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Abstract

We investigate theoretically the MHD equilibrium of a
resistive, low-density plasma in a model stellarator field.
The effect of inertia on plasma motion is treated exactly,
and its influence on plasma loss determined. The results
are valid for arbitrary aspect ratio. For the existence of
a stationary equilibrium we show that there are two un-
connected regions of solution, described in terms of the
mass fluxes the long and the short way within a magnetic
surface. Both these regions contain subregions corresponding
to subsonic and supersonic fluid flow. For the region
containing the case of the wellknown classical resistive
diffusion we argue that the increase in plasma loss due to
inertia is strongly limited and dces not appreciably exceed
the classical diffusion rate.




I. Introduction

In recent years several attempts have been made to investigate
the effects of inertia on plasma diffusion in configurations

o' the stellarator type. A first step in this direction was
taken by Knorr [1] . He ordered the plasma parameters so that
both finite conductivity and inertia of the ions were first
order effects. With such an ordering, the influence of inertia
on plasma diffusion is necessarily a second order effect.
Discussing the results in zeroth and first orders only, Knorr
could not display the influence of inertia on plasma losses.
However, this search for a complete equilibrium solution, order
by order, raised interesting questions concerning the definite-
ness of such an equilibrium.

It is a typical feature of such problems that so called "surface
quantities" occur in each order. Depending on the particular
structure of the equations and the expansion procedure used,
these surface quantities are determined either by the relation-
ship between different orders, or they remain arbitrary within
reasonable physical limits. In the latter case their presence
indicates that the equilibrium is not described uniquely by

the equations and boundary conditions used. In Knorr's paper
there was such an arbitrariness of the equilibrium solution
which the author removed by additional assumptions. Later, in

a revised treatment of the same problem [2] , Karlson pointed
out that such assumptions are superfluous and that solving
consistently, order by order, should give an unique solution.
In the genuine stationary equilibrium problem investigated

here, we come to the same conclusion.

In the present work we employ the usual hydromagnetic

equations for the stationary equilibrium of a low-density plasma
with high but finite electric conductivity. In the equation of
motion we include the complete inertia term. We solve these
equations in toroidal axisymmetric geometry. For the confining

magnetic field we take the simple model configuration that was




first introduced by Pfirsch and Schliter [3] . We make a pertur-
pbation expansion in resistive effects which means that the
solution found in zeroth order describes ideal hydromagnetic
flows. Further, it means that already in first order we obtain
effects of inertia on diffusion. The structure of our zeroth
order equations has been investigated rather generally by Greene
and Karlson [4] . They treated the question of the uniqueness

of certain toroidal equilibria and gave plausible arguments
concerning the minimum information which must be given to obtain
a well-posed problem for ideal hydromagnetic flows. Their results
indicate that five suitably chosen functions of a variable
labeling the magnetic surfaces, and the location of a rigid
conducting boundary define a unique stationary flow. Apart

from a surface quantity related to the low-ﬁ expansion this is
in agreement with what we find in zeroth order. For our case we
can further specify limitations for the range within which some
of the surface quantities, the mass fluxes, can be freely chosen.
Such limitations come from the condition for an equilibrium
solution to exist.

Though we indicate how to get an equilibrium solution in each
order, we focus our attention only on the zeroth order, and the
determination of plasma losses in first order. The derived

plasma loss expression relates for given temperature distribution,
the average particle flux in outward direction, the mass distribu-
tion on the magnetic surfaces, the magnetic fleld and the zeroth
order mass fluxes the "long" and the "short way". If it were true
that these fluxes could be chosen independently from the magnetic
field and from each other, plasma rotation would lead to
considerably enhanced diffusion for small rotational transform.
Formally, this is because the term containing the mass flux

the short way, increases as L'n'for L+0 whereas the classical
resistive diffusion grows as L_2. This seems to be related

to the result of Stringer [5] who investigated the effect of
plasma rotation on diffusion using a mixture of guiding center
and fluid equations. However, the detailed analysis we give

shows that such a conclusion on greatly enhanced diffusion
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due to mass flow is not correct. A numerical study of this
problem [8] appears to support this conclusion.

Firstly, as we have indicated above there are already in zeroth
order limitations for the range within which the mass fluxes can
be chosen and this range is a narrow one for usual values of the
aspect ratio and for small rotational transform.

Secondly, the condition for a single-valued solution in first
order give differential equations for the maxx fluxes in zeroth
order. Together with boundary conditions, these equations
determine these fluxes completely. Although we have not solved
the ordinary differential equations for the mass fluxes, which
are nonlinear and extremely complicated, it is clear that any
restrictions they impose on the solution are additional to
those arising from the existence of a solution for the density

in zeroth order.

On the basis of these latter restrictions we estimate the plasma
losses and argue that there is no appreciable contribution due
to inertia. A quantitative determination of the plasma losses
requires further investigation.
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II. Basic Equations
The equations we use are
?(iZVVZ—\_/xrot\_/)= JxB -Vp (1)

vxB = qﬂ + VO (2)
Uvpy = Q (3)

dvd = 0 (4)

where the symbols have their usual meaning. We consider a low
B plasma, so that B is a given external magnetic field. Q,
the plasma source distribution, 1s also assumed given as a
function in space. We assume that the plasma is injected with
the local plasma velocity v. In Ohm's law (2), we have neglec-
ted those parts of the Hall term which are unimportant if, at
each point in the plasma, the frequency of material rotation
is small compared to the ion gyrofrequency. The remaining con-
tributions to the Hall term are included in the generalized
electric potential { .

To the above equations we must add an equation of state, which
we assume to be of the form

p = plg,F) (5)

where F is the magnetic flux the long way and 1s used to para-
meterise the magnetic surfaces. Such a relation (5) results

from the specification of a thermodynamic potential, together
with the specification of either the entropy S or the tempera-
ture T as functions of F [1] . Later, for reasons of simplicity,
we refer to an isothermal plasma.
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As co-ordinate system we choose the orthogonal system r, O,g
as indicated in fig.1. For our calculations in such a co-
ordinate system we need the metric (ds)g, and the volume ele-
ment djf , which are

[ds)* = (dr)* +r*(dB)* + R*N'(dg)* (6)

dc - Ygdrdds , ¥g - rRN (7)

We wish to solve the equations (1) to (5) in the case of axial
symmetry and as a particularly simple cholice of magnetic field
[2] we take

B - B,R(XV6 + V) .

where N:=1+2c0s0 ) X = Tg (9)
and f v %%%%%%7& (10)

Here ( is the normalised rotational transform (the usual rota-
tional transform divided by 2 ) and BO is the toroidal compo-

nent of the magnetic field on the magnetic axis (r = 0).

S ue T

Fig. 1



III. Solution Procedure

Equations (1) to (5) can be displayed in dimensionless form by
writing all magnitudes as hatched dimensionless variables and
scale magnitudes with subscript o, e.g. A=Aoﬁ. We then make an
ordering of the terms in the equations by relating the scale
magnitudes. In particular we wish to solve the system of equa-
tions, exactly with respect to the effect of inertia but appro-
ximately with respect to resistivity effects. To do this we
order the dimensionless parameter

e~ M o QLo o 4

v, B, %V,

where LO is the scale length of variation in the plasma flow.
Then we make a perturbation expansion in &, so that in zeroth
order the effects of resistivity are absent. In this order no
source term @ is required to maintain a steady state, because
without resistive effects there are no losses. However, in
higher orders of €, these effects are considered and we show
below how a solution is obtained in each order. Formally this
expansion of the dimensionless equations in orders of & is
equivalent to an expansion of the dimensional equations in terms
of the Ul and Q terms, so that we need consider only this latter
expansion in what follows. We emphasise the important fact that
this procedure is exact with respect to inertial effects while
treating the effect of restivity in a well defined, approximate

manner.

The equations (1) to (5) can be written in the following form

B.V(D = "’Z,JuB (113

V= g B - D i
BI(dy -4y 4 80 1 8ong)- -yrotyd - diwn{ b0 + BT}
by A A 2y L R
Bv(gs + 5 50) - a doon{for GBI v



,Bx(Vp +1p7v) - £, Bx(vxroty) (15)

Jy = - dvd (16)

5 4_{ iifl %? . @n?*gg‘hx*} (17)

where we denote vector components parallel and perpendicular to
B with the subscripts |l and L respectively. Briefly these
equations are derived from (1) to (5) as follows: (11) is the
parallel component of (2); (12) and (15) are the perpendicular
components of (2) and (1) respectively; (16) comes directly from
(4) where we have used divB = 0. (13) is essentially the parallel
component of (1) where Ohm's law (2), and (12) have been used to
introduce 7 terms. The definition (17) is required to transform
the term V?E,Vp to B.V Ea lIng . (14) is the continuity equation
(3) where, as in the derivation of (13), (12) has been used to

eliminate v, . In both (13) and (14) use has been made of the

1
relation

dwT(BxVQD) = ,B.V(%f %ﬁﬁ) - dw(%fJ“BVr) (18)
where T is an arbitrary scalar and where a B.V() has been

replaced by means of equation (11).

We now discuss the general structure of the system of equations
(11) to (16) with a view to formulating a procedure for solution
in each order of the m expansion. (12) and (16) are algebraic
equations for the components of J, and v, in terms of the other
quantities in the same order of expansion. Ina given order (11),
(13) and (14) are written in the form of magnetic differential
equations [6] . These equations give solutions in terms of the
right hand sides, which involve only quantities of lower order
than those constituting the operands of B.V . In each solution a
surface quantity is included, which remains undetermined for

the present. (15) is also a magnetic differential equation which
gives JIJ in terms of iL in the same order, and a surface
gquantity.
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To illustrate the systematic procedure for solution order by
order, we assume that all quantities up to order n-1 are known,
and show the nth order quantities are determined. First of all
the generalised electric potential QO™ 1is given by (11) which
En) from (12). (13) and (14) must be
(n) (n)

solved simultaneously for ¢

allows us to calculate v
and v
from (16) and finally J“(n) is obtained from (15). We can make
the procedure somewhat clearer (although in principle, it is
unaltered) if instead of (15) we write (4) in terms of the r,

G,g components. We obtain Jr from the £ component of (1)

then J, %) comes

together with the use of (3) and the g component of (2), in
the form

1 A 2 9 s
N, = 5 4 Sl ey dp) - Q] g (eWan) g,

and so instead of (15) we have for divJ = O the equation
34 __faf4aa S
B‘V(NJBJ’ar({BOVer))" r—Nar{Jf(@r(fBﬂ?rV§3§N) rNQvQ} (21)

which has the general form of the other magnetic differential
equations discussed above. This emphasises that the solution
for quantities of order n 1s determined by quantities of lower
order. The details of the solution procedure remain the same
(n), ?(n),(p(n), but instead of using (15) and (16) we
now use (20) for Jr(n), (21) for Jg(n) and the § component

of equation (2) for J§(n)‘

for v

Clearly we are interested only in solutions periodic in the
angle variable ©. This requirement places restrictions upon
the surface functions in the solution as we will now show.

The magnetic differential equations in order n are of the form

@_e@m= R (r,0) (22)

where G(n) is the column of functims ng) (J = 1,..,4) which
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are the operands of 'q%e appearing in (11), (13) and (21)

respectively. R™

is defined as the column of the correspon-
ding right hand sides of these equations. The formal solution
of (22) 1is

]

6" 0) - |R™(r,8)d8" + ") (23)
0

where S™ (r) is the column of surface functions. Thus the n-th
order quantities depend on the S and their derivatives. Closer
examination reveals that the R , which are made up of
quantities of order n, depend on r, ©, the S and the first
three derivatives of the S . Because the generalised
electric potential is dete%mined up to a constant it is possible
to redefine these surface functions so that only second deriva-
tives appear. In what follows these are the surface functions

discussed. Formally we can write in order n+1

+4) (n) 20(n)
aG(h 4_ (n+4) (n) @ d_S_
6 R™8, 57, 3 ) e ) (24)
The periodicity requirement on the solution G(n+1) gives the
relations
r
0\ . A +4)
<'R(ﬂ+ >‘= ﬁgR(n dg _ O (25)

0

These four relations are differential equations, which when
solved with boundary conditions give the S . Hence the
solution of order n is completed by solvi in terms of the
solution of order n-1 and obtaining these surface functions
appearing in that solution from the relations imposed by the
periodicity requirement on the order n+1 solution. This
systematic procedure gives the stationary equilibrium solution,
order by order.
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The four conditions (25) are now written explicitly (neglecting
the order superscript) as

<nJmBN> =0 (26)
<N Q> - <N MM(%%BXQ)> " _f@r<3f JII‘(N> (28)

1 0/1 _
/B or <qurv§JfN> ¥B<N Q\lf> Lr”-R = const. i)

where i is the net current flowing through the magnetic surfaces,

i.e.
i
tr*Rr<NT, )
(29), which is the integrated form on the equation divJ = O,

states that i is a constant, determined only by boundary condi-
tions.

IV. The Zeroth Order

So long as we are not interested in effects which come from fi-
nite conductivity the appropriate equations are (1) to (4) or
(11) to (16) without the m , Q terms. These describe ideal
hydromagnetic flows in the magnetic field configuration we use.
As made plausible by Greene and Karlson [4] , such flows as
solutions of the equations under discussion should be determined
uniquely, if we specify the fluxes of magnetic field B and mass
flux density ?x both the long and the short way, and also
specify temperature or entropy as a function of Q). We treat

here the case of low ﬁ so it is clear that we get a sixth
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surface quantity, because a divergencefree gu can always
be added to the solution of the zeroth order equations.

To show that the result of Greene and Karlson is indeed correct
in our case, we write down the zeroth order solutions. From now

on we drop the superscripts denoting quantities of zeroth order.

84 (rIJ drl (50)

=
I
S C—2~

vy = @BXWD = %var (31)

1 2 ~2

E(Vu V_L) % Vu +C 6“3) = 8}, (32)
1
giut Eg_f& =5 (33)

An expression for J we give later. Assume now all fluxes and
temperature are given in the sense of Greene and Karlson. Apart
from the surface quantity for J we have here S1, S2, 53, and
T (or S) as unspecified functions of r. A prescription of the
toroidal magnetic flux F({) determines {(r), because by means of
(8) we can calculate F(r) so that we obtain S,. We can then use

the magnetic flux Xﬁ@)the short way to calculate

S GRS U (©)
L) = ¢ - o) (34)

which together with ¢(r) gives ((r). The temperature is given
by T(P(r)). The remaining surface quantities S, and S5 are
related to the fluxes of ?1 the long and the short way, which
we denote by 2wV and 2x[" respectively. These are given by the
equations (3%2) and (33) and by the definitions of V and [’

i

I

(Vg pv.Ve ) dr' (35)

Vg 0v.VO dr' (36)

o0~
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Thus we have shown how to derive our surface functions from
those of the work [4]

For our particular considerations it is useful to work with the
following surface quantities as functions of r: Y'and [V ,

the derivatives of V¥ and r'with respect to r, and ?o , which is
defined by

Plr) = o(r ) (37)

and is undetermined by the zeroth order equations alone. In what
follows we refer to an isothermal plasma and put ¢ = ¢ = const.
Using the functions introduced by (35), (36) and (37), and the
abbreviations

W = ?795

(38)
?_:-__ 4 _Fl"‘
T ( ak (39)
M-t
M= LY Q.CT (40)
_ =y
Lo.Cr{NVuw )

we get the following two expressions for v and u

, - HT\%VQ Lx( r’(ﬁm_&m(r w)vﬂ (42)

wlnw - (M*+E(N-1)u - %1 (43)

To illustrate the structure and the range of solvability of the

transcendental equation (43) for u we refer to fig.2. This figure
corresponds to M< 1, however the following arguments apply

equally well to the case M>1. We have plotted the function u.ln u
and the straight line which represents the right hand side of (43)
for a general value of @. These lines are bounded by those given
by © =0 and @ =1 .
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We have also drawn the tan-
gent To u.lnu which has the
same intercept on the vertical
axls as the 6 =T line. If

for all © there exist solutions
for the mass density 0 s the
procedure to obtain ? as
function of © and r is as fol-

q lows: From (43) we get u as

%ja u(e, x ,M>,E°)+ We obtain M

. = ~ from (40) and E from (41) by
_Xﬁﬂ‘ = tq 0(6) = M2+E1N16%“0 specifying VY, " and P, - So

if we substitute for M and E
in u, by means of (38), we

Fig.?2 then have ? .

However, we can see that solu-
tions exist only for a restricted class of mass fluxes. Assume we
fix a certain amount of mass flux [ the short way. Then for all
6 we get a real sclution for u only, when we restrict V¥ so that

2
tn { S -2 ) |

M i 2 (44)
%] F(M* %)

This inequality comes from the fact that to intersect the curve

£ <

u.ln u the straight line represented by the right hand side of
(43) for 6 =3, must have a sufficiently large slope, i.e. larger
than the slope of the tangent line with the same intercept on

the vertical axis. In fig.3 the function F is plotted in a

M2-E2 plane for two different values of ¥. Since by (40) and

(41) M and E are real quantities, these curves, each specified

by a definite aspect ratio, together with the lines M=0 and E=0,
bound the regions corresponding to a stationary solution. For any
nonzero ¥ it is impossible to reach one region from the other

by a continuous change of the mass fluxes.
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Mapping now the indicated region
into a [ -Y' plane we can
illustrate the corresponding
restrictions for the derivatilves
of the mass fluxes. By (40) and
(41) it is clear that, apart from

X =01
£=03

geometrical factors and the sound
speed ¢, the rotational transforml( ,
and the mass density ?n defined by
equation (37) will enter in the

map. If we denote the total mass

contained in a torus with small

11 & 0 radius r by 4T*JM , then for given
mass fluxes, ¢, is related to

Flg.> M = aM /ar

0. R {NVwy (M, E?) (45)

Here we have written out the functional dependence of the

average (N VU') . In what follows we take the liberty to indicate
for functions only those arguments which are important in the
situation under consideration. Filling each magnetic surface with
a certain amount of mass which is in zeroth order at our disposal,
obviously corresponds for given mass fluxes to a definite
function g%(r) and vice versa. We take this arbitrariness in

the mass distribution into account by plotting in fig.4 dimension-
less mass fluxes. Analytically the boundary curves of the

allowed regions are obtained as follows: The quantities to be
plotted we calculate from equation (40) and (41) in terms of

M and E. This is possible after expressing (N VE) , by means

of the solution of (43), as a function of M and E. The resulting

expression taken on the boundary is

1-%*

?CR B {—T—MM\ . x\/?(M*KNﬁXMiF(Ml)} (46)
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- L& (47)
0.CR =t (1-2)" &

where

A
0<Ml=sM, o IM=ZM, . (48)
Mc’ ﬁc are the positive roots of the transcendental equation

F(M* %) =0 (49)

and depend on % . The bounding curves ( (46), (47) ) are shown
in fig. 4 where a logarithmic scale is used for Fyedjzx 102.

5%_1 «Ao” Tw | \ /
e R N e
/ 1 Y ////’/ / :

Fig.4
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As can be seen from (46) and (47) these curves are invariant
with respect to the transformation ([, ¥ ) = (-, -VY").
Within the regions where a solution exists we have indicated
the subregions for which the flow is subsonic. The region
containing the map of the origin of the M2--E2 plane (fig.5)
includes the quasistatic case [3] . For this reason and for
reasons of comparison we exclude from the present work,
consideration of the other region (M>1).

Fig.5 clearly demonstrates the stringent restrictions placed
on the mass flux derivatives by the condition for a physical,
stationary solution in zeroth order. In particular it shows that
as |—+0 the allowed range of ™ is progressively reduced.

From the definition of the mass

flow rotational transform

[JM = \_”/Wr (50)

it is clearly seen that for a
given nonzero plasma rotation,

| Lml cannot be chosen
arbitrarily small, and the lower

limit of |[ty| increases sharply

with increasing plasma rotation.

Fig.5
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V. Lowest Order Plasma Diffusion

In our ordering of plasma parameters plasma diffusion, a
resistive effect, appears in first order. If we denote the
mass flux in the outward direction by bgt =, w(1), then the
defining expression for w(1) is

Vv(ﬂ(r)

:ﬁz \ Py« dS (60)
Fx)=r

We recall that we are neglecting the order symbol of zeroth

order quantities. From the expression (42) for v we see that
(1)1 gives no contribution to the surface integral (60).

To simplify the consideration we assume a plasma source

localised at r = 0. In this case w(1) is a constant. Then

Ohm's law in first order yields for W(T)

W(d) _ <S)\_/(4i'vr> _ ﬂ(?N\%J \7§> (61)

This is nothing other than the integrated version of the
consistency relation (28) in first order for a localised source.
For purposes of discussion and for the calculation of (61) we
give the complete expressions for the components of the current
density J

(63)

3 = gl WG vy -G Geag)] e
(- OV gNay) + (3 - Py wngey)]

where

a, = (VW) = -4y ex @Ns—e\/;) (65)
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is the r component of the local acceleration. We have made
use of the consistency relation (26) to determine a zeroth
order surface quantity which, without reference to first
order, was unspecified. J§ , substituted in (61), gives for W

W= - ész {<?%$N> F<N D pNHN ar>
AN e SRR Ly (NN X GO
PN G ) -0y K ¥ e

We now give a short explanation of the various terms appearing

in the diffusion expression.

As egn.(61) shows that the plasma loss is expressible in terms
of the toroidal component of J, we consider the role of this
component of current density in the balance of forces. Indeed,
we identify a correspondence between the terms of (66), and the

forces balanced by those J x B forces involving J§ .

The component of the eqn. of of motion (1) normal to the
magnetic surfaces describes how that part of the current density
which is tangent to the magnetic surfaces supports the r
components of the pressure gradient and the inertial force. As
can be seen from (65) the latter is a centripetal force giving
rise to an acceleration with respect to the axis of symmetry.
Now the azimuthal current density component 1s related to Jr
from divJd = O. The toroidal component of the egn. of motion
states that a fluid particle with nonzero Ve and v% suffers

an acceleration in the g direction (a Coriolis acceleration),
and the balancing force involves only this Jr' Thus it is clear
that the part of J, poloidal and tangent to the magnetic
surfaces corresponds to a Coriolis force. In this way the r
component of the pressure gradient, and the two types of

accelerating force discussed above contribute to J§ and

appear in the dirfusion expression.
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The first line of eqgn.(66) is very similar to the usual
resistive diffusion term, and in fact when inertia is
neglected, i.e. when the density variation on magnetic
surfaces vanishes, it is exactly that term. Clearly, 1t
corresponds to the pressure gradient force. The second line
corresponds to centrifugal forces, and the third line

corresponds to the Coriolis force.

If v, as prescribed by (42), is substituted 1n (66), we get
the right hand side completely in terms of the magnetic field,
9, and the mass fluxes V¥ and [' . The point of view we have
adopted is that w(1) is a specified quantity, so equation (66)
can be visualised as a relation determining the profile %(r)

in terms of V¥ and r s

To determine the mass fluxes we must consider the remaining
consistency relations (27) and (29). We have not solved these
equations. However, whatever the boundary conditions and the
corresponding solutions may be, the restrictions shown in fig.>
or fig.5 must hold for an equilibrium solution to exist. These
restrictions prevent L-4 like terms from playing a dominant
role in the diffusion expression. Such terms formally arise
when we replace Ve by (42), and their appearance is coupled
with a nonzero | .

We now examine more closely the contribution to plasma losses
as a result of inertia.

For this investigation we use the dimensionless quantities M

and E. We obtain for vy and v§ from (42)

\Ciez¥m ] \i§=—,{—[\i

i (67)
NYw C NV WE

The discussion of equation (43) for u reveals the following
upper and lower limits for Yu'
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4 l+ z + 1—4
% < ﬁ < elLM Bl )} for M#0 (68)
AC2( 4 _ (4 ar)? 1 Eq e t)=
o~ tEU-U) (¢ g HE (UM U ror M=0 (69)

This always gives for v
‘\ﬁl < fy (70)
whereas v§ does not seem to be limited since,

Vl ;

=5l € +(1+ 1
'c Y (1+3) |l (71)
and since for M = 0O the value of E 1is not bounded.

We must bear in mind, however, that we lack the information
contained in the consistency relations (27) and (29). Without
taking first order into account, the arbitrariness of E for

M = O is obviously due to the fact that the plasma may rotate

as a whole about the axis of symmetry. It seems reasonable to
eliminate the possipility of such a rotation by putting the
zeroth order total angular momentum within each magnetic surface
equal to zero. This will be done, but such an assumption
requires further comment. Equation (29) can be written in a form
which shows that this relation is nothing but the integrated
form of the balance equation for the angular momentum in the
respective order of expansion. Interpreted in this sense, (29)
states that the change of the mechanical angular momentum 1is
balanced by the torques produced by the injection of plasma

and by the net outward-flowing current. The fulfillment of this
balance in first order need not, but may, place restrictions

on the zeroth order surface guantities such that the angular

momentum in lowest order cannot be chosen exactly equal to zero.
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For physical reasons, however, we expect that this can be done
approximately.

If in zeroth order there is then no z component of the total

angular momentum

D(r) = Ye, (xrpy) dc

(72)
fx)=r

about the axis of symmetry within each of the magnetic surfaces,
this is equivalent to

M= BN (73)

Using this in (67) to (69) we obtain the following upper limit

for Ve

l\égl < ﬂ’1 - %lMl exp{-%Mlihgl;—sv-@((Mx)l—ﬂ)} <A (o)

The average <N3 VEt) is approximately unity for typical values
of L and ), for the allowed values of M and for those of E
calculated from (73) in terms of M. Thus, V§ is always less than

the sound speed.

On the basis of the allowed M values and of reasonable values for
the scale length of ?o and M, we have numerically calculated the
plasma losses. These calculations show that the contribution due
to inertia is, at most, of the same order of magnitude as
classical resistive diffusion [3, 7] .
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