle.

However, in the presence of a strong coupling to the en-
vironment, α = 1, the shot noise behaves very differently.
Due to the complete incoherence of scattering, which
changes the orbital quantum numbers (or arrival times

at the detector) of the incoming states, the bunching-
antibunching switching disappears. Therefore Ss, St and
Sm become equal and θ independent. In particular, for
simple backscattering we have

Ss = St = Sm =
e3|V |

h

TB

(1 + TB)3
[

1 + 2T 2
BT (1 − T )

−TB(1 + 3T 2 − 6T )− T 3
BT 2(2 + TB)

]

. (7)

These features are illustrated in Fig. 2, where we have
plotted the current shot-noise in lead R1, normalized to
the constant e3V/h, [51] as a function of the spin rotation
angle θ and the decoherence parameter α, at TB = 1 and
T = 1/2:

Ss

e3V/h
=

1

2
[1 − (α − 1) cos θ] − α

32
(5 + 3α), (8)

St

e3V/h
=

α

32
(11 − 3α), (9)

Sm

e3V/h
=

1

4
[1 − (α − 1) cos θ] − α

32
(3 − 3α). (10)

Note that at θ = π these three shot noise curves are all
equal. Note furthermore that for α = 1 we have Ss =
St = Sm = (e3V/h)T (1 − T ) which is 1/4 in normalized
units. The cosine-type dependence of the current noise
with θ, S(θ) = S(π) + ∆S cos2(θ/2), where ∆S = S(θ =
0)−S(θ = π), holds for any value of α < 1 in the singlet
and polarized cases. The oscillation amplitude of the
noise for the singlet case is always twice the oscillation
amplitude of the polarized one. In contrast, the triplet
shot noise (and all higher cumulants for that matter)
remains always θ independent for any α and TB.

Since our aim in this study is to find a way to distin-
guish between the different incoming states of Eq. (1), we
will disregard from now on the trivial case of the triplet
current, which is easily detectable by its θ-independence,
and focus entirely on the distinction between the singlet
and mixed state cases. In these two cases, when TB < 1,
the oscillatory behavior with θ remains, although it is
no longer purely sinusoidal. Besides, its oscillation am-
plitude quickly decreases with increasing backscattering,
making the entanglement detection scheme harder. How-
ever, we will now show that, knowing only the value of
the shot-noise at zero spin rotation angle (or alternatively
the amplitude ∆S), it is possible to distinguish between
the different incoming states for not-too-strong decoher-
ence.

B. Robust entanglement detection scheme

Tuning once again the beam splitter to the symmetric
T = 1/2 point, which turns out to be the optimum point
of operation for entanglement detection, we notice from
Fig. 2 that the analysis of the θ dependence of the shot-
noise at an arbitrary and unknown value of α indeed
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FIG. 3: (Color online) Normalized value of shot-noise in lead
R1 at zero spin rotation angle as a function of beam splitter
transmission TB for T = 0.5. Solid (blue) lines correspond to
singlet incoming current whereas dashed (red) lines account
for the polarized one. In both cases, different values of inelas-
tic scattering probability have been considered, from α = 0
(upper curves) to α = 1 (lower curves) in steps of 0.25. Inset:
the same for the oscillation amplitude with θ of the shot-noise.

precludes from a clear distinction of the singlet and mixed
state cases.

A more complete picture can be obtained by plot-
ting the value of the shot-noise at θ = 0 in the interval
α ∈ [0, 1] as a function of TB. This is done in Fig. 3
for the case of simple backscattering. Solid (blue) lines
correspond to singlet incoming current, and dashed (red)
lines to the polarized one. Moreover, the upper curve
in both sets of curves accounts for the case of α = 0,
and for the next ones the value of the inelastic scatter-
ing parameter increases, in steps of 0.25, until α = 1 for
the lower curves (which coincide for both the entangled
and polarized cases). The same analysis can be done for
the behavior of the amplitude ∆S as a function of TB,
as shown in the inset of Fig. 3 (given also for simple
backscattering). In this latter case, the amplitudes for
both the singlet and the polarized currents have in fact
a very simple analytical form, the singlet case ranging
from T 2

B to 0 and the polarized one from T 2
B/2 to 0 as we

sweep from α = 0 to α = 1. Therefore, we see how the
θ-independent background noise introduced by the finite
backscattering in the main plot of Fig. 3, which could in
principle degrade the performance of the entanglement
detector as mentioned in Ref. 23, can be filtered out by
measuring the amplitude ∆S. We also note that if a sym-
metric backscattering is considered, the resulting curves
for Fig. 3 are qualitatively the same, and therefore it
does not affect the above discussion.

We can observe in both plots of Fig. 3 that if α is
unknown, as it is usually the case in an experiment, the
classical and quantum currents are distinguishable from
a single noise measurement (or two in the case of the
inset) only if its value is found to lie outside of the over-
lapping region between the two sets of curves. According
to this model, this should always happen for values of
inelastic scattering smaller than at least one half. In the

FIG. 4: (Color online) Oscillation range with angle θ of the
skewness in lead R1, in units of e4V/h, as a function of beam-
splitter transmission between left and right arms TB . T is
fixed to the optimal point T = 0.5. Different oscillation ranges
for different values of inelastic scattering are indicated by dif-
ferent shades of gray, ranging from pale gray for α = 0 to
dark gray for α = 1 in steps of 0.25. The case of singlet-
entangled incoming current is considered in plot (a), whereas
in plot (b) the incoming current is in a polarized state. The
actual oscillation of skewness with Rashba spin rotation angle
for entangled current (solid blue lines) and polarized current
(dash red lines) is plotted in the inset of (b) (see main text).

case of the main figure, even higher values of α can be
distinguished for values of TB close to one. In any case,
the values of α for which the noise measurement is no
longer able to distinguish a singlet entanglement from a
statistically mixed case are rather high, α ∈ [0.5, 1]. This
means that, in a realistic situation where decoherence is
not too strong, shot-noise measurements remain enough
for determining if the source feeding the beam-splitter is
emitting entangled or statistically mixed states.

C. Higher order cumulants

We could ask whether it is possible to distinguish be-
tween incoming singlet-entangled and polarized currents
for a wider range of parameters α by analyzing higher
order cumulants. The short answer is ”no”.

As we did for the noise in Fig. 2, we can plot the an-
gular dependence of the third moment, the skewness, for
different values of inelastic scattering parameter α. This
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is shown in a 2D plot in the inset of Fig. 4(b) for T = 0.5
and TB = 1. As before, solid (blue) lines and dashed
(red) lines correspond to spin singlet-entangled and po-
larized incoming currents, respectively. Now we find that
the behavior of skewness with θ is not monotonous as α
varies. For α = 0 and α = 1 at TB = 1 the third cu-
mulant is zero for every angle both for entangled and
for mixed states (the probability distribution of the cur-
rent is symmetric for those parameters as was previously
noted in the α = 0 case in Ref. [21]). Moreover, this
means that the skewness is not a good entanglement de-
tector for a near perfect beam splitter, nor when the
inelastic scattering is strong. For intermediate values
of decoherence, still at TB = 1, the skewness oscillates
with the spin rotation angle and its oscillation ampli-
tude, 〈〈I3〉〉(θ = 0) − 〈〈I3〉〉(θ = π), has a maximum
around α ≈ 0.5. This oscillation range is depicted in the
main plots of Fig. 4 as a function of the transmission
between left and right arms TB (where simple backscat-
tering has been considered). Several values of the inelas-
tic parameter are differentiated using different shades of
gray, ranging from pale gray for α = 0 to dark gray for
α = 1 in steps of 0.25. The main features can be sum-
marized as follows. First, both for the entangled and the
polarized current, the broadest oscillation range occurs
for α = 0 (being bigger for the singlet-entangled case).
Second, for α = 1 the oscillation amplitude in both cases
is zero, although the skewness remains finite and positive
(shifting from a Gaussian to a Poissonian distribution of
current as TB goes from 1 to 0). For TB smaller than
0.9 approximately, the behavior of the oscillation range
is monotonous with α, it simply decreases with it. For
small values of TB, the skewness coincides with the shot-
noise, which is expected since the probability distribution
for a tunnel barrier recovers a Poisson distribution, even
in the presence of inelastic scattering. In general, the sign
of the skewness is reversed in a wide range of parameters
by tuning the spin rotation θ.

Concerning our entanglement detection motivation,
comparing Fig. 4(a) and 4(b) we find that the third cu-
mulant does not provide any further information in our
search of a way to distinguish between entangled and
non-entangled incoming states. For TB of the order of
0.9 and above, due to the non-monotonous behavior of
the oscillation range with α, the skewness of our beam
splitter setup can hardly be used as a detector of entan-
glement at all. For smaller values of TB, we are able to
discriminate between different currents in the same range
of inelastic scattering parameter α as we could with the
noise, this is, from zero decoherence to roughly α = 0.5.

We have also analyzed further cumulants, whose be-
haviors with TB and θ get more intricate as the order of
the cumulant increases, and have found the same quali-
tative result. Either they are not useful tools for entan-
glement detection or the range of parameters α and TB

is not improved from what we find with the shot-noise
measurements.

V. CONCLUSIONS

In this work we have analyzed the effect of inelas-
tic scattering, modeled by spin-current conserving volt-
age probes, on entanglement detection through a beam-
splitter geometry. We have shown that the action of
inelastic processes in the beam-splitter cannot be ne-
glected, since it directly affects the underlying physical
mechanism of the detector, which is the fact that two
electrons with equal quantum numbers cannot be scat-
tered into the same quantum channel. If there is a finite
inelastic scattering, such antibunching mechanism is no
longer perfect, and the entanglement detection scheme
has to be revised.

However, we have found that detection of entangle-
ment through shot noise measurements remains possible
even under very relaxed conditions for imperfections in
the beam-splitter device and substantial inelastic scatter-
ing. Even if a reliable microscopic description of inelastic
processes is not available, the present analysis suggests
that the detection scheme is robust for inelastic scatter-
ing probabilities up to 50%.

We have also shown that higher current cumulants do
not contain more information about the entanglement of
the incoming currents than the shot noise. We have an-
alyzed in particular the skewness of current fluctuations,
finding that finite backscattering and inelastic scattering
strongly affect the asymmetry of current fluctuations. In
particular, a positive skewness is developed as the beam
splitter transparency is lowered.

Finally, we have developed a novel way to implement
current conservation in voltage probe setups when the
incoming currents are non-locally spin correlated, which
can be applied to a wide variety of problems where en-
tanglement is key.
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APPENDIX A: PHENOMENOLOGICAL

DESCRIPTION OF INELASTIC SCATTERING

Voltage probes are frequently real components of meso-
scopic devices, but have also been used traditionally for
phenomenological modeling purposes. The voltage probe
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description of inelastic scattering resorts to the addition
of one or more fictitious reservoirs and leads attached
to the coherent conductor under study through specific
scattering matrices, around the regions where inelastic
scattering is to be modeled. While being still coherent
overall, the elimination of the fictitious reservoirs results
in an effective description of transport such that electrons
that originally scattered into the reservoirs now appear
as having lost phase and energy memory completely.

We will now discuss the implementation of the voltage
probe in the presence of charge relaxation and general in-
coming states. The whole idea of the voltage probe is to
use the non-interacting scattering formalism to model in-
elastic electron scattering, and the crossover from coher-
ent conductors to incoherent ones. There are two ways
to do this. The simpler one assumes a static chemical
potential in the probes that is computed self-consistently
by fixing time-averaged current flowing into the probes
to zero, as corresponds to an infinite impedance voltage
probe, or to inelastic scattering. This gives a physically
sound conductance value, but fails to yield reasonable
shot noise predictions. The reason is that total current
throughout the system should be instantaneously con-
served. The more elaborate way, therefore, assumes fluc-
tuations in the state of the probe that can compensate
the current flowing into the probe(s) at any instant of
time (and possibly also energy if one is modeling pure
elastic dephasing [29, 44, 45]), which gives results for cur-
rent fluctuations in agreement with classical arguments
[27].

It is traditional to impose such constraint within
a Langevin description of current fluctuations [28],
whereby the chemical potential in the probe is allowed to
fluctuate, but the intrinsic formulation of this approach
makes it inadequate to treat the statistics of general in-
coming (entangled or mixed) states, other than those
produced by controlling individual chemical potentials.
There seems to be no known way of how to include the
effect of arbitrary correlations between electrons, such as
e.g. non-local quantum spin correlations, which are pre-
cisely the contributions we are interested in this work.
The technique we will develop in the following explicitly
takes into account the precise incoming state of the elec-
trons, and recovers results obtained within the Langevin
approach in the case of non-correlated incoming states.
For an analysis of the possibility of implementing these
correlation effects within the Langevin approach and for
a comparison to the present (time-resolved) technique,
see Appendix B)

The scattering matrix to a (two-legged [52]) fictitious
probe is given, in the basis 1, 2, 1′, 2′ (being 1′, 2′ the
extra leads), by

Sα =









0 −
√

1 − α i
√

α 0√
1 − α 0 0 i

√
α

i
√

α 0 0
√

1 − α
0 i

√
α −

√
1 − α 0









,

(A1)

with α being the inelastic scattering probability. This
should be composed together with any other scattering
matrices in the system, and any other probes present. In
a spinful case in which inelastic scattering does not flip
spin there should be at least two of these probes, one
per spin channel. Other considerations such as inelastic
channel mixing in multichannel cases should be taken
into account when designing the relevant fictitious probe
setup. Let us first consider a general setup with a single
probe for simplicity.

We will now introduce the implementation of charge
conservation through the system (i.e. in the fictitious
probe) which will lead to the simple result expressed in
Eq. (A16). We first make the essential approximation
that the inelastic scattering time in the interacting region
is much smaller than

∆t ≡ h/eV. (A2)

The inverse of the timescale ∆t is the average rate at
which the external leads inject particles into the system,
in the localized wave-packet terminology [43]. We will
call the scattering processes within time interval ∆t a
‘scattering event’. In this limit of quick scattering we can
assume sequential scattering events, as if each ∆t interval
was an independent few-particle scattering problem, one
for each time

tj ≡ j∆t. (A3)

The overlap of the wave-packets which would in princi-
ple give contributions away from the sequential scattering
approximation is assumed to have a negligible effect in
the long time limit. Other works in different contexts [46]
seem to support this statement. Furthermore, if one con-
siders small transparency contacts between the electron
source and the fictitious probes, the sequential scattering
approximation is also exact.

The incoming state in each scattering event will be
one particle in each channel of the external leads (L1

and L2 in the setup of Fig. 1), plus a certain state in
the probe’s leads 1′ and 2′. This state injected from the
probe is prepared in a way so as to compensate for excess
charge scattered into the fictitious probe in all previous
events, with the intention of canceling any current that
has flowed into the probe in the past. The book-keeping
of the probe’s excess charge is done via an auxiliary slave
degree of freedom |Q〉 with discrete quantum numbers
Q = 0,±1,±2, . . . that count charge transferred to the
probe. The incoming state in leads 1′ and 2′ injected by
the probe into the system is a function of Q. The time
evolution of the slave state |Q〉 is constrained so that Q
always equals the total number of electrons that has en-
tered the probe since the first scattering event. In partic-
ular, the time evolution of |Q〉 during one scattering event
∆t is taken to follow the resulting net charge that was
transferred to the probe during that event. This scheme
effectively correlates the initially uncorrelated scattering
events in order to satisfy instantaneous current conser-
vation through the system, where by instantaneous we
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mean at times larger than ∆t but still much smaller than
the measuring time.

If the incoming state in the probe’s leads is chosen
correctly, the number of Q states between which |Q〉 will
fluctuate during many scattering events will be bounded,
and will be independent of the total number of events

M = eV t/h (A4)

in the total experiment time t. This is the underlying
principle of this approach, which will guarantee that the
instantaneous charge fluctuations in the probe will be
bounded to a few electrons throughout the whole mea-
surement process, i.e., the probe current will be zero and
noiseless at frequencies below eV/~.

The choice that minimizes the charge fluctuations in
a single channel two-legged probe in the absence of su-
perconductors in the system is the following: if Q at the
beginning of the scattering event is 1 or 2, the probe will
emit two particles, one through each ’leg’, thereby losing
a maximum of 2 and a minimum of 0 in that event; if Q is
0, −1 or −2 the probe will not emit any particle, thereby
absorbing a maximum of 2 and a minimum of 0. The re-
sulting fluctuations of Q are bounded in the [−2, 2] range.
In some cases, such as the system discussed in the main
text, this range is reduced to [−1, 1] since the entangler
only emits one electron of each spin in each scattering
event, so that the probe will never absorb 2 particles,
but a maximum of 1. The relevance of this discussion
will be apparent in connection with Eq. (A11), since it
will determine the dimensions of the W operator therein.

1. Sequential scattering scheme for the Full

Counting Statistics

We wish to compute in a general case the characteristic
function

χ(~λ; M) = 〈ei
∑

n λn∆N̂n〉 = Tr
{

χ̂(~λ)ρ(t)
}

(A5)

after a total measuring time interval t. Number differ-
ence ∆N̂n ≡ N̂out

n − N̂ in
n is defined as the number oper-

ator in channel n at time t (scattered outgoing particle
number) minus the number operator at time zero, before
any scattering (incoming particle number). Differentiat-
ing lnχ respect to the counting fields λn one obtains the
different transferred charge and current cumulants, Eq.
(A18).

Let us include the fictitious probe and expand our Fock
space with the slave degree of freedom |Q〉. We take the
density matrix of the whole system at time zero equal to
ρ(0) = ρQ(0) ⊗ ρe(0), the second ρ being the electronic
density matrix. As we will see we do not need to specify
the initial state of the slave degree of freedom ρQ(0) since
it will not affect our results in the long time limit. The
density matrix is factorized in the localized wave-packet

basis [43],

ρ(0) = ρQ(0) ⊗
⊗
∏

j

ρe
j , (A6)

with the electronic part being ρe
j ≡ ρr

j ⊗ρp
j . Each of these

ρe
j constitutes the incoming state in each of the j scat-

tering events corresponding to the time interval [tj , tj+1].
ρr

j , which is actually j-independent, is the density matrix
of the (uncorrelated in time) electrons coming from the
external reservoirs, and ρp

j is the density matrix of the

(correlated in time-through-Q) electrons coming from the
fictitious probe. As we mentioned, this matrix ρp

j will de-
pend on the state of the slave degree of freedom Q at the
beginning of each scattering event j.

The time evolution from 0 to t, ρ(t) = Ûtρ(0)Û+
t is

split up in the M time intervals of length ∆t. The se-
quential scattering approximation amounts to assuming
that in each event each electron group ρe

j scatters com-

pletely before the next one does. Therefore Ût = ÛM
∆t.

We defer the discussion on how U∆t operates precisely to
a little later.

Since operator χ̂(~λ) will factorize into contributions
for each scattering event, χ̂ =

∏

j χ̂j , we can rewrite

equation (A5) as

χ = TrQ {TrM [χ̂MU∆tρ
e
MTrM−1 [ · · · (A7)

· · · Tr1
[

χ̂1U∆tρ
e
1ρ

Q(0)U+
∆t

]

U+
∆t

]

U+
∆t · · ·

]}

,

where Trj stands for the trace over the ρe
j electron states

and TrQ over the Q subspace. An alternative way of writ-
ing this is by induction. Defining an auxiliary operator

Φ̂(k) =
∑

QQ′ |Q〉Φ(k)
QQ′〈Q′| such that

Φ̂(j) = Trj

[

χ̂jU∆tρ
e
jΦ̂

(j−1)U+
∆t

]

, (A8)

Φ̂(0) = ρQ(0), (A9)

one can see that (A7) and (A5) are equivalent to

χ(~λ; M) = TrQΦ̂(M). (A10)

After some algebra, Eq. (A8) can be recast into the
following sum over the total range of Q values,

Φ
(j)
QbQ′

b

=
∑

QaQ′

a

W
QaQ′

a

QbQ′

b

Φ
(j−1)
QaQ′

a
, (A11)

with the W superoperator

W
QaQ′

a

QbQ′

b

(~λ) = Trj

[

PQ′

b
Qb

χ̂j(~λ)U∆tρ
e
jPQaQ′

a
U+

∆t

]

,

(A12)
and PQQ′ ≡ |Q〉〈Q′| the generalized projector within the
slave degree of freedom space. We will specify how it
operates in practice a bit later, after Eq. (A14).

Some words about the meaning of this operator W ,
which is a central object in this technique, are in order
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at this point. It is a superoperator that, for ~λ = 0 simply

transforms the reduced density matrix ρQ(tj) = Φ̂(j)(~λ =
0) of the slave degree of freedom at time tj to the sub-

sequent one Φ̂(j+1)(~λ = 0) at time tj+1. In Eq. (A8)

we see how Φ̂(j) is simply Φ̂(j−1) to which the incom-
ing state ρe

j for event j is added, is allowed to evolve a

time ∆t (during which also ρQ evolves as dictated by the
number of electrons scattered into the probe), and the
scattered electrons are traced out. The result is the new
evolved reduced density matrix for the slave degree of

freedom. For finite ~λ, the corresponding counting fields
for the scattered electrons are also included into Φ̂(j) so as
to be able to recover the desired cumulants of the traced-
out electrons after time t from χ = TrQΦ̂(M). This can
be also seen as supplementing the dynamics of the sys-
tem with a quantum field term ∝ λn in the action, in the
generalized Keldysh language of Ref. 47.

By assuming without loss of generality a diagonal ini-
tial ρQ(0) and by noting that, by construction, states
with different Q are orthogonal, we can in general take

W to be diagonal W
QaQ′

a

QbQ′

b

= δQaQ′

a
δQbQ′

b
WQbQa

, and

Φ
(j)
QQ′ = δQQ′Φ

(j)
Q . Physically this means that sequen-

tially taking out of the system the scattered electrons
(tracing them out) forbids the Q counter to remain in a
coherent superposition, since the electron that generated
it has been ‘measured’. Therefore (A10) finally becomes

χ(~λ; M) =
∑

QaQb

W
M

QbQa
ρQ

QaQa
(0) (A13)

(note the M th power of the W matrix). The following
alternative and useful form for (A12) can be obtained by
writing |Q〉〈Q|ρe

j |Q〉〈Q| = |φeQ〉〈φeQ|, in the case of a
pure incoming state in the external leads,

WQbQa
(~λ) = 〈φeQa|U+

∆tPQbQb
χ̂j(~λ)U∆t|φeQa〉, (A14)

where |φeQ〉 stands now for the incoming electronic state
(through all leads) that corresponds to a given value Q
of the slave degree of freedom.

Let us analyze the action of the evolution operator
U∆t in the above equation. Since we assume that par-
ticles scatter fully in time ∆t, the action of U∆t on the
electrons is written in terms of the global scattering ma-
trix b+

n = U∆ta
+
n U+

∆t =
∑

m Snma+
m, where a+

n are the
electron creation operators in the different leads (includ-
ing fictitious ones) of the system [53]. The effect of U∆t

on the Q̂ degree of freedom is merely to update it with
the net number of electrons scattered into the fictitious
leads, fixing Q̂tj+1

− Q̂tj
= ∆N̂p, where ∆N̂p is the num-

ber of electrons absorbed by the probe in the event. This
implies that PQbQb

in Eq. (A14), which projects on
the subspace with Q = Qb, can be substituted by the
electron-only operator that projects over scattered elec-
tronic states that satisfy N̂out

p = N̂ in
p + Qb − Qa, where

N̂out
p is the number operator for fermions scattered into

the probe, N̂ in
p is the number of electrons incident from

the probe into the system at the beginning of the scatter-
ing event, and Qa is the value of Q also at the beginning
of the scattering event.

As anticipated just before the beginning of this subsec-
tion, the value of N̂ in

p on |φeQa〉 is a function of Qb, and
should be chosen properly so as to compensate for a given
excess probe charge Qa at the beginning of a given scat-
tering event. That way the fluctuations of the probe’s
excess charge Q will be minimum, although the precise
choice does not affect the result as long as the resulting
range of fluctuations of Q does not scale with measure-
ment time t. As already discussed, for most cases the
optimum choice is N in

p (Q) = g(Q), with

g(1) = 2 (one electron in each lead of the probe),

g(0) = g(−1) = 0, (A15)

which gives Q ∈ [−1, 1], and a 3 × 3 W matrix.
To finish with the discussion of Eq. (A14), recall that

χ̂j = ei
∑

n λn(N̂out
n −N̂ in

n ) and that a useful relation for the
case of a single channel mode n in which the eigenvalues

of N̂n are zero and one is eiλnN̂n = 1 + (eiλn − 1)N̂n.
The whole Levitov-Lee-Lesovik formulation of FCS [48]

is well defined only in the long time limit. In such limit it
is clear that expression (A14) is dominated by the biggest
eigenvalues µmax of W . All of its eigenvalues satisfy |µ| ≤
1 for real values of ~λ, so that those that are not close to

1 for small values of ~λ (around which we take derivatives
to compute cumulants) will exponentiate to zero when
M → ∞. In all cases we examined only one eigenvalue
µmax would not exponentiate to zero, although it can
have finite degeneracy. In general, we have the following
asymptotic property, valid for any degeneracy of µmax,

ln
[

χ(~λ; M)
]

= M ln [µmax] + O(1). (A16)

We can define a new generating function

lnχI(~λ) = lim
M→∞

lnχ(~λ; M)

M
. (A17)

It can be shown that this function generates the zero
frequency limit of current cumulants

〈〈In(ω = 0)k〉〉 =
ek+1|V |

h
(−i)k ∂k

λn
lnχI

∣

∣

~λ=0
, (A18)

being e here the electron charge and k the order of the
cumulant, k = 1 for the average current, k = 2 for the
shot noise, and so on.

We can identify

χI(~λ) = µmax(~λ). (A19)

This is our final result. µmax is the eigenvalue of Eq.
(A14) that equals 1 when all counting fields λn are taken
to zero.

The generalization to multiple probes is very straight-
forward. Given the optimum choice of Eq. (A15), the
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solution of an N−probe setup will involve the diagonal-
ization of an 3N × 3N W matrix similar to Eq. (A14)

where Q is changed to ~Q, a vector of the N correspond-
ing slave degrees of freedom. On the other hand, to im-
plement charge conservation in probes with more than
one channel per leg (or more than two legs), such as non-
spin-conserving probes, the formalism would require a
slightly different expression for Eq. (A15) and a con-
sequently bigger dimension for W , but would otherwise
remain quite the same.

A summary of the above results is given in Sec. III.

We have successfully compared the present method to
Langevin techniques in scenarios where the latter is di-
rectly applicable (uncorrelated spins), obtaining identical
results in all cases. Some simple examples are the FCS of
a single channel wire with contact transmissions T1 (see
Appendix B for the details), the case of a Mach-Zehnder
interferometer or an NS junction, for which both this and
the Langevin method [28] yield identical results for χI .
We would like to mention that even in the presence of cor-
related spins the Langevin technique can be extended to
include correlation effects to some extent, as is discussed
in Appendix B.

APPENDIX B: COMPARISON OF THE

METHOD TO PREVIOUS TECHNIQUES

In this appendix we will show with a simple example
how the proposed method yields identical results to the
ones obtained with previous Langevin technique (appli-
cable in such case), which we generalize here to yield
the FCS, instead of individual current cumulants. We
also sketch how a Langevin derivation of the beam split-
ter FCS could be attempted by extending the technique,
and a comparison to our results. The purpose of this
section is twofold. First we wish to make a convincing
case that our method actually recovers known results,
but goes beyond them in other cases, and secondly, that
it indeed yields the FCS in the presence of an inelastic
probe, and not merely a dephasing probe as could be
thought from the unusual real time sequential scattering
picture.

We will first do our comparison in the possibly sim-
plest system one can think of, a zero-temperature single
channel conductor for spinless fermions, see Fig. 5. We
will assume symmetric contacts to the (real) reservoirs
with transmission T1. A fictitious inelastic probe will be
connected between the two contacts with transmission
amplitude α, and scattering matrix (A1).

As discussed in detail in Ref. 27, within the Langevin
approach, the current fluctuations in the presence of the
probe should be corrected by the feedback due to the
instantaneous fluctuations of the probes voltage, which
react to cancel any current flowing into the probe. Thus
the current fluctuation flowing into the right reservoir

FIG. 5: (Color online) Single channel wire geometry with
fictitious probe and non-transparent contacts.

reads

∆I2 = δI2 +
T2p

T1p + T2p
(δIp1

+ δIp2
) , (B1)

where δI2 correspond to the current fluctuations flowing
out of the system through lead 2 with a static potential
in the probe, whereas δIp1

and δIp2
are the analogous

currents leaving the system through legs p1 and p2 of
the probe. Tnm = Tmn are the transmission probabilities
between channels m and n. We make use of the compact
notation Tnp = Tnp1

+ Tnp1
. The static potential in the

probe for δIn is chosen so as to cancel any average current
into the probe.

In our case, left-right symmetry implies

∆I2 = δI2 +
1

2
(δIp1

+ δIp2
) . (B2)

At this point, what one usually finds in the literature is
a calculation of cumulants of certain order. It is possi-
ble however to compute them all at once and recover the
FCS, as we show in the following. Define the character-
istic function with a static potential µp = eV/2 in the
probe (the value which gives average current conserva-
tion) and with two counting fields, one (λ2) that counts
particles flowing into the rightmost reservoir, and another
(λp) that counts particles scattered into the probe

χ(λ2, λp) = 〈eiλ2∆N2+iλp(∆Np1
+∆Np2

)〉. (B3)

Since at this point there are still no probe fluctuations
(each energy is independent from the rest), one can write
χ(λ2, λp) as the product of two characteristic functions,
one for particles in the interval [0, µp] and another in the
[µp, eV ][48]. We have

χ(λ2, λp) = 〈1|χ̂2(λ2)χ̂p1
(λp)χ̂p2

(λp)|1〉M/2

〈0|χ̂2(λ2)χ̂p1
(λp)χ̂p2

(λp)|0〉M/2, (B4)

where χ̂n(λ) ≡ 1+
(

eiλ − 1
)

N̂n, |1〉 is the scattered state
at an energy below µp (i.e., with a full state coming from
the probe), and |0〉 is a state above µp (empty probe).
Working out the algebra we get for the current charac-
teristic function, Eq. (A17),

χI(λ2, λp) =
{[

1 + (eiλ2 − 1)T12 + (eiλ2−iλp − 1)T2p

]

×
[

1 + (eiλ2 − 1)T12 + (eiλp − 1)T2p

]}
1
2 ,
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where T12 = T 2
1 (1 − α)/[2 − α − T1(1 − α)]2 and T2p =

T1α/[2 − α − T1(1 − α)].
To include the self-consistent voltage fluctuations of

the probe, we return to Eq. (B2). It is easy to see that
the function

χI(λ2) ≡ χI(λ2,
λ2

2
) = 1+ (eiλ2 − 1)T12 +(eiλ2/2 − 1)T2p

(B5)
generates the cumulants of ∆I2, instead of δI2, and there-
fore is the proper FCS solution of the Langevin approach.

On the other hand, the method we have developed
involves, in this simple system and for the same choice of
g(Q) as in Eq. (A15), the following expression of the W
matrix in (A14)

W =





a 0 0
c a b
0 c a



 , (B6)

with a = 1+(eiλ2 −1)T12−T2p, b = eiλ2T2p and c = T2p.

The highest eigenvalue of this matrix is a +
√

bc, which
indeed equals the Langevin result (B5).

This example clarifies the fact that the fictitious probe
we are describing within our approach is inelastic since,
as is evident within the Langevin approach, a particle
scattered into the probe at a certain energy can abandon
it at any other energy in the interval [0, eV ]. In particu-
lar, note that the the current through the system when
T1 = 1 and α = 1 is noiseless, i.e., the Fano factor as
derived from Eq. (B5) is F = 0, as opposed to F = 1/4
that would result from the quasi-elastic probe [27].

1. Langevin technique with spin correlations

The Langevin language makes use of one crucial as-
sumption, that the currents flowing into the system are
those which result from some static chemical potentials in
the real non-interacting reservoirs, and which are there-
fore spin-uncorrelated. Can one use it to compute current
fluctuations when the electrons injected into the system
are in a tailored spin state, such as non-local spin singlets
arriving simultaneously on the beam splitter in the main
text (Fig. 1)? The answer is ”no”, but one can actually
go quite far in this direction. One can modify the above
scheme to try to account for the peculiar spin correla-
tions, although it only works up to the second cumulant,
deviations appearing from the third cumulant onward.
This works as follows. One could compute the equivalent
chemical potential for spin-up and spin-down electrons
in each of the incoming leads as if they were completely
uncorrelated, but then try to preserve the correlation in-
formation by inserting the proper spin-correlated state in
Eq. (B3). It is rather unclear in this case whether one
is thereby assuming that electrons arriving at the same
time into the two leads L1 and L2 are spin entangled,
or whether it is electrons with definite and equal energy
which are non-locally spin entangled. Remarkably, the

FIG. 6: (Color online) The results for the singlet current skew-
ness in the beam splitter geometry calculated within the mod-
ified Langevin approach begin to deviate slightly from those
of the time-resolved (TR) technique, Fig. 4. Note that the
deviation is most apparent in the intermediate α limit. Shot
noise results are identical. At this level, however, both tech-
niques are qualitatively equivalent.

result for the shot noise agrees with the one obtained
with our time-resolved technique, where these questions
are fully under control, but higher cumulants do not.
From a mathematical point of view it is hardly surpris-
ing that the FCS from both techniques does not agree
in the general case, since through Langevin one obtains
an explicit form of the generating function in terms of
elementary functions, while with the time-resolved tech-
nique the latter is the solution of a non-reducible ninth
order polynomial, Eq. (5), which is known not to have
a closed form in general. The discrepancy between the
methods, which is rather small in most cases, is most
likely due to the fact that in the Langevin language it is
not possible to encode the time-resolved spin correlation
information of the incoming current.

We now sketch in more detail how the attempt at calcu-
lating the FCS of the beam splitter within the Langevin
language should go. All chemical potentials are in prin-
ciple spin-dependent, and transmissions (for θ 6= 0) will
connect different spins. The equivalent chemical poten-
tial in leads L1 and L2 is µσ

L = eV/2, since only one out
of two particles has, say, spin-up. The average chemical
potential in the voltage probe reads

µσ
p =

eV

2

∑

σ′ T σσ′

pL
∑

σ′ T σσ′

pL + T σσ′

pR

=
eV

2

2 − TB(1 − α) − α

2 − α(1 − TB)
,

(B7)

where T σσ′

pL = T σσ′

p1L1
+ T σσ′

p2L1
+ T σσ′

p1L2
+ T σσ′

p2L2
, and T σσ′

p1L1

is the transmission probability from lead L1 and spin σ′

to probe leg p1 and spin σ. Equivalently for T σσ′

pR . The
full current fluctuation flowing into the right reservoir
through lead R1 reads

∆IR1
=

∑

σ

∆Iσ
R1

=
∑

σ

[

δIσ
R1

+
∑

σ2

T σσ2

pR1
(δIσ

p1
+ δIσ

p2
)

∑

σ1
T σ2σ1

pL + T σ2σ1

pR

]
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=
∑

σ

[

δIσ
R1

+
TB(1 − T )

2 − α(1 − TB)
(δIσ

p1
+ δIσ

p2
)

]

, (B8)

so that the substitution

λ↑
R1

= λ↓
R1

= λ, (B9)

λ↑
p = λ↓

p =
TB(1 − T )

2 − α(1 − TB)
λ (B10)

into

χ(λ↑
R1

, λ↓
R1

, λ↑
p, λ

↓
p) = 〈1|

∏

σ

χ̂R1
(λσ

R1
)χ̂p1

(λσ
p )χ̂σ

p2
(λσ

p )|1〉
µp
eV × 〈0|

∏

σ

χ̂R1
(λσ

R1
)χ̂p1

(λσ
p )χ̂σ

p2
(λσ

p )|0〉
1−µp

eV

yields the characteristic function for current fluctuations
flowing out into the right reservoir through the detector
in lead R1. Now state |0〉 (state |1〉) is the scattered state
corresponding to the proper spin-correlated pair coming
into leads L1 and L2, cf. Eq. (1), together with an empty
(full) state coming from the fictitious probe.

If one inserts the resulting solution for χI = χ1/M into
Eq. (5), one indeed obtains zero to order (iλ)2, but not to

higher orders in iλ. This indeed implies that up to second
order cumulants both methods agree (again confirming
the statement that we are modelling inelastic and not
elastic scattering), but not beyond. A comparison of the
third cumulant is illustrated in Fig. 6, where one can
appreciate the small deviation. The results at this level
remain qualitatively equivalent, however.
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