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A spherical drop, placed in a second liquid of the same density and viscosity, is subjected to shear
between parallel walls. The subsequent flow is investigated numerically with a volume-of-fluid
continuous-surface-force algorithm. Inertially driven breakup is examined. The critical Reynolds
numbers are examined for capillary numbers in the range where the drop does not break up in
Stokes flow. It is found that the effect of inertia is to rotate the drop toward the vertical direction,
with a mechanism analogous to aerodynamic lift, and the drop then experiences higher shear, which
pulls the drop apart horizontally. The balance of inertial stress with capillary stress shows that the
critical Reynolds number scales inversely proportional to the capillary number, and this is confirmed
with full numerical simulations. Drops exhibit self-similar damped oscillations towards equilibrium
analogous to a one-dimensional mass-spring system. The stationary drop configurations near critical
conditions approach an inviscid limit, independent of the microphysical flow- and fluid-parameters.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1331321#
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I. INTRODUCTION

The goal of this article is to examine the effect of iner
on the idealized problem of an isolated drop subjected
simple shear in a matrix liquid. The undeformed radius isa,
the plate separation isd, and the computational box has p
riodic boundary conditions in the horizontal directions. T
undisturbed velocity field isu5ġzi, whereġ is the imposed
shear rate. There are seven dimensionless parameters
viscosity ratio of the drop to matrix liquidsl5md /mm , the
capillary number Ca5mmġa/s, the Reynolds number R
5rmġa2/mm , the dimensionless plate separationd/a, and
dimensionless spatial periodicities in thex andy directions.
In order to examine trends, we focus on the casel51, which
is the viscosity ratio that has received the most attention
the literature.1–6

It is known that for Stokes flow, capillary numbers in th
range 0 to 0.43 yield steady states with egg-shaped drops
the other hand, the addition of sufficient inertia induc
breakup for these capillary numbers. In Ref. 7, Sec. V
concerned with inertially driven breakup~cf. their Figs. 17–
20!. The critical Reynolds number is small for Ca close
0.4, but increases rapidly as Ca decreases. At each cap
number, the increase in Reynolds number deforms the d
from ellipsoidal to elongated. In comparison with the velo
ity fields for Stokes flow, the increase in Re leads to a ma

a!Electronic mail: renardyy@math.vt.edu
b!Electronic mail: cristini@cems.umn.edu
71070-6631/2001/13(1)/7/7/$18.00
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edly stronger velocity field in the drop region. For examp
steady solutions show strong vortical motions inside the d
just below the critical Reynolds number. This is accomp
nied by an increase in the Taylor deformation parameteD
for the steady-state solutions, as the Reynolds number is
creased. There are three trends for the overall effect of in
tia. First, inertia rotates the drop, so that at higher Reyno
numbers, the steady states are more aligned toward the
tical than in Stokes flow and therefore the drop experien
greater shear. Second, in Stokes flow, the flow inside
drop consists of a single vortical swirl, whereas inertia
duces a second vortical swirl evident in the plots for Re
nolds numbers 10 and 20. The two vortices sit at the top
bottom ends of the drop. Third, the length of the drop
steady states just below breakup shortens as inertia incre
and the symmetry across the mid-plane of the steady s
evident in Stokes flow, is lost. These trends raise two o
questions: what is the mechanism for breakup under ine
and what is the large Reynolds number asymptotics for
critical curve? These issues are addressed in this article

II. LARGE REYNOLDS NUMBER BEHAVIOR

In Stokes flow, the primary parameter is the capilla
number, which is a measure of the viscous force caus
deformation relative to interfacial tension force which kee
the drop together. An order of magnitude estimate
breakup conditions is derived with a balance of the visco
stress and capillary stress,mġ;s/a, which yields Ca;1.
© 2001 American Institute of Physics
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FIG. 1. Log-log plot of Re vs Ca,l
51, equal densities.1 drop breakup,
s steady state solution, — line. Re.C
5constant.

FIG. 2. Velocity vector plots for the
cross-section through the center of th
drop in thex-zplane. Left to right, top
to bottom:t50.9, 2.4, 4, 7.5, 20, 22.5
s. Re560, Ca50.054.
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For large Reynolds numbers, the Reynolds stress is of o
ruvu2;rġ2a2. This is balanced by capillary stresses of ord
s/a. The critical condition is, upon division by the viscou
stressmġ,

Re;1/Ca. ~2.1!

This is illustrated in the numerical results of Fig. 1. At th
points represented on this figure, a full simulation of t
initial value problem, together with the Navier–Stokes eq
tions and the continuous surface force formulation8–11 with
our code SURFER11 was conducted. The log–log plot o
critical conditions shows that for larger Reynolds numbe
the critical conditions follow the line of slope21.

The computations were performed on the domain
30.531, with a 64332364 mesh, and initial drop radiu
a50.125, timesteps 1023ġ21, unless otherwise indicated
All results in this article concern viscosity ratiol51 and
equal densities.

FIG. 3. Velocity vector plot for the cross-section through the center of
drop in thex-z plane, just before breakup. Re5100, Ca50.042. 128364
3128 mesh, 130.531 domain.a50.125. The drop elongates and rotat
to a high angle.

FIG. 4. Three-dimensional picture just after breakup at Re550, Ca50.07.
ticle is copyrighted as indicated in the abstract. Reuse of AIP content is sub
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III. MECHANISM FOR INERTIALLY DRIVEN BREAKUP

A. Lift and counter-lift

Figure 2 shows a typical sequence of events to inertia
driven breakup. These velocity vector plots show that as
drop is pulled apart by the base flow, vortical swirls devel
at the two ends, with little going on in the neck region. T
difference with Stokes flow is the upward tilt, induced by
effect analogous to flying in inviscid flow. When inertia
important, we may invoke Bernoulli’s equation, which stat
that pressurep1ruvu2/2 is a constant along each streamlin
In the matrix liquid, therefore, the large velocities near t
tips induce negative pressures there relative to the pres
elsewhere. The resulting suction leads to further tilting of
drop. This is an aerodynamic lift on one end, together wit
counter-lift at the other end. The drop is then exposed to e
larger shear with further tilting, which allows the base she
flow to pull away the ends. This scenario is similar for high

e

FIG. 5. Velocity vector plot for the cross-section through the center of
drop in the x-z plane, just below criticality.~a! Re51, Ca50.27, L/a
51.8, u525 deg.~b! Re510, Ca50.15,L/a51.9, u523°. ~c! Re560, Ca
50.053,L/a51.52, u553°.
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FIG. 6. The half-lengthL/a and angle
of tilt u vs Re for near-critical solu-
tions. The dashed line is a fit to th
constant data at high Re.
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Reynolds numbers. The bending up of the end of the dro
reminiscent of the formation of 2D fingers when surface t
sion is added in simulations of inviscid Kelvin–Helmhol
instability.12

With increase in the capillary number, the stretching
duced by viscous shear becomes stronger. As in Stokes
this leads to longer necks before breakup. A higher Re c
is shown in Fig. 3 at Re5100, Ca50.042 in. The difference
with Stokes flow is again the high angle of tilt. Figure 4 is
three-dimensional plot after breakup for Re550, Ca50.07.

B. Inertia-induced wobbling

Figure 5 shows the cross-sectional velocity fields
long-time solutions just below criticalities. Plot~a! is a
steady state solution~vectors are plotted at fewer grid point
the grid size is the same for all plots!. Plot ~c! undergoes
slight oscillations in the length-wise direction as it a
proaches steady state. The diagnostics are the half-lengL,
half-breadthB, and angleu with the x-axis. Inertia increase
from ~a! to ~c!, and tilts the drop. At low Reynolds number
there is a single vortex in the interior. As the Reynolds nu
ber increases, the vortical motion inside the drop begins
separate into two vortices. This is evident by Re510. The
angle of tilting increases, the drop is subjected to stron
shear and the two vortical swirls inside the drop beco
more evident. At Re560, there are four vortical swirls. A
higher Reynolds numbers, the competition between the
exerted on the drop versus pulling by the shear leads
shortening for long-time solutions.

Figure 6 shows results for near-critical capillary num
bers. The plots demonstrate that for large Reynolds numb
the length and angle of inclination approach constants.
scatter of the data is explained by the variation in the de
ticle is copyrighted as indicated in the abstract. Reuse of AIP content is sub
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tion from critical capillary numbers. The large Reynold
number result is approximately an inviscid limit, in whic
the time-dependent momentum equation is a balance

ut1~u•¹u!;2¹S p

r D , ~3.1!

and the stress balance across the fluid interface is

F F p

sG G;k. ~3.2!

There are lower order viscous terms. This yields a family
solutions p̃5p/c, r̃5r/c, and s̃5s/c. In the numerical
simulations, we fix theġ51, a50.125 andm51, while the
near-critical inertiar and interfacial tensions vary by the
same factors; hence in the asymptotic regime, Ca.Re;r/s
5 r̃/s̃, and the problem is identical for each near-critical R

Figure 7 shows the temporal evolution of the dimensio
less half-lengthL/a and angle of tiltu. Close to Stokes flow,
the drop simply elongates to steady state, and retract
when they occur are mild. For the larger Reynolds numb
there is an initial lengthening followed by a marked retra
tion, with a final length which is much shorter than at lo
Reynolds numbers, and the angle of tilt is higher.

At larger Reynolds numbers, the drop initially wobble
most noticeably across the narrower girth. In the transition
steady state, the drop can appear to neck, then relax b
then repeat, with the oscillations decaying. Assuming t
close to the critical state drop evolution can be described
a one-dimensional model~in analogy with recent findings13

under Stokes flow conditions!, this motion is reminiscent of
the mass-spring system described by

mx9~ t !1cx8~ t !1sx~ t !50, ~3.3!
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FIG. 7. Evolution of the half-length
L/a and angle of tiltu to steady state
for Re50.05, Ca50.39, and Re550,
Ca50.06.
w
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wherex(t) denotes displacement from equilibrium~e.g., the
girth B/a), m represents inertia,c is the viscous friction, and
s is the interfacial tension or restoring force. Stokes flo
corresponds to an overdamped system. A large Reyn
number corresponds to an underdamped system where
solution oscillates more intensely. For an order-of-magnitu
estimate, we setm5r(4/3)pa3 for the mass of the drop, an
ticle is copyrighted as indicated in the abstract. Reuse of AIP content is sub
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usec56pma for the Stokes drag on a sphere. In our sim

lations, we have used the shear rateġ51, so that Eq.~3.3!
apart from factors translates to Re.Ca.x9(t)1Ca.x8(t)
1x(t);0. This yields a period of oscillations proportional
~Re.Ca!1/2.

Figure 8 shows the evolution of the half-breadthB/a.
The curves for situations close to critical along t
-

s

FIG. 8. Evolution of the half-breadth
B/a, showing the initial oscillations
before B/a climbs to equilibrium in
the presence of inertia.~a! Re550, Ca
50.061; Re560, Ca50.053; and Re
580, Ca50.041 lie close together.~b!
~-.-.! Re5100, Ca50.032.~c! Re550,
Ca50.03. The lower figures are mag
nifications of the first maxima and the
second minima with respective value
of Re.
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FIG. 9. Decay rate vs Ca for the evo
lution of the half-breadthB/a in Fig. 8
for Re550, Ca50.061; Re560, Ca
50.053; Re580, Ca50.041; and Re
5100, Ca50.032.
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asymptotic line in Fig. 1 lie close together between~a! for
Re550 and~b! for Re5100, because they approach the
viscid limit discussed for Eq.~3.1!. The curve~c! is placed as
an example of a situation with half the capillary numb
compared with the critical value. The figure shows that
period of oscillation is the same for the near-critical curv
for which Re.Ca is constant. Moreover, the difference in
period for the near-critical curves and~c! at Ca50.03 can be
explained by the proportionality toARe.Ca, by noting tha
the restoring force changes by a factor 2, and, therefore
predict that the Re550, Ca50.061 curve would have the
longer period by factorA2.

Our mass-spring model predicts solutions to have a
cay rate proportional to21/Re. For the asymptotic large-R
regime, this decay rate is proportional to Ca. We verify t
by determining the decay rate from the first two maxima a
minima in Fig. 8. Letx0 denote the difference in heigh
between the first maximum and first minimum, and letx1

denote the difference between the second maximum and
ond minimum. The difference int between the two maxima
is Dt, a value similar to the separation of the minima. T
decay rate is then proportional to2 ln(x0 /x1)/Dt. These are
plotted in Fig. 9 against the capillary number, and indeed
on a line.

At Re560, Fig. 10 shows a sequence of cross-sectio
velocity fields at times just before the waist squeezes
distends. In~a!, the drop is close to its initial stage. On
vortex develops as the drop begins its initial lengthening,
the waist begins to squeeze. The velocities clearly point
wards at the waist just beforeB/a hits its first minimum.
Figure 10~b! shows the velocities pointing outwards at t
waist, during the process of expansion. Two vortices h
developed, one at each end of the drop where the she
greatest. There is also one large vortical swirl envelop
these. The drop undergoes lift at the right end, and coun
lift at the left. Figure 10~c! shows the velocities pointing
inwards at the waist just beforeB/a reaches the secon
squeeze. The oscillations which follow are less intense
evident in Fig. 8. The evolution thereafter proceeds alon
climb in L/a as shown in Fig. 7. WhenL/a begins its down-
hill journey, the drop surges its angle to tilt toward the ve
tical.

Three issues will be discussed next with respect to
numerical accuracy: the effect of spatial periodicity, distan
to the walls, and spatial and temporal refinements. Spa
periodicity in thex and y directions were chosen to be 8a
ticle is copyrighted as indicated in the abstract. Reuse of AIP content is sub
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and 4a, respectively. At Re560, Ca50.05 ~critical Ca
'0.053), the computational box in they direction, trans-
verse to the shear flow, was doubled and found to yield n
ligible differences forL/a,B/a,u and velocity vector plots.
Second, the computational box in thex direction was length-
ened to examine interactions with neighboring drops. It w

FIG. 10. Cross-sectional velocity vector fields inx-z plane, att5 ~a! 1,
initial lengthening and before the first squeeze inB/a; ~b! 2.5, before the
first maximum inB/a; and ~c! 4, before the second squeeze. Re560, Ca
50.053 just below criticality.
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found that increasing thex period could lead to breakup~for
example, at Re522, Ca50.1, the 130.531 domain yields
steady state while 1.530.531 breaks up!, while for closer
packing and because of the relative placement of the ne
boring drops, drop elongation is evidently hindered a
drops are more stable against breakup. However, the pre
tion for the critical point in Stokes flow is 0.42, which
close to the value reported in the literature, indicating that
have chosen a sufficiently large spatial periodicity. The
fluence of plate separation~discussed in detail in Ref. 7! is to
induce breakup as the walls close in. For the computatio
box of Sec. II, Re560, Ca50.05 does not breakup ford
58a,16a. This suggests that the error due to finite w
distance should be of a few percent. The timestep size
halved and checked at Re560, Ca50.053, just below critical
in Fig. 1, to yield stable drops. As for spatial refineme
our numerical simulations use cell sizesDx5Dy5Dz
50.125a. Refinement can lower the critical Reynolds num
ber slightly: for instance, at Re560, the 96364396 and
64332364 cases are critical at Ca'0.049 and 0.054, re
spectively.

IV. CONCLUSION

Full numerical simulations were conducted with our i
house code SURFER11, based on the volume-of-fluid
continuous-surface-force formulation. The critical capilla
number for breakup in shear flow in the presence of ine
was found to depend on Reynolds number obeying a po
law with exponent21. Drop evolution towards steady sta
is initially well described by a one-dimensional mass-spr
model. Near critical conditions, the steady drop configurat
is in an inviscid limit, and is independent of the microphy
cal parameters Re and Ca near critical conditions. The
cess of breakup was examined in detail. It was found that
drop initially oscillates, with the period of oscillation an
decay rate governed by a balance of Reynolds stress, St
drag and interfacial tension. The drop then lengthens and
up, due to what is analogous to aerodynamic lift and coun
lift. The drop necks and develops the familiar dumbbells
the ends, which are tilted at a much higher angle than
Stokes flow. Thereafter, the drop experiences higher sh
which pulls apart the ends.
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