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Effect of inertial lift on a spherical particle
suspended in flow through a curved duct

Brendan Harding1†, Yvonne M. Stokes1, and Andrea L. Bertozzi2

1School of Mathematical Sciences, The University of Adelaide, Adelaide, South Australia 5005,
Australia

2Departments of Mathematics and Mechanical and Aerospace Engineering, University of
California, Los Angeles, California 90095, USA

(Received xx; revised xx; accepted xx)

We develop a model of the forces on a spherical particle suspended in flow through
a curved duct under the assumption that the particle Reynolds number is small. This
extends an asymptotic model of inertial lift force previously developed to study inertial
migration in straight ducts. Of particular interest is the existence and location of stable
equilibria within the cross-sectional plane towards which particles migrates. The Navier–
Stokes equations determine the hydrodynamic forces acting on a particle. A leading
order model of the forces within the cross-sectional plane is obtained through the use
of a rotating coordinate system and a perturbation expansion in the particle Reynolds
number of the disturbance flow. We predict the behaviour of neutrally buoyant particles
at low flow rates and examine the variation in focusing position with respect to particle
size and bend radius, independent of the flow rate. In this regime, the lateral focusing
position of particles approximately collapses with respect to a dimensionless parameter
dependent on three length scales, specifically the particle radius, duct height, and duct
bend radius. Additionally, a trapezoidal shaped cross-section is considered in order to
demonstrate how changes in the cross-section design influence the dynamics of particles.

1. Introduction

Inertial lift force influences the motion of particles suspended in fluid flow through a
duct. The effect was first demonstrated in the classical experiment of Segre & Silberberg
(1961) where particles suspended in flow through a (straight) cylindrical pipe were
observed to migrate towards an annulus approximately 0.6 times the radius of the pipe.
This sparked many studies of the simplified scenario of a spherical particle suspended
in Poiseuille flow between two plane parallel walls (e.g. Ho & Leal (1974), Schonberg &
Hinch (1989) and Asmolov (1999)). Subsequently, particle migration in a circular pipe
was investigated at much larger Reynolds numbers (Re) with studies showing that the
radius of the focusing annulus grows with increasing Re (Matas et al. 2004, 2009). In
recent years inertial lift has been used in the field of microfluidics for the separation of
cells by size and has been extensively studied experimentally (Di Carlo 2009; Martel &
Toner 2014; Warkiani et al. 2014; Geislinger & Franke 2014). Much of the behaviour,
especially in complex geometries, is still only understood at an empirical level.
In the case of fully enclosed non-circular ducts the inertial lift force is generally much

more difficult to approach from an analytical perspective. Several experimental studies
of straight ducts with square or rectangular cross-sections have shown that particles
typically tend to migrate towards one of four (stable) equilibrium positions located a
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finite distance from the centre of each wall (Abbas et al. 2014; Amini et al. 2014; Di Carlo
et al. 2009; Ciftlik et al. 2013). Recent work by Hood et al. (2015) extended the analysis of
Schonberg & Hinch (1989) from the case of Poiseuille flow between two walls to Poiseuille
flow through square ducts. They develop a model of the inertial lift force at small
particle Reynolds number which is calculated via the Lorentz reciprocal theorem and
utilises the finite element method (FEM) to approximate terms in the expansion that are
analytically intractable. Their results agree well with experimental data and demonstrate
that much of the behaviour can be characterised by effects that occur for small particle
Reynolds number. Their approach was also applied to rectangular ducts where it is shown
that the relative size of the attraction zone for equilibria near the side walls becomes
increasingly small as the aspect ratio increases, and even disappears entirely for large
enough particles (Hood 2016). Other studies have considered the behaviour at higher
Reynolds numbers, in particular Nakagawa et al. (2015) used an immersed boundary
method to approximate the full Navier–Stokes equations and demonstrate that particles
may additionally focus near the corners at high flow rates in agreement with experiments
of Miura et al. (2014). These studies also clarify that particles are less focused at high
flow rates suggesting that lower flow rates are more useful for cell separation and sorting.

This paper extends the work of Hood et al. (2015) to the case of curved ducts. The
focusing behaviour of curved and spiral ducts has been largely confined to experimental
studies which have shown it to be an effective mechanism to separate particles/cells
by size (Martel & Toner 2012, 2013; Ramachandraiah et al. 2014; Russom et al. 2009;
Nivedita et al. 2017). There have been some studies utilising direct numerical simulation,
see for example Liu et al. (2016) and Ookawara et al. (2006), in which the inertial lift effect
is often added as an external force on the particle via an over-simplified model. Curved
ducts are well-known to develop a secondary flow consisting of two counter-rotating
vortices within the duct cross-section commonly referred to as Dean flow in reference to
the early studies of Dean (1927) and Dean & Hurst (1959). The experimental literature
demonstrates that size based separation is caused by an interplay between the inertial lift
force and the drag forces coming from the secondary fluid flow. Here we carefully analyse
the Navier–Stokes equations to develop a model of the forces, acting on a particle, within
the cross-sectional plane. The model is then applied to the special case of low flow rate
to gain some insight into how the inertial lift force and secondary flow drag interact
and lead to focusing positions that differ with respect to particle size. Motivated by the
experiments of Guan et al. (2013) and Warkiani et al. (2014) we also consider a curved
duct having a trapezoidal cross-section to better understand how the shape of a duct
influences the separation of different size particles.
Microfluidic devices used for particle separation often have a spiral design in order

to accommodate the required focusing length relative to the bend radius. Although the
bend radius in such devices is continuously changing, it has been demonstrated that the
slowly changing curvature in such devices has negligible impact on the fluid flow in the
sense that it is reasonable to treat the bend radius as being locally constant at each
point within the spiral (Harding & Stokes 2018). Therefore, ducts with constant bend
radius are considered in this study and, by smoothly interpolating results obtained for
several different bend radii (using the same cross-section), we are able to approximate
the particle dynamics at any location within a spiral duct.
A leading order model of the relevant cross-sectional forces is developed in Section 2.

There are several key steps in the case of a curved duct. The first is the introduction of a
rotating reference frame in which the fluid and particle motion is approximately steady.
This allows us to neglect time dependence of the cross-sectional forces on the particle,
but also introduces inertia and Coriolis forces into the Navier–Stokes equations and force
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model. The second step is the introduction of disturbance flow variables followed by a
non-dimensionalisation of the problem and a perturbation expansion with respect to the
particle Reynolds number. This is similar in spirit to the approach of (Hood et al. 2015)
for a straight duct. The Lorentz reciprocal theorem is used to re-express first order forces,
which include the inertial lift force, as a volume integral depending on the leading order
approximation of the disturbance flow. Third, we break up the background flow velocity
into its axial and secondary components and use this to further expand the force and
torque experienced by the particle into distinct parts. Lastly, a model for the trajectory
of a particle is developed based on its terminal velocity resulting from the forces driving
its motion within the plane of the duct cross-section.
In Section 3 we apply the general model from the preceding section to the specific case

of particle behaviour in the limit of low flow rate. This is an interesting case to consider for
two reasons. Firstly it allows us to consider a simplified approximation of the background
fluid flow and eliminate dependence on flow velocity so that we may focus on the effect
of bend radius and particle size on the focusing behaviour. In particular, by utilising an
expansion of the background flow developed in (Harding 2018a) we demonstrate that it
is sufficient to take a leading order approximation of the axial and secondary components
of the flow. It then becomes clear that the interaction between the secondary flow drag
and inertial lift force converges towards a limiting behaviour (for a fixed particle size
and duct dimensions) that is different from that obtained for straight ducts. Second, it
allows us to validate the model by demonstrating that the focusing behaviour observed
in straight ducts is recovered for large bend radii. This provides new insights into how
the focusing behaviour in curved ducts differs from that in straight ducts.
In Section 4 we present and discuss the focusing behaviour resulting from our model for

ducts having square, rectangular and trapezoidal cross-sections. Curved square ducts are
not be particularly good at focusing or separating particles but illustrate some interesting
dynamics which we comment on briefly. On the other hand, rectangular and trapezoidal
ducts are quite effective at focusing particles and the focusing position depends on the size
of the particle and bend radius of the duct. Furthermore, the behaviour approximately
collapses to a single curve when plotted with respect to a dimensionless parameter which
describes the relative size of the inertial lift and secondary drag forces. These results
provide insights into recently published experimental results.

2. Governing equations and perturbation expansion

Here we derive the equations for our leading order force model.

2.1. Governing equations in the lab frame of reference

Consider a duct which is curved having a constant bend radius and uniform cross-
sectional shape, an example of which is depicted in Figure 1. Let x = (x, y, z) denote a
Cartesian coordinate system in the lab reference frame with the duct positioned so that
the z axis is normal to the plane of the bend. Let the bend radius R be the distance
from the origin to the centre of the duct cross-section at any axial/angular position. We
introduce r, θ such that r, z are coordinates that describe the location within the duct
cross-section relative to its centre and θ is the angle around the bend measured from the
x-axis, see Figure 1. Note that we do not consider the flow near the inlet/outlet. With
this description x is parametrised as

x(r, θ, z) = (R+ r) cos(θ)ex + (R+ r) sin(θ)ey + zez.
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Figure 1: Curved duct with rectangular cross-section containing a spherical particle
located at xp = x(θp, rp, zp). The enlarged view of the cross-section around the particle
illustrates the origin of the local r, z coordinates at the centre of the duct. The bend radius
R is with respect to the centre-line of the duct and is of modest size for illustration.

For example, the point on the centre-line x = Rex is equivalently described by (r, θ, z) =
(0, 0, 0). For a duct having a rectangular cross-section with width W and height H the
walls of the duct are taken to be located at r = ±W/2 and z = ±H/2. For the non-
rectangular ducts considered later we take H to be the average height and the origin
of the cross-section to be such that for r = 0 the top and bottom walls are located
at z = ±H/2 respectively. Let ℓ := H be a characteristic minimum width of the duct
cross-section noting that the ducts considered in this paper all have H 6 W .
Consider a steady fluid flow, through the duct, satisfying the incompressible Navier–

Stokes equations. Letting ū denote the fluid velocity and p̄ denote the pressure, we have

−∇p̄+ µ∇2ū = ρ (ū · ∇ū− g) on x ∈ D, (2.1a)

∇ · ū = 0 on x ∈ D, (2.1b)

ū = 0 on x ∈ ∂D, (2.1c)

where ρ and µ denote the fluid density and viscosity respectively (both assumed to be
constant), g is the (constant) acceleration due to gravity, D denotes the interior of the
duct and ∂D denotes its boundary/surface (i.e. the walls of the duct). The fluid motion
is driven by a steady pressure gradient such that p̄ can be decomposed into

p̄(x(r, θ, z)) = −GRθ + ρx · g + p̃(r, z),

where G denotes the drop in pressure per unit arc-length along the centreline of the duct.
Notice that we have assumed gravity does not influence the flow velocity by introducing
the hydrostatic pressure ρx · g to counteract ρg in (2.1a). For simplicity our study is
restricted to the specific case where gravity acts in the z direction, that is g = −gez.

The resulting flow, often referred to as Dean flow, has been well-studied for ducts
having circular or rectangular cross-sections (Dean & Hurst 1959; Winters 1987; Yanase
et al. 1989; Yamamoto et al. 2004). The pressure gradient drives an axial flow from which
the inertia of the fluid around the bend then leads to the development of a secondary flow
consisting of two counter rotating vortices within the duct cross-section. (At high Dean
numbers there can exist multiple solutions, some having several vortices, however such
flow conditions are far beyond those of practical interest in the context of microfluidics).
Sufficiently far from the inlet/outlet region, the flow velocity components are independent
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of the angular coordinate (up to their direction) and can be expressed as

ū = ūθ(r, z)êθ + ūr(r, z)êr + ūz(r, z)ez, (2.2)

where êθ := − sin(θ)ex + cos(θ)ey and êr := cos(θ)ex + sin(θ)ey. The ūθ component
is the axial flow velocity whereas the ūr, ūz components describe the secondary flow.
Throughout this paper ū and p̄ are referred to as the background velocity and pressure
respectively. In the context of studying the dynamics of a particle suspended in flow
through a curved duct ū, p̄ will be treated as being known/prescribed. Details of the
specific approximation of ū used to obtain our results is deferred to Section 3 while the
treatment throughout the remainder of this section is quite general.
Consider a single spherical particle within the fluid flow through the duct. There are

two ways one could analyse the trajectory of a particle within the flow. If the secondary
component of the background flow is relatively strong (i.e. such that inertial lift force
will be small compared to fluid drag from the secondary flow) then one might view the
particle as behaving like a passive tracer (with respect to the background flow velocity
ū) which is then perturbed by additional drag (due to the nearby walls) and inertial lift
forces. Alternatively, if the secondary component of the background flow is moderate or
weak (i.e. such that inertial lift force is similar in magnitude to drag from the secondary
fluid motion) one could consider the particle to be travelling along a streamline of the
axial component of the background flow (i.e. streamlines of ūθêθ) and that its motion is
perturbed by the drag forces from the secondary fluid motion, increased drag from the
walls, and inertial lift forces. We consider applications in which the drag forces from the
secondary fluid motion is not significantly larger than the inertial lift force and thus take
the latter point of view throughout this paper.
Let a denote the radius of the spherical particle, ρp denote its density (which we

assume to be uniform), and xp(t) = (xp(t), yp(t), zp(t)) denote the location of its centre
at time t. It is convenient to parametrise the particle position in cylindrical coordinates
as xp(t) = x(rp(t), θp(t), zp(t)), see Figure 1. The particle follows an axial flow streamline
(from which it will be perturbed) and thus Θ := ∂θp/∂t is constant, ∂rp/∂t = ∂zp/∂t = 0,
and ∂Ωp/∂t = 0 where Ωp denotes the spin of the particle (i.e. the angular velocity with
respect to its centre). The assumption ∂rp/∂t = ∂zp/∂t = 0 may seem counter-intuitive,
i.e. we assume that rp, zp is fixed only to calculate non-zero forces in these directions
such that they cannot remain fixed. However, this is consistent with the approaches in
previous studies of inertial lift forces in uni-directional flows, see for example Schonberg
& Hinch (1989) and Hood et al. (2015). Furthermore, it can be shown that any additional
effects from particle motion in the r, z directions is much smaller than the inertial lift
force and can therefore be neglected (given the other assumptions used here). Without
loss of generality we can additionally assume that θp = 0 at time t = 0 such that
θp(t) = Upt/(R + rp) (or equivalently Θ = Up/(R + rp)) where Up here denotes the
(linear) velocity of the particle.
The presence of the particle alters the fluid flow and we introduce u, p to denote

the fluid velocity and pressure in the presence of the particle. The fluid motion is again
assumed to be governed by the incompressible Navier–Stokes equations, that is, in general

−∇p+ µ∇2u = ρ

(

∂u

∂t
+ u · ∇u+ gez

)

on x ∈ F , (2.3a)

∇ · u = 0 on x ∈ F u = 0 on x ∈ ∂D, (2.3b)

u =
∂xp

∂t
+Ωp × (x− xp) on x ∈ ∂F\∂D, (2.3c)
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where F := {x ∈ D : |x−xp| > a} is the fluid domain given the presence of the spherical
particle and ∂F\∂D = {x : |x − xp| = a} is the surface of the particle. Note that the
moving particle results in unsteady fluid flow in the lab frame of reference. In particular,
F depends on time becausexp is non-stationary. Thus the ∂u/∂t in (2.3a) cannot be
discarded (as it was for the background flow in (2.1a)). Note that the boundary condition
(2.3c) has a constant Ωp that denotes the spin (or angular velocity) of the particle (as
observed in the lab frame). Far from the particle we expect u, p to converge to the
background flow ū, p̄.

The particle motion is driven solely by the force and torque exerted on the particle by
the surrounding fluid in addition to the gravitational body force. The former are obtained
by integrating the fluid stresses over the particle surface:

F (t) = −mpgez +

∫

|x−xp|=a

(−n) · (−pI+ µ(∇u+∇u⊺)) dS, (2.4a)

T (t) =

∫

|x−xp|=a

(x− xp)× ((−n) · (−pI+ µ(∇u+∇u⊺))) dS, (2.4b)

where mp := (4/3)πa3ρp is the mass of the particle. Note that we take the normal n
with respect to the fluid domain F and thus on the surface of the spherical particle −n

is the normal vector pointing outwards from the centre of the particle.

2.2. Equations of motion in a rotating frame of reference

Although the fluid motion is not steady in the lab frame,we view it as steady relative to
the motion of the particle centre (assumed to be moving with constant angular velocity
∂θp/∂t = Θ and fixed rp, zp). Therefore, in the particle reference frame (noting that the
particle may still have a constant spin) we can eliminate the ∂u/∂t term.

Consider a reference frame rotating about the z axis at the (constant) rate ∂θp/∂t =: Θ.
We introduce the coordinate system x′ = (x′, y′, z′) which we parametrise by (r′, θ′, z′)
such that

x′(r′, θ′, z′) = (R+ r′) cos(θ′)ex′ + (R+ r′) sin(θ′)ey′ + z′ez′ .

The unit vectors ex′ , ey′ , ez′ in the rotating frame are related to ex, ey, ez in the lab

reference frame by

ex′ = cos(θp)ex + sin(θp)ey, ey′ = − sin(θp)ex + cos(θp)ey, ez′ = ez.

or conversely

ex = cos(θp)ex′ − sin(θp)ey′ , ey = sin(θp)ex′ + cos(θp)ey′ , ez = ez′ .

The angular velocity of the rotating reference frame (relative to the lab frame) is

Θez :=
∂θp
∂t

ez =
Up

R+ rp
ez. (2.5)

Let x′
p = (x′

p, y
′
p, z

′
p) be the centre of the particle in the rotating frame of reference.

It is always the case that x′
p = R + rp, y

′
p = 0 and z′p = zp. Consequently, the particle

velocity in the rotating reference frame is

∂x′
p

∂t
=

∂x′
p

∂t
ex′ +

∂z′p
∂t

ez′ =
∂rp
∂t

ex′ +
∂zp
∂t

ez′ = 0.

The particle spin as viewed from the rotating reference frame is reduced by the solid
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body rotation of the coordinate system and is therefore denoted

Ω′
p := Ωp −Θez′ .

Let u′(x′, t) denote the velocity of a fluid parcel in the rotating frame which is related
to the velocity u(x, t) in the lab frame via

u(x, t) = u′(x′, t) +Θ(ez′ × x′).

Furthermore, the acceleration of a fluid parcel in the two frames are related via

du

dt
=

Du′

Dt
+ 2Θ(ez′ × u′) +Θ2(ez′ × (ez′ × x′)),

where Du′/Dt := ∂u′/∂t + u′ · ∇′u′ denotes the material derivative. Letting p′ denote
the fluid pressure in the rotating frame (which is such that p′(x′, t) = p(x, t) and thus
∇′p′ = ∇p), it follows that the equations of motion for the fluid in the rotating reference
frame are

−∇′p′ + µ∇′ 2u′ = ρ

(

∂u′

∂t
+ u′ · ∇′u′ + 2Θ(ez′ × u′)

+Θ2(ez′ × (ez′ × x′)) + gez

)

on x′ ∈ F ′, (2.6a)

∇′ · u′ = 0 on x′ ∈ F ′, (2.6b)

u′ = −Θ(ez′ × x′) on x′ ∈ ∂D, (2.6c)

u′ = Ω′
p × (x′ − x′

p) on x′ ∈ ∂F ′\∂D, (2.6d)

where F ′ := {x′ ∈ D : |x′ − x′
p| > a} denotes the fluid domain with respect to the

rotating reference frame. The boundary condition (2.6c) arises from the no slip condition
on the walls, rotating with angular velocity −Θez. Notice that, expressed in this frame,
the fluid flow can be considered to be steady since F ′ is stationary and each of Θ,Ω′

p, g
are constant. Consequently ∂u′/∂t is zero and can be dropped from (2.6a). Observe that
it is important for gravity to acts in the ez direction since otherwise the relative direction
of gravity in the rotating frame would be dependent on θp(t).
The force and torque on the particle need to be expressed in terms of the rotating

reference frame as well. Let F ′,T ′ denote the force and torque on the particle in the
rotating reference frame, respectively. Then one has

F = F ′ +mpΘ
2(ez′ × (ez′ × x′

p)), (2.7a)

T = T ′ + IpΘ(ez′ ×Ω′
p), (2.7b)

where mp := (4/3)πa3ρp and Ip := (2/5)a2mp are the mass and moment of inertia of
the particle respectively. Note there is no Coriolis like force since the particle velocity
is taken to be zero in the rotating reference frame, nor is there an Euler force since Θ
is assumed to be constant. Thus, upon re-expressing (2.4) in terms of p′,u′, and then
combining with (2.7) one obtains

F ′ = −mpgez′ −mpΘ
2(ez′ × (ez′ × x′

p))

+

∫

|x′−x
′

p
|=a

(−n) · (−p′I+ µ(∇′u′ +∇′u′⊺)) dS′, (2.8a)

T ′ = −IpΘ(ez′ ×Ω′
p)

+

∫

|x′−x
′

p
|=a

(x′ − x′
p)×

(

(−n) · (−p′I+ µ(∇′u′ +∇′u′⊺))
)

dS′. (2.8b)
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Note that −mpΘ
2(ez′ × (ez′ × x′

p)) provides the centripetal force experienced by the
particle due to its rotational motion as it travels through the curved duct.

We also need the background flow in the rotating reference frame. Since the background
flow is steady in time and independent of angular position then, letting p̄′, ū′ denote
pressure and velocity of the background fluid flow respectively, they are related to those
in the stationary/lab frame via

ū′(x′) = ū(x′)−Θez′ × x′, p̄′(x′) = p̄(x). (2.9)

We are now equipped to consider the disturbance flow in the rotating reference frame,
that is the difference between flow u′, p′ in the presence of the particle and the flow ū′, p̄′

in the absence of the particle.

2.3. Disturbance flow in the rotating frame

In the rotating reference frame we introduce the disturbance velocity and pressure

v′ = u′ − ū′, q′ = p′ − p̄′,

respectively. Substituting u′ = v′ + ū′ = v′ + ū−Θ(ez′ × x′) and p′ = q′ + p̄′ into (2.6)
one obtains

−∇′q′ + µ∇′ 2v′ = ρ
(

(v′ + ū−Θ(ez′ × x′)) · ∇′v′

+ v′ · ∇′ū+Θ(ez′ × v′)
)

on x′ ∈ F ′, (2.10a)

∇′ · v′ = 0 on x′ ∈ F ′, (2.10b)

v′ = 0 on x′ ∈ ∂D, (2.10c)

v′ = −ū+Θ(ez′ × x′) +Ω′
p × (x′ − x′

p) on x′ ∈ ∂F ′\∂D, (2.10d)

where we have additionally used the fact that
(i) the background flow ū, p̄ satisfies (2.1),
(ii) for any w one has w · ∇′(ez′ × x′) = ez′ ×w,
(iii) using (2.2) it can be shown (ez′ × x′) · ∇′ū = ez′ × ū,
(iv) for x′ ∈ ∂D one has ū = 0.

Similarly the force and torque can be expressed in terms of the disturbance flow as

F ′ = −mpgez −mpΘ
2(ez′ × (ez′ × x′

p)) +

∫

|x′−x
′

p
|=a

(−n) · (−p̄I+ µ(∇′ū+∇′ū
⊺
)) dS′

+

∫

|x′−x
′

p
|=a

(−n) · (−q′I+ µ(∇′v′ +∇′v′⊺)) dS′, (2.11a)

T ′ = −IpΘ(ez′ ×Ω′
p) +

∫

|x′−x
′

p
|=a

(x′ − x′
p)× ((−n) · (−p̄I+ µ(∇′ū+∇ū⊺))) dS′

+

∫

|x′−x
′

p
|=a

(x′ − x′
p)×

(

(−n) · (−q′I+ µ(∇′v′ +∇′v′⊺))
)

dS′, (2.11b)

respectively (noting that ∇′(ez′×x′)+∇′(ez′ × x′)
⊺
= 0). Because ū′, p̄′ are well-defined

on the interior of the particle then one may use the divergence theorem and (2.1a) to
obtain

∫

|x′−x
′

p
|=a

(−n) · (−p̄I+ µ(∇′ū+∇′ū
⊺
)) dS′

= ρ

∫

|x′−x
′

p
|6a

ū · ∇′ū+ gez dV
′ =

4

3
πa3ρgez + ρ

∫

|x′−x
′

p
|6a

ū · ∇′ū dV ′, (2.12)
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recalling that n points in to the centre of the particle. Thus the contribution from the
background flow to the force is essentially just the inertia of the fluid that would otherwise
take up the volume occupied by the particle. For a neutrally buoyant particle (i.e. ρp = ρ)
travelling with a velocity close to that of the axial velocity of the background flow we
would then expect mpΘ

2(ez′ × (ez′ ×x′
p)) to be close to the inertia of the displaced fluid

so that the difference between the two is negligible. If the particle has lower or higher
density than the fluid then the net effect of the two terms is a force directed towards
the inside or outside wall respectively. Similarly, for the background contribution to the
torque, it may be shown that

∫

|x′−x
′

p
|=a

(x′ − x′
p)×

(

(−n) · (−p̄I+ µ(∇′ū+∇′ū
⊺
))
)

dS′

= ρ

∫

|x′−x
′

p
|6a

(x′ − x′
p)× (ū · ∇′ū) dV ′. (2.13)

At first glance this may appear like a misuse of the divergence theorem, however it indeed
holds by first re-arranging the order of the cross and dot products so that the integrand
has the form −n ·(∗) after which the divergence theorem can be applied and then further
re-arrangement and use of (2.1a) leads to (2.13). In any case this term is sufficiently small
that it can be neglected for the purpose of estimating the inertial lift force to leading
order as will be demonstrated upon non-dimensionalising our equations.

2.4. Non-dimensionalisation of the disturbance flow

Let us now non-dimensionalise the variables and equations of motion (working in the
rotating reference frame). Spatial variables are non-dimensionalised using the radius
of the particle a and velocity variables are non-dimensionalised via the characteristic
velocity U := Uma/ℓ where Um denotes a characteristic velocity of the background flow
ū, which we take to be the value of its axial component at r = θ = z = 0. This is
essentially the same scale as in Hood et al. (2015). The non-dimensionalisation of the
remaining variables follow from these via the standard approach for flows in which viscous
stresses are dominant. Thus we introduce dimensionless variables denoted by ·̂,

x′ = ax̂′, v′ = (Uma/ℓ)v̂′, q′ = (µUm/ℓ)q̂′,

x′
p = ax̂′

p, ū = (Uma/ℓ)ˆ̄u, p̄ = (µUm/ℓ)ˆ̄p,

t = (ℓ/Um)t̂, Ω′
p = (Um/ℓ)Ω̂

′

p, Θ = (Um/ℓ)Θ̂,

∇′ = a−1∇̂′, g = (U2
ma/ℓ2)ĝ.

With these scalings, the dimensionless form of (2.10) is

−∇̂′q̂′ + ∇̂′ 2v̂
′ = Rep

(

(v̂′ + ˆ̄u− Θ̂(ez′ × x̂
′)) · ∇̂′v̂

′

+ v̂
′ · ∇̂′ ˆ̄u+ Θ̂(ez′ × v̂

′)
)

on x̂
′ ∈ F̂ ′, (2.14a)

∇̂′ · v̂′ = 0 on x̂
′ ∈ F̂ ′, (2.14b)

v̂
′ = 0 on x̂

′ ∈ ∂D̂, (2.14c)

v̂
′ = −ˆ̄u+ Θ̂(ez′ × x̂

′) + Ω̂
′

p × (x̂′ − x̂
′
p) on x̂

′ ∈ ∂F̂ ′\∂D̂, (2.14d)

where F̂ ′ := {x̂′ : ax̂′ ∈ F ′} and D̂′ := {x̂′ : ax̂′ ∈ D′} denote the rescaled domains and

Rep :=
ρ

µ
Ua =

ρ

µ
Um

a2

ℓ
, (2.15)
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is the particle Reynolds number. Writing the duct Reynolds number, Re := (ρ/µ)Umℓ,
we have Rep = Re(a/ℓ)2, so that the particle Reynolds number can be small even if the
duct Reynolds number is not (note that a < ℓ/2 is necessary for the particle to fit in the
duct and a . ℓ/10 is typical).
The forces on the particle in the rotating frame must also be non-dimensionalised.

Noting that the dimensional force F ′ and torque T ′ are

F ′ = mp

∂2x′
p

∂t2
and T ′ = Ip

∂Ω′
p

∂t
,

we introduce the dimensionless quantities F̂
′
, T̂

′
defined by

F̂
′
:=

ℓ2

ρU2
ma4

F ′ =
ρp
ρ

4π

3

∂2x̂
′
p

∂t̂2
, and T̂

′
:=

ℓ2

ρU2
ma5

T ′ =
ρp
ρ

8π

15

∂Ω̂
′

p

∂t̂
.

Noting that ρU2
ma4/ℓ2 = RepµUma2/ℓ, one has from (2.11a)

F̂
′
= −

ρp − ρ

ρ

4π

3
ĝez −

ρp
ρ

4π

3
Θ̂2(ez′ × (ez′ × x̂

′
p)) +

∫

|x̂′−x̂
′

p
|<1

ˆ̄u · ∇̂′ ˆ̄u dV̂ ′

+
1

Rep

∫

|x̂′−x̂
′

p
|=1

(−n) · (−q̂′I+ ∇̂′v̂
′ + ∇̂′v̂

′⊺) dŜ′, (2.16)

and similarly from (2.11b)

T̂
′
= −

ρp
ρ

8π

15
Θ̂(ez′ × Ω̂

′

p) +

∫

|x̂′−x̂
′

p
|<1

(x̂′ − x̂
′
p)×

(

ˆ̄u · ∇̂′ ˆ̄u
)

dV̂ ′

+
1

Rep

∫

|x̂′−x̂
′

p
|=1

(x̂′ − x̂
′
p)×

(

(−n) · (−q̂′I+ ∇̂′v̂
′ + ∇̂′v̂

′⊺
)

dŜ′. (2.17)

At this stage, given a, x̂′
p, Θ̂, Ω̂

′

p and an approximation of ˆ̄u (for a desired duct
shape/size and flow rate), one could solve the non-linear problem (2.14) and then
determine the resulting force and torque on the particle via (2.16) and (2.17) respectively.
In the absence of a secondary component of the background flow the inertial lift force
only becomes the dominant force once the particle has reached ‘terminal’ velocity and

spin in relation to its main axial motion. As such, it is typical to determine Θ̂, Ω̂
′

p such

that T̂
′
and the axial component of F̂

′
(i.e. F̂

′
· ey′) are negligible through an iterative

process. In the simpler case of flow through a straight duct, the remaining components of

F̂
′
provide the inertial lift force which leads to drift/migration within the cross-section.

However for curved ducts, the secondary component of the background flow results in

F̂
′
being influenced by the drag force from the secondary flow motion. A location in the

cross-section where the net force from both effects is zero is an equilibrium to/from which
a particle may be attracted/repelled depending on the eigenvalues of the Jacobian of the
net force (as a function of the particle position within the cross-section, i.e. x̂′

p).
In the case of a straight duct, the the inertial lift force can be approximated from a

perturbation expansion of the disturbance flow for small Rep (Hood et al. 2015). Through
this expansion, the non-linear equation (2.14) can be broken up into a sequence of linear
Stokes problems that are more easily solved. Furthermore, the resulting decomposition
informs the way in which inertial lift influences the particle motion, particularly in
our case where the problem is further complicated by the secondary fluid motion. The
remainder of this section describes how the approach of Hood et al. (2015) is adopted to
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the curved duct geometry, and additionally, how separating the background flow into axial
and secondary components allows us to separate and identify the terms that influence
particle motion within the cross-section.

2.5. Perturbation expansion of the disturbance flow and forces on the particle

We consider a perturbation expansion of the disturbance flow in powers of the particle
Reynolds number:

v̂
′ = v0 + Repv1 +O(Re2p), q̂′ = q0 + Repq1 +O(Re2p). (2.18)

Note that carets are dropped from the perturbation variables since these will always be
taken to be dimensionless quantities. Substituting (2.18) into (2.14) and matching powers
of Rep, one obtains the zeroth order equations

−∇̂′q0 + ∇̂′ 2v0 = 0, on x̂
′ ∈ F̂ ′, (2.19a)

∇̂′ · v0 = 0, on x̂
′ ∈ F̂ ′, (2.19b)

v0 = 0, on x̂
′ ∈ ∂D̂′, (2.19c)

v0 = Ω̂
′

p × (x̂′ − x̂
′
p) + Θ̂(ez′ × x̂

′)− ˆ̄u, on x̂
′ ∈ ∂F̂ ′\∂D̂′, (2.19d)

and the first order equations

−∇̂′q1 + ∇̂′ 2v1 = Θ̂(ez′ × v0) + v0 · ∇̂
′ ˆ̄u

+ (v0 + ˆ̄u− Θ̂(ez′ × x̂
′)) · ∇̂′v0, on x̂

′ ∈ F̂ ′, (2.20a)

∇̂′ · v1 = 0, on x̂
′ ∈ F̂ ′, (2.20b)

v1 = 0, on x̂
′ ∈ ∂D̂′, (2.20c)

v1 = 0, on x̂
′ ∈ ∂F̂ ′\∂D̂′. (2.20d)

Equations (2.19) and (2.20) are similar to those obtained for the straight duct (see
Hood et al. (2015)) but with a few key differences. Firstly, the right side of (2.20a) has
additional terms introduced in the change to a rotating coordinate system. Secondly, the
background velocity ˆ̄u is no longer a simple Poiseuille flow through the duct. Lastly, the
boundary condition (2.14d) is captured entirely in (2.19d) so that v1 = 0 in (2.20d).

The perturbation expansion (2.18) can also be substituted into (2.16) and (2.17) to
obtain the expansion

F̂
′
= Re−1

p F−1 + F 0 +O(Rep), (2.21a)

T̂
′
= Re−1

p T−1 + T 0 +O(Rep), (2.21b)

where

F−1 :=

∫

|x̂′−x̂
′

p
|=1

(−n) ·
(

−q0I+ ∇̂′v0 + ∇̂′v0

⊺
)

dŜ′, (2.22a)

F 0 := −
ρp − ρ

ρ

4π

3
ĝez′ −

ρp
ρ

4π

3
Θ̂2(ez′ × (ez′ × x̂

′
p)) +

∫

|x̂′−x̂
′

p
|<1

ˆ̄u · ∇̂′ ˆ̄u dV̂ ′

+

∫

|x̂′−x̂
′

p
|=1

(−n) ·
(

−q1I+ ∇̂′v1 + ∇̂′v1

⊺
)

dŜ′, (2.22b)
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and similarly

T−1 :=

∫

|x̂′−x̂
′

p
|=1

(x̂′ − x̂
′
p)×

(

(−n) ·
(

−q0I+ ∇̂′v0 + ∇̂′v0

⊺
))

dŜ′, (2.23a)

T 0 := −
ρp
ρ

8π

15
Θ̂(ez′ × Ω̂

′

p) +

∫

|x̂′−x̂
′

p
|<1

(x̂′ − x̂
′
p)×

(

ˆ̄u · ∇̂′ ˆ̄u
)

dV̂ ′

+

∫

|x̂′−x̂
′

p
|=1

(x̂′ − x̂
′
p)×

(

(−n) ·
(

−q1I+ ∇̂′v1 + ∇̂′v1

⊺
))

dŜ′. (2.23b)

In the case of a straight duct Hood et al. (2015) showed that the integral over the
stress from q1,v1 can be computed without explicitly solving for these terms by utilising
the Lorentz reciprocal theorem. The same result holds in the case of a curved duct,
specifically it is straightforward to show

e∗ ·

∫

|x̂′−x̂
′

p
|=1

(−n) · (−q1I+ ∇̂′v1 + ∇̂′v1

⊺
) dŜ′

=

∫

F̂ ′

û∗ ·
(

Θ̂(ez′ × v0) + v0 · ∇̂
′ ˆ̄u+ (v0 + ˆ̄u− Θ̂(ez′ × x̂

′)) · ∇̂′v0

)

dV̂ ′, (2.24)

for ∗ = x′, y′, z′ where each velocity û∗, along with a corresponding pressure p̂∗, solves

−∇̂′p̂∗ + ∇̂′ 2û∗ = 0 on x̂
′ ∈ F̂ ′, ∇̂′ · û∗ = 0 on x̂

′ ∈ F̂ ′, (2.25a)

û∗ = 0 on x̂
′ ∈ ∂D̂′, û∗ = e∗ on x̂

′ ∈ ∂F̂ ′\∂D̂′. (2.25b)

Note that we only need to consider the x′, z′ components since the y′ component, which
perturbs the particle motion in the y′ direction at O(1), has no effect on the cross-section
forces at the same order of magnitude. This approach cuts down on computation time
(since each p̂∗, û∗ is computed to estimate drag coefficients, see Section 2.7), and also
provides opportunities to examine how different components of the flow influence F 0

in more detail (as discussed in Section 2.6). Additionally, note that T 0 can be ignored
since perturbations of the particle spin have no influence on the (linear) forcing to this
order of approximation. Given the boundary condition (2.19d), F−1,T−1 include drag
and torque components that come from the secondary fluid motion. In order to separate
the effect of the axial and secondary flow components and better understand how each
influences the particle motion it is convenient to break up ˆ̄u, q0,v0 and (2.19) into two
distinct parts. This will be done in the following section.

2.6. Separation of axial and secondary flow effects

Let

ˆ̄u = ˆ̄ua + ˆ̄us, (2.26)

where

ˆ̄ua := ˆ̄uθ(r
′, z′)êθ′ =

1

Uma/ℓ
ūθ(r

′, z′)êθ′ ,

ˆ̄us := ˆ̄ur(r
′, z′)êr′ + ˆ̄uz(r

′, z′)êz′ =
1

Uma/ℓ

(

ūr(r
′, z′)êr′ + ūz(r

′, z′)êz′

)

,

denote the axial and secondary components respectively. Similarly, we separate q0,v0

into two parts, specifically

v0 = v0,a + v0,s, q0 = q0,a + q0,s, (2.28)
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such that the pairs q0,a,v0,a and q0,s,v0,s each solve (2.19) except with the boundary
condition (2.19d) replaced by

v0,a = Ω̂
′

p × (x̂′ − x̂
′
p) + Θ̂(ez′ × x̂

′)− ˆ̄ua, on x̂
′ ∈ ∂F̂ ′\∂D̂′, (2.29a)

v0,s = −ˆ̄us, on x̂
′ ∈ ∂F̂ ′\∂D̂′, (2.29b)

respectively. The force and torque is similarly separated as F−1 = F−1,a + F−1,s and
T−1 = T−1,a + T−1,s. Specifically, for each ∗ = a, s one has

F−1,∗ =

∫

|x̂′−x̂
′

p
|=1

(−n) ·
(

−q0,∗I+ ∇̂′v0,∗ + ∇̂′v0,∗
⊺
)

dŜ′, (2.30a)

T−1,∗ =

∫

|x̂′−x̂
′

p
|=1

(x̂′ − x̂
′
p)×

(

(−n) ·
(

−q0,∗I+ ∇̂′v0,∗ + ∇̂′v0,∗
⊺
))

dŜ′. (2.30b)

This separation of axial and secondary flow effects yields a clear methodology for
solving the leading order disturbance equations. One first solves for q0,a,v0,a and in

doing so determine Θ̂, Ω̂
′

p such that F−1,a = T−1,a = 0. The q0,s,v0,s components are
then solved independently from which F−1,s,T−1,s are calculated to provide the drag
and torque on the particle from the secondary fluid motion. The drag term F−1,s can
then be added to F 0 to obtain the net perturbing forces on the particle (up to O(1)).
While this drag from the secondary flow motion features as an O(Re−1

p ) factor it is typical

that the magnitude of ˆ̄us is sufficiently small that the resulting force is comparable to F 0

(since if this was not the case it is unlikely that focusing of particles would be observed
since they would instead follow the streamlines of the secondary flow).
The F 0 component of the force can also be expanded based on the separation of axial

and secondary background flow components. The volume integral over ˆ̄u · ∇̂′ ˆ̄u in (2.22b)
can be expanded as

∫

|x̂′−x̂
′

p
|<1

ˆ̄ua · ∇̂
′ ˆ̄ua dV̂

′ +

∫

|x̂′−x̂
′

p
|<1

ˆ̄us · ∇̂
′ ˆ̄ua + ˆ̄ua · ∇̂

′ ˆ̄us dV̂
′

+

∫

|x̂′−x̂
′

p
|<1

ˆ̄us · ∇̂
′ ˆ̄us dV̂

′, (2.31)

where y′, z′ components of the first integral are exactly zero (and the x′ component is
comparable to (4π/3)Θ̂2(ez′ × (ez′ × x̂

′
p)) for a small neutrally buoyant particle), the

second integral consists of only a small y′ component and the third integral provides
a small force in the x′, z′ directions. Utilising (2.24), the ∗ = x′, z′ components of the
surface integral over the fluid stress from q1,v1 in (2.22b) can each be expanded as

∫

F̂ ′

û∗ ·
(

Θ̂ez′ × v0,a + v0,a · ∇̂
′ ˆ̄ua + (v0,a + ˆ̄ua − Θ̂ez′ × x̂

′) · ∇̂′v0,a

)

dV̂ ′ (2.32a)

+

∫

F̂ ′

û∗ ·
(

v0,s · ∇̂
′ ˆ̄us + (v0,s + ˆ̄us) · ∇̂

′v0,s

)

dV̂ ′ (2.32b)

+

∫

F̂ ′

û∗ ·
(

Θ̂ez′ × v0,s − (Θ̂ez′ × x̂
′) · ∇̂′v0,s + v0,a · ∇̂

′ ˆ̄us (2.32c)

+v0,s · ∇̂
′ ˆ̄ua + (v0,a + ˆ̄ua) · ∇̂

′v0,s + (v0,s + ˆ̄us) · ∇̂
′v0,a

)

dV̂ ′.

Here the first and second integrals provide a force in the x′, z′ directions and the
third integral provides a small force in the y′ directions. Note that, in the context of
understanding the particle behaviour within the cross-section, the y′ components of F 0
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can essentially be ignored since the small perturbation to the axial motion has no further
influence on the cross-section forcing to this order of magnitude. As such, one can discard
the second and third component of (2.31) and (2.32) respectively.
In summary, the force on the particle within the cross-section up to O(1) is given by

F ′
p :=

(

ex′ · (Re−1
p F−1,s + F 0)

)

ex′ +
(

ez′ · (Re−1
p F−1,s + F 0)

)

ez′ . (2.33)

Given a fixed particle size and duct size/shape, then F ′
p can be considered as a function

of the particle position within the cross-section (i.e. x̂p,r′ , x̂p,z′ , recalling that at each

point each of Θ̂, Ω̂
′

p are chosen such that such that F−1,a = T−1,a = 0).

2.7. A first order model of particle trajectories

Here we consider a simple model for the trajectory of a particle within the cross-
section based on the terminal velocity, that is we take the particle velocity in the r′, z′

directions to be such that the drag force is equal and opposite to the perturbing force
F ′

p(x̂p,r′ , x̂p,z′). In order to use this model we must first determine the drag coefficients
for a particle with non-zero velocity in the cross-sectional plane.

Suppose the spherical particle is moving with a velocity û′
p,r′ , û

′
p,z′ in the r′, z′ direc-

tions respectively, then the cross-sectional drag force on the particle (non-dimensionalised
with respect to the force scale ρU2

ma4/ℓ2) can be expressed as Re−1
p (Cr′ ûp,r′ êr′ +

Cz′ ûp,z′ êz′) where Cr′ , Cz′ are (dimensionless) drag coefficients. For an asymptotically
small particle away from the walls the (dimensionless) drag coefficients could be estimated
via Stokes drag law as simply 6π. However, in the context of a microfluidic duct, the
finite particle size and proximity of the duct walls have an effect such that the true drag
coefficients are noticeably larger than this. A better estimate of the drag coefficients
is obtained by explicitly computing the drag force on the particle. Note that the p̂∗, û∗

from Section 2.5 which each solve (2.25) describe the Stokes flow resulting from a particle
moving through a stationary fluid in the duct with velocity e∗. Thus, we can re-use these
solutions to compute the drag coefficients. Specifically, for each C∗ we need only integrate
the resulting fluid stress over the surface of the particle, that is

C∗ = ê∗ ·

∫

|x̂′−x̂
′

p
|=1

(−n) · (−p̂∗I+ ∇̂′û∗ + ∇̂′û∗
⊺
) dŜ′.

Similar to F ′
p, given a fixed particle size and duct size/shape the drag coefficients Cr′ , Cz′

depend primarily on the particle position within the cross-section.
Therefore, with the addition of these drag terms, the cross-sectional force on the

particle is
(

Re−1
p Cr′ û

′
p,r′ + F̂ ′

p,r′

)

êr′ +
(

Re−1
p Cz′ û′

p,z′ + F̂ ′
p,z′

)

êz′ . (2.34)

Thus, equating this to zero and writing this out in terms of x̂′
p,r′ , x̂

′
p,z′ , we obtain the

first order system of ordinary differential equations

dx̂′
p,r′

dt′
= −Rep

F̂ ′
p,r′(x̂

′
p,r′ , x̂

′
p,z′)

Cr′(x̂′
p,r′ , x̂

′
p,z′)

,
dx̂′

p,z′

dt′
= −Rep

F̂ ′
p,z′(x̂′

p,r′ , x̂
′
p,z′)

Cz′(x̂′
p,r′ , x̂

′
p,z′)

. (2.35)

The solution of these coupled equations approximates the particle trajectory within the

cross-section. Interpreting Θ̂ as a function of x̂′
p,r′ , x̂

′
p,z′ (recalling that Θ̂, Ω̂

′

p are chosen
at each (x̂′

p,r′ , x̂
′
p,z′) such that F−1,a = 0), the angular position of the particle can also

be estimated via dθp/dt
′ = Θ̂(x̂′

p,r′ , x̂
′
p,z′).
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3. Estimation of particle behaviour at low flow rates

Experiments involving curved and spiral ducts have been done with Um,Re as high
as O(1), O(100) respectively (in order to achieve reasonable throughput/flow-rate). That
said, the low flow rate case it is particularly interesting for several reasons. First, the
behaviour at low flow rate in a curved duct differs from that in a straight duct, i.e.
the behaviour as Um → 0 (or equivalently Re → 0) differs from that as R → ∞.
As such, understanding what happens at low flow rates is a good first step towards
understanding the difference between straight and curved ducts. Second, it allows us to
reduce parameter space since the focusing behaviour becomes independent of flow rate;
we are able to thoroughly examine how focusing behaviour is influenced by the bend
radius and particle size in this regime. Third, we can additionally consider the limit
R → ∞ to check that the focusing positions in a straight duct are recovered in order to
validate the model. Lastly, the assumption is not as restrictive as it may first seem and
we expect the predictions may be applicable up to at least Re = O(10).

The scaling employed to study the inertial lift force differs from the characteristic scales
in the background flow; we return to the physical background flow velocity ū to examine
the scale of its components. Recalling that Um denotes the maximum of ūθ(r, z), and
letting ǫ := ℓ/(2R), then it can be shown that if K := ǫRe2/4 is sufficiently small then

ūr(r, z), ūz(r, z) ∝ (ǫRe/2)Um. (3.1)

This scaling is discussed Harding (2018a) in which the governing equations (2.1) are
explicitly non-dimensionalised (a brief account is also provided in Appendix B for
completeness). Furthermore, the dimensionless velocity components can be expressed
in terms of a perturbation expansion in K, specifically

(

ūθ

Um

,
ūr

(ǫRe/2)Um

,
ūz

(ǫRe/2)Um

)

=

∞
∑

i=0

Ki(ūθ,i, ūr,i, ūz,i). (3.2)

This series leads to a linearisation of the governing equations in which each ūθ,i and pair
ūr,i, ūz,i (which are combined into a stream function Φi) can be solved in an alternating
fashion.
It has been demonstrated that the terms in the expansion (3.2) decay in a manner such

that the expansion generally converges whenever K / 200 (Harding 2018a). Another
observation that can be made from the results of Harding (2018a) is that the i = 0 terms
provide a good approximation for each velocity component (e.g. within a few percent)
whenever Re2 / 10/ǫ. Since ǫ ≪ 10−1 is typical in spiral microfluidic ducts one can
generally expect the i = 0 terms to provide a reasonable approximation up to at least
Re = O(10). Furthermore, although (3.1) implies the secondary flow scales with U2

m, and
therefore vanishes quickly in the limit of small flow rate, it is important to note that the
inertial lift force also scales with U2

m. A consequence of this is the i = 0 terms in the
expansion of the background flow are sufficient to approximate the cross-sectional force
on the particle when the flow rate is small. To make this clear we further examine the
expansion of F ′

p into its different parts depending on the axial and secondary components
of the background flow.
Returning to the non-dimensional setting from Section 2 we have

ˆ̄ua =
Umūθeθ′

Uma/ℓ
=

ℓ

a
ūθeθ′ , (3.3a)

ˆ̄us =
(ǫRe/2)Um

Uma/ℓ
(ūrer′ + ūzez′) =

ℓ2Re

4aR
(ūrer′ + ūzez′). (3.3b)
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Given it is now clear that ˆ̄us ∝ ℓ2Re/4aR it follows that v0,s ∝ ℓ2Re/4aR, and
consequently

Re−1
p F−1,s ∝ Re−1

p

ℓ2Re

4aR
=

ℓ4

4a3R
.

Thus the contribution of the secondary flow drag to F ′
p scales with the dimensionless

constant κ := ℓ4/4a3R which depends only on physical length scales. At the same time
it can be seen that the F 0 contribution does not change in magnitude with respect to
physical lengths. In particular, note that F 0 can be approximated as

F 0 ≈ −
ρp − ρ

ρ

4π

3
ĝez −

ρp
ρ

4π

3
Θ̂2(ez′ × (ez × x̂

′
p)) +

∫

|x̂′−x̂
′

p
|<1

ˆ̄ua · ∇̂
′ ˆ̄ua dV̂

′

+ ex′

∫

F̂ ′

ûx′ ·
(

Θ̂ez × v0,a + v0,a · ∇̂
′ ˆ̄ua + (v0,a + ˆ̄ua − Θ̂ez × x̂

′) · ∇̂′v0,a

)

dV̂ ′

+ ez′

∫

F̂ ′

ûz′ ·
(

Θ̂ez × v0,a + v0,a · ∇̂
′ ˆ̄ua + (v0,a + ˆ̄ua − Θ̂ez × x̂

′) · ∇̂′v0,a

)

dV̂ ′,

since the additional terms in (2.31) and (2.32) involving ˆ̄us vanish much faster than
the terms involving ˆ̄ua, which we have retained. Hence, the relative magnitude of
the secondary flow drag Re−1

p F−1,s relative to F 0 is κ = ℓ4/4a3R is consistent with
a simplified study of the forces on the particle in the limit of large R and small
flow rate (Harding 2018b). Furthermore, it follows that we need only a leading order
approximation of ˆ̄us to estimate F−1,s and a leading order approximation of ˆ̄ua to
estimate F 0. That is, it suffices to take

ˆ̄ua ≈
ℓ

a
ūθ,0eθ′ and ˆ̄us ≈

ℓ2Re

4aR
(ūr,0er′ + ūz,0ez′).

The scaling of Re−1
p F−1,s with κ makes it clear that, as ǫ = ℓ/(2R) → 0, the relative

effect of the secondary flow drag becomes insignificant leaving only F 0. Furthermore, F 0

approaches the inertial lift force obtained in a straight duct since

lim
ǫ→0

F 0 = er′

∫

F̂ ′

ûr′ ·
(

v0,a · ∇̂
′ ˆ̄ua + (v0,a + ˆ̄ua − Upey′) · ∇̂′v0,a

)

dV̂ ′

+ ez′

∫

F̂ ′

ûz′ ·
(

v0,a · ∇̂
′ ˆ̄ua + (v0,a + ˆ̄ua − Upey′) · ∇̂′v0,a

)

dV̂ ′,

where ˆ̄ua converges to a classical Poiseuille flow profile and v0,a converges to the
appropriate disturbance flow. On the other hand, with fixed physical dimensions (and
thus fixed ǫ) the relative size of the secondary drag force in relation to the other forces
making up F ′

p remains constant. This implies that in the limit of small flow rate the
interaction between the inertial lift force and secondary flow drag force converge to
something which is different than that in the case of a straight duct. In Section 4 we
examine this particular limit in detail for several cross-sections, particle sizes and bend
radii.

4. Computational results and discussion

A finite element method is used to solve each Stokes problem, implemented using
the FEniCS software (Logg et al. 2012; Alnæs et al. 2015). The computational domain
consists of only a portion of the curved duct, in a neighbourhood of the particle,
discretised by a mesh consisting of O(106) tetrahedra refined such that those elements
near the particle have much smaller scale than those far away (since the disturbance
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Figure 2: The force F ′
p on neutrally buoyant particles at different locations in a curved

duct with square cross-section (W = H = 2) and bend radius R = 160. The colour
background shows the magnitude of F ′

p. Black and white contours are the zero level set
curves of the horizontal and vertical components respectively whereas the arrows indicate
the sign of each component in the area bounded by the respective contour. The left wall
is on the inside of the bend. The dashed red line shows where the centre of the particle
lies when its surface touches the wall.

varies most near the particle). Continuous Taylor–Hood elements are used, specifically
a quadratic and linear polynomial basis for the velocity and pressure respectively.
The Dirichlet boundary conditions on the duct walls and particle surface are enforced
explicitly (i.e. at the linear algebraic level) and natural (stress-free) boundary conditions
are applied at the ends of the (truncated) curved duct. The approximation of background
flow terms ˆ̄ua, ˆ̄us as in (3.3) are precomputed using the Rayleigh–Ritz method described
in Harding (2018a) and subsequently interpolated in the finite element space. With F ′

p

and drag coefficients Cr′ , Cz′ estimated at a large number of (equidistant) points in the
cross-section we then construct a bivariate cubic spline to interpolate the data. The
smooth interpolants are then used for subsequent analysis, for example the estimation
of particle trajectories via the solution of (2.35). The behaviour of particles suspended
in flow through curved ducts having square, rectangular and trapezoidal shaped cross-
sections is examined. We use the approximation for low flow rate developed in Section 3
and particles are assumed to be neutrally buoyant (i.e. ρp = ρ).

4.1. Ducts having a square cross-section

For a duct having a square cross-section with W = H = 2 the cross-sectional force and
drag on particles is computed for the particle sizes a ∈ {0.20, 0.15, 0.10, 0.05} and bend
radii R ∈ {640, 320, 160, 80, 40} (or equivalently ǫ−1 ∈ {640, 320, 160, 80, 40}). Figures 2
and 3 show the force and trajectory plots respectively for the specific bend radius R =
160. Results for the smallest particle (a = 0.05) are depicted in Figures 2(a) and 3(a).
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(a) a = 0.05 (b) a = 0.10 (c) a = 0.15 (d) a = 0.20

Figure 3: Approximate trajectories of neutrally buoyant particles within a curved duct
with square cross-section (W = H = 2) and bend radius R = 160. Trajectories from
several starting positions have been super-imposed. Green, orange and red markers show
the location of stable, (unstable) saddle and unstable equilibria respectively (with marker
size indicative of particle size). The left wall is on the inside of the bend. The dashed red
line shows where the centre of the particle lies when its surface touches the wall.

Here F ′
p is dominated by the secondary flow drag since ℓ4/4a3R = 200 is reasonably

large. Three equilibria can be identified in the force plot, one near the right (outer) wall
and two which are near the centre horizontally and vertically symmetric about the r
axis. The equilibrium near the outer wall is an unstable saddle (it attracts horizontally
but repels vertically). The remaining two are difficult to infer visually from the force plot
but are also unstable (both eigenvalues of the Jacobian have positive real part, albeit
quite small). The trajectory plot makes it clear that particles are strongly affected by the
vortices of the secondary flow. It is notable the particles starting too close to the walls
migrate inwards a little before becoming trapped in the vortex motion.
Results for the second smallest particle (a = 0.10 and ℓ4/4a3R = 25) are depicted in

Figures 2(b) and 3(b). Three equilibria can again be identified from the force plot, each
of which is unstable, similar to those in (a). Notice that the two symmetric equilibria are
now closer to the inside wall. The trajectory plot again shows that the vortex motion of
the secondary flow has a strong influence on the trajectories, however, in this case the
particles appear to migrate onto one of two (symmetrical) stable orbits relatively quickly.
This suggests the inertial lift force and secondary flow drag are similar in magnitude.

Results for the second largest particle (a = 0.15 and ℓ4/4a3R ≈ 7.41) are depicted in
Figures 2(c) and 3(c). Three equilibria can be identified from the force plot, each centred
vertically within the cross-section. one near the centre of the outside wall and another
near the centre of the inside wall. The equilibrium near the inside wall is stable while
the remaining two are unstable (the one nearest to the outside being a saddle point).
The trajectory plot illustrates that inertial lift force is the dominant effect with complete
focusing onto the stable equilibrium. Particles initially migrate onto a ‘slow manifold’
along which they more slowly migrate towards the unique stable equilibrium.

Results for the largest particle (a = 0.20 and ℓ4/4a3R = 3.125) are depicted in
Figures 2(d) and 3(d) and are similar to those in Figures 2(c) and 3(c). The trajectory
plot shows a more direct convergence onto the slow manifold, given the weaker effect of
the secondary flow drag in this case. Migration along the slow manifold is quite slow, as
evidenced by the close proximity of the black and white contours in the force plot. Note
that for a particle which is a little larger, and/or a larger bend radius, we expect these
contours to cross-over leading to additional equilibria. In particular, a stable equilibria
may form near the centre of the outside wall, although relatively few particles would be
expected to migrate towards it.
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(a) a = 0.10, R = 210 (b) a = 0.10, R = 220 (c) a = 0.15, R = 83 (d) a = 0.15, R = 90

Figure 4: Approximate trajectories of neutrally buoyant particles within a curved duct
with square cross-section (W = H = 2). Trajectories from several starting positions
have been super-imposed. Green, orange and red markers show the location of stable,
(unstable) saddle and unstable equilibria respectively (with marker size indicative of
particle size). The left wall is on the inside of the bend. The dashed red line shows where
the centre of the particle lies when its surface touches the wall.

For other bend radii the results are qualitatively similar to those described above given
a similar value of the ratio κ = ℓ4/4a3R. We briefly comment on some general trends. For
very large κ particles effectively follow the vortex motion of the background flow (apart
from some initial migration away from the walls). In the limit R → ∞ (or equivalently
κ → 0 given fixed a, ℓ) we recover the results for a straight duct, specifically the four
stable equilibria near the centre of each wall as in Hood et al. (2015). It is notable that
R ≫ 103 is required before particle focusing similar to that in a straight duct is observed
because even a very small influence from secondary flow motion is enough to modify the
stability of some equilibria.

The transition from non-focusing to focusing behaviour is quite interesting. As R
increases (and κ decreases), the particles begin to focus towards trapping orbits as is the
case observed for a = 0.10 and R = 160. For the specific case of a = 0.10, as R continues
to increase the size of the trapping orbits grows until they eventually meet and break
up (around κ ∈ [18, 19]) leaving behind the slow manifold and a stable equilibrium as
depicted in Figures 4(a,b). Interestingly this is somewhat different for the slightly larger
particle with a = 0.15 in which the trapping orbits instead shrink while migrating towards
what becomes the stable equilibrium (around κ ∈ [13, 14]) as depicted in Figures 4(c,d).
At this stage the significance of the trapping orbits and their structure are unclear and
warrant further investigation.

Notice that the larger particles appear to focus near the inside wall while smaller ones
become trapped in orbits a finite distance away from the inside wall. This provides a
potential mechanism for separating larger particles from smaller ones in a fluid sample
that contains a low concentration of both. For example, by splitting the flow at the outlet
into two streams which separate the inside 1/3 and outside 2/3 (measured laterally) one
would expect the majority of larger particles to be collected from the inside stream (with
a reduced portion of smaller particles). However, the orbits onto which smaller particles
are trapped are perhaps too close to the focusing location of the larger particles in a
square duct for this to provide robust and efficient separation in practice. Rectangular
ducts small aspect ratio are more common in experiments that demonstrate separation,
so we move onto examine two such cross-sections.
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Figure 5: The force F ′
p on neutrally buoyant particles at different locations in a curved

duct with rectangular cross-section (W/2 = H = 2) and bend radius R = 160. The colour
background shows the magnitude of F ′

p. Black and white contours are the zero level set
curves of the horizontal and vertical components respectively whereas the arrows indicate
the sign of each component in the area bounded by the respective contour. The left wall
is on the inside of the bend. The dashed red line shows where the centre of the particle
lies when its surface touches the wall.

(a) a = 0.05 (b) a = 0.10

(c) a = 0.15 (d) a = 0.20

Figure 6: Approximate trajectories of neutrally buoyant particles in a curved duct with
rectangular cross-section (W/2 = H = 2) and bend radius R = 160. Trajectories from
several starting positions have been super-imposed. Green, orange and red markers show
the location of stable, (unstable) saddle and unstable equilibria respectively (with marker
size indicative of particle size). The left wall is on the inside of the bend. The dashed red
line shows where the centre of the particle lies when its surface touches the wall.
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4.2. Ducts having a rectangular cross-section

Two rectangular cross-sections are considered, specifically with H = 2 and W ∈ {4, 8}.
For each we computed F ′

p for particles of size a ∈ {0.20, 0.15, 0.10, 0.05} and bend
radii R ∈ {640, 320, 160, 80} (or equivalently ǫ−1 ∈ {640, 320, 160, 80}). The force and
trajectory plots forW = 4 and R = 160 are shown in Figures 5 and 6 respectively. Results
for the smallest particle (a = 0.05 and ℓ4/4a3R = 200) are depicted in Figures 5(a)
and 6(a). As in the case of the square duct, the effect of secondary flow drag is the
dominant cross-sectional force. The force plot is similar to that in the square duct case for
a = 0.05 (only stretched width-wise) and, in particular, three equilibria can be identified.
The equilibrium near the right wall is again an unstable saddle. However, unlike the
square duct case, the remaining (symmetric) equilibria pair is stable in this case. This is
evident in the trajectory plot where particles are observed to slowly converge towards the
equilibria despite the relatively strong vortex motion. Note that the location of the stable
pair is slightly left of the centre (the green marker is hidden by the spiral trajectories).
Thus, despite a strong influence from the secondary flow drag, the particles eventually
becomes focused.

Results for the second smallest particle (a = 0.10 and ℓ4/4a3R = 25) are depicted in
Figures 5(b) and 6(b). Again, the force plot could be interpreted as a stretched version of
the square duct case. The equilibrium near the right wall is an unstable saddle whereas
the remaining (symmetric) pair is stable. Notably the stable pair is much closer to the
inside wall than in the case of the smallest particle. The trajectory plot demonstrates
that although the secondary flow drag and inertial lift force are expected to have similar
magnitude, the particle converges onto a slow manifold before completing a full orbit
around an equilibrium and then proceeds to migrate to the equilibrium. This too is quite
different from the square duct case despite the seemingly similar structure of the force
plots.

Results for the second largest particle (a = 0.15 and ℓ4/4a3R ≈ 7.41) are depicted in
Figures 5(c) and 6(c). Three equilibria can again be identified, the unstable saddle near
the outside wall and a stable pair. The stable pair is slightly closer to the centre than
in the case of a = 0.10, but still closer to the inside wall than the case a = 0.05. The
trajectory plot shows particles converge onto the slow manifold with minimal impact
from the secondary flow motion before then migrating towards the stable equilibria.

Results for the largest particle (a = 0.20 and ℓ4/4a3R = 3.125) are depicted in
Figures 5(d) and 6(d). Two new unstable equilibria can be identified in the force plot
located on the horizontal symmetry line on the left side. Additionally, the stable equilibria
pair has shifted further towards the right. Inertial lift force is the dominant effect in this
case and the trajectory plot shows a more direct convergence onto the slow manifold
prior to convergence towards the stable equilibria.

The results for different values of R are similar to those described above given a similar
value of κ = ℓ4/4a3R and so we remark on some general observations and trends. In the
limit R → ∞ (equivalently κ = 0 for fixed a, ℓ) we recover the focusing behaviour
of particles in straight ducts, specifically particles will focus towards stable equilibria
located a small distance from the centre of the two longer walls. For the smaller size
particles one additionally finds stable equilibria near the centre of the side walls, however
very few particles are likely to be found here in practice because the attractive region is
much smaller (Hood 2016). Similar to the square duct case these generally only become
evident for R ≫ 103 since even a small influence from the secondary flow is enough to
modify/destroy these equilibria. On the other hand, when κ is large the effect of the
secondary flow drag is dominant. Unlike the square duct case, we find that the effect of
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Figure 7: The force F ′
p on neutrally buoyant particles at different locations in a curved

duct with rectangular cross-section (W/4 = H = 2) and bend radius R = 160. The colour
background shows the magnitude of F ′

p. Black and white contours are the zero level set
curves of the horizontal and vertical components respectively whereas the arrows indicate
the sign of each component in the area bounded by the respective contour. The left wall
is on the inside of the bend. The dashed red line shows where the centre of the particle
lies when its surface touches the wall.

the inertial lift force in the rectangular duct is enough that the centre of the vortices are
stable equilibria. However, it would be reasonable to expect this to break down for smaller
particles, that is with a < 0.05, as the relative influence of the secondary flow motion
becomes more significant. In the two limits discussed we note the stable equilibria pair is
close to the centre horizontally. For intermediate values of κ on the other hand we observe
the focusing position to be much closer to the inside wall. The further left a particle can
migrate varies with size and is between 0.3H and 0.4H for the radii considered herein.
Also noteworthy is that our results suggest that stable focusing positions can never occur
in the right half of the cross-section. In contrast, some experiments have shown focusing
can occur in this region, although we believe this is likely to be an effect of higher flow
rates and hence is not captured by the low flow rate approximation. In particular, at
higher flow rates the location of the maximum of the axial flow and the centre of the
secondary flow vortices are pushed towards the outer wall by inertia and it is reasonable
to expect particle behaviour to be perturbed accordingly.
Force and trajectory plots for select particle sizes within the higher aspect ratio

rectangular cross-section with W = 8, H = 2 and R = 160 are shown in Figures 7
and 8 respectively. Generally speaking, the behaviour in the wider duct is qualitatively
similar to that observed in the case with W = 4. This is evident in comparing Figures 7
and 8 with Figures 5(a,c) and 6(a,c) respectively. The main advantage of the wider duct
is a greater separation distance for particles focused towards the inside wall from those
that focus towards the centre. Variations in focusing position with respect to particle
size and bend radius are critical in determining how effective a microfluidic duct is able



Inertial lift in curved ducts 23

(a) a = 0.05

(b) a = 0.15

Figure 8: Approximate trajectories of neutrally buoyant particles in a curved duct with
rectangular cross-section (W/4 = H = 2) and bend radius R = 160. Trajectories from
several different starting positions have been super-imposed. Green and orange markers
show the location of stable and (unstable) saddle equilibria respectively (with marker
size indicative of particle size). The left wall is on the inside of the bend. The dashed red
line shows where the centre of the particle lies when its surface touches the wall.

to separate particles. To better compare the differences for the two aspect ratios the
focusing positions will be examined in detail.

To study how the focusing position of different size particles changes with respect to
the bend radius, we interpolate F ′

p between R ∈ {640, 320, 160, 80} (and extrapolate for
R outside this range). Since ℓ = 2 is fixed, changes in R can be interpreted as changes to
the dimensionless ratio ǫ−1 = 2R/ℓ. Despite the wide range of R, each of ūθ,0, ūr,0, ūz,0

(used to approximate ˆ̄ua, ˆ̄us as in (3.3)) change only modestly. The most significant effect
is a change in scale of the secondary flow drag relative to the inertial lift force, which is
captured separately by the factor κ = ℓ4/4a3R; changes in the remaining components of
F ′

p are generally subtle. For a much finer sampling of R we then analyse the force on the

particle F ′
p and identify/track the horizontal location of stable equilibria. The results of

this analysis is shown in Figure 9 for both rectangular ducts. The vertical axis shows
the horizontal location of the focusing position with the inside (left) wall at the bottom
and the centre at the top. The focusing position of particles undergoes a transition from
being near the centre to being a finite distance away from the inside wall. Importantly,
this differs significantly with particle size, thereby suggesting a mechanism for size based
separation of particles. However, note that the relative ordering of particles changes many
times over the range of ǫ−1 shown, suggesting that some care should be taken in choosing
the bend radius depending on the size of particles to be separated.
For the duct with W/H = 2 and with ǫ−1 / 80 the ordering going from the inside

wall to the centre is from largest to smallest particle. As ǫ−1 increases there are many
changes to the ordering as largest particles begin to migrate towards the centre whereas
smaller ones migrate towards the wall. Note that for ǫ−1 ' 500 an additional stable
equilibrium appears near the inside wall for the particle with radius a = 0.10 and varies
very little with respect to ǫ−1. This is one of the extra equilibria that is expected to occur
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(b) W = 8 and H = 2

Figure 9: Horizontal location of the (stable) focusing positions of particles versus ǫ−1 =
2R/ℓ for the two rectangular ducts. The particle sizes are a = 0.05 (blue, circles), a = 0.10
(green, triangles), a = 0.15 (red, squares) and a = 0.20 (cyan, diamonds). Note the
vertical axis includes only the left half of the duct (0 being the centre and −2,−4 being
the inside wall in (a,b) respectively).

as the behaviour approaches that of a straight duct. For ǫ−1 ' 640 the ordering of the
dominant equilibria is from smallest to largest particle. Similar trends are observed for
the duct with W/H = 4. In particular, the ordering of the focusing location for ǫ−1 / 80
is the same with the exception of the two larger particles being switched. There are then
several changes to the ordering for increasing ǫ−1 until for ǫ−1 ' 640 the ordering is
from smallest to largest particle (noting we again observe the emergence of an additional
stable equilibrium for a = 0.15 near the inside wall). One notable difference for the two
different aspect ratios is that particles generally don’t appear to get as close to the centre
over the range of ǫ−1 shown.
Figure 10 shows the same data plotted against the ratio κ = ℓ4/4a3R for both

rectangular ducts. Recall that small κ indicates that inertial lift forces are dominant
and large κ indicates that secondary flow drag is dominant. The focusing horizontal
focusing location approximately collapses onto a single curve, particularly for κ ≪ 10,
in each case. Note that for the two smaller particle sizes (a ∈ {0.05, 0.10}) an additional
stable equilibrium is observed when κ is small (these are the additional ‘tails’ to the main
curve). These are again expected, since R is comparatively large such that the focusing
behaviour is approaching that of a straight duct, and are not part of the scaling theory.
Going from small to large κ we can see that particles initially focus close to the centre of
the duct, then move towards the left wall before reaching a minimum and then gradually
moving back towards the centre again. Observe that the minimum achieved is increasing
with respect to particle size, that is larger particles do not get as close to the inside wall
as smaller ones. This effect is amplified in the case of the largest particle in the wider of
the two ducts.
Experiments using a spiral duct with two different rectangular cross-sections were

performed by Wu et al. (2012). Both ducts had a width of W = 500µm but with different
heights H = 90µm and H = 120µm. Beads with diameter 2a = 10µm and 2a = 6µm
were suspended in flow through the ducts at flow rates of 1mL/min and 2mL/min for the
smaller and larger cross-sections respectively. In both cases the larger particles focused
towards the inside wall whereas the smaller ones were less focused in a region centred
slightly towards the inside wall from the centre. The corresponding κ (near the outlet
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(a) W = 4 and H = 2

100 101 102

κ = ℓ4/4a3R

−4.0
−3.5
−3.0
−2.5
−2.0
−1.5
−1.0
−0.5
0.0

fo
c
u
s
in

g
lo

c
a
ti
o
n

(b) W = 8 and H = 2

Figure 10: Horizontal location of the (stable) focusing positions of particles versus κ =
ℓ4/4a3R for the two rectangular ducts. The particle sizes are a = 0.05 (blue, circles),
a = 0.10 (green, triangles), a = 0.15 (red, squares) and a = 0.20 (cyan, diamonds). Note
the vertical axis includes only the left half of the duct.

where R is smallest) for the larger particle is approximately 29 and 92 for the smaller and
larger cross-section respectively, while for the smaller particle it is approximately 135 and
427. Looking at the results in Figure 10(b), noting that the particle sizes a = 0.05, 0.10
are closest to those of the experiment (given H = 2 in our computations), we see that
the larger particle is indeed expected to focus nearer the inside wall in each case. Thus
our model shows qualitative agreement with these experiments.
We summarise our results here for the rectangular ducts. With the exception of an

additional focusing position for small a and large R, there is generally a unique horizontal
focusing location of a particle suspended in flow through a curved rectangular duct.
This is significantly different from the square duct case and explains why rectangular
ducts are particularly useful for microfluidic applications requiring a focused stream of
particles. Furthermore, the horizontal focusing position is sensitive to both the particle
size and bend radius, providing a practical mechanism for sized based particle separation.
However, our results demonstrate that the ordering of focused particles changes several
times with bend radius even in the simplified scenario of low flow rates. This suggests
that much care should be taken with device design, specifically the choice of bend radius,
depending upon the size of particles to be separated. We have shown that the horizontal
focusing position approximately collapses onto a single curve when plotted against κ =
ℓ4/4a3R. Additionally, although there are some small differences for the two different
aspect ratio ducts considered, the general focusing behaviour is qualitatively similar
with respect to κ. This provides a tangible variable that can be used to guide the design
of devices with rectangular cross-section operating at suitably low flow rates.

4.3. Ducts having a trapezoidal cross-section

We now consider the behaviour of particles in a curved duct with trapezoidal cross-
section inspired by the experiments of Guan et al. (2013) and Warkiani et al. (2014)
in which the bottom wall remains perpendicular to the flow direction and parallel to
the bend plane, whilst the top wall is sloped (with straight/vertical side walls). We
consider a cross-section width W = 8 and heights Hleft = 1.5 and Hright = 2.5 at the left
(inside) and right (outside) walls respectively (see figures below). This new shape has a
significant effect on the background flow compared to the rectangular ducts, in particular
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Figure 11: The force F ′
p on neutrally buoyant particles in a curved duct with trapezoidal

cross-section (W = 8, Hleft = 3/2 and Hright = 5/2) and bend radius R = 160. The
colour background shows the magnitude of F ′

p. Black and white contours are the zero
level set curves of the horizontal and vertical components respectively whereas the arrows
indicate the sign of each component in the area bounded by the respective contour. The
left wall is on the inside of the bend. The dashed red line shows where the centre of the
particle lies when its surface touches the wall.

the location of the maximum of the axial component and the centre of the vortices
of the secondary component are each shifted towards the outside wall. Furthermore,
the asymmetry of the cross-section means that the axial and secondary components no
longer have even and odd symmetry respectively with respect to z. These changes have
a significant effect on the focusing behaviour of particles within the duct.

The perturbing force F ′
p was computed for each particle size a ∈ {0.20, 0.15, 0.10, 0.05}

and bend radius R ∈ {640, 320, 160, 80}. Figures 11 and 12 show force and trajectory plots
respectively in the specific case of R = 160 for the particle sizes a ∈ {0.05, 0.10, 0.20}.
Results for the smallest particle (a = 0.05 and ℓ4/4a3R = 200) are shown in Figures 11(a)
and 12(a). It is immediately evident from the zero level set curves that the asymmetric



Inertial lift in curved ducts 27

(a) a = 0.05

(b) a = 0.10

(c) a = 0.20

Figure 12: Approximate trajectories of neutrally buoyant particles in a curved duct with
trapezoidal cross-section (W = 8, Hleft = 3/2 and Hright = 5/2) and bend radius R =
160. Trajectories from several starting positions are super-imposed. Green, orange and red
markers show the location of stable, (unstable) saddle and unstable equilibria respectively
(with marker size indicative of particle size). The left wall is on the inside of the bend.
The dashed red line shows where the centre of the particle lies when its surface touches
the wall.

shape of the cross-section has a significant impact on the location of equilibria in
comparison to the rectangular duct case. Three equilibria can be identified in the force
plot, one very close to the centre of the outer wall which is clearly a saddle equilibrium.
The trajectory plot shows that, despite the secondary flow drag being the dominant
effect, the particles gradually spiral in towards one of the two remaining equilibria which
are stable (the green marker is somewhat hidden by the trajectories). In contrast to
the results for a rectangular duct, these stable equilibria are in the outside half of the
cross-section and are also slightly staggered with respect to their horizontal position.

The results for the second smallest particle (a = 0.10 and ℓ4/4a3R = 25) are shown
in Figures 11(b) and 12(b). Three equilibria can again be identified, a saddle remains
near the outside wall whereas the stable pair has shifted to the opposite side of the
cross-section. The magnitude of the secondary flow drag and inertial lift force is similar
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Figure 13: Horizontal location of (stable) focusing positions of particles with respect to
(a) ǫ−1 = 2R/ℓ and (b) κℓ4/4a3R for a trapezoidal duct with W = 8, Hleft = 3/2 and
Hright = 5/2. The particle sizes are a = 0.05 (blue, circles), a = 0.10 (green, triangles),
a = 0.15 (red, squares) and a = 0.20 (cyan, diamonds).

and their interaction leads to this significant shift in the focusing location. The particle
dynamics shows an initial converge onto a ‘slow manifold’ along which a slower migration
towards one of the two stable equilibria takes place. Note that the horizontal location of
the stable equilibria is staggered even more so than in the case of the smaller particle. The
force and trajectories of the largest particle (a = 0.20 and ℓ4/4a3R = 3.125) are shown
in Figures 11(c) and 12(c). Five equilibria can be identified in this case. Three of these
lie on the white contour running along the centre (vertically) and are all unstable (the
outer two are saddles). The remaining two are stable and are now located slightly right
of centre. The inertial lift is dominant in this case and the trajectory plot demonstrates
that particles converge more directly onto the ‘slow manifold’ before migrating towards
a stable equilibrium. The results for a = 0.15 have been omitted as they are similar to
the case a = 0.20 but with the stable pair slightly left of centre.
We again consider how the focusing location changes with respect to R (or equivalently

ǫ−1 = 2R/ℓ given fixed ℓ). Using the same approach as in the case of the rectangular
cross-sections, the F ′

p are interpolated between the given R samples and the horizontal
location of the stable equilibria are determined over a finer sampling of R. The horizontal
focusing position versus ǫ−1 is shown in Figure 13(a). The staggering of the equilibria
pair due to the asymmetry of the cross-section is shown as two different, albeit close,
focusing positions for each a and R. In Figure 13 (a) there are three main regions that
can be identified over the ǫ−1 considered. For ǫ−1 / 80 the smaller two particle sizes are
focused near r = 2, the largest near r = 0, and the second largest shows some significant
staggering but is generally on the inside half of the cross-section. For 80 / ǫ−1 / 400 the
second smallest particle effectively jumps and now focuses nearest to the inside wall while
the relative order of the remaining three is the same. For R ' 400 the smallest particle
has now jumped and focuses nearest to the inside wall. These apparent discontinuities in
the focusing location with respect to bend radius are a significant difference compared
to the rectangular duct case where the curve is smooth.

Looking carefully around the discontinuities in Figure 13(a) there is a small range for
which more than two stable focusing positions exist. Specifically, this is evident for the
smallest particle (a = 0.05, blue circles) at ǫ−1 ≈ 400 and the second smallest particle
(a = 0.10, green triangles) at ǫ−1 ≈ 80. The force and trajectory plots for the latter
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Figure 14: The force F ′
p and trajectories of a neutrally buoyant particle having radius

a = 0.10 in a curved duct having trapezoidal cross-section (W = 8, Hleft = 3/2 and
Hright = 5/2) and bend radius R = 80. Interpretation of the two plots is the same as in
Figures 11 and 12 respectively. Many stable equilibria can be observed in this case.

case (a = 0.10 and ǫ−1 = 80) is shown in Figure 14. Comparing Figure 14(a) with
Figure 11(b) the white contours along the mid-section have shifted relative to the black
contours such that they each now cross three times resulting in two stable equilibria
and an unstable saddle in between. With further decrease in ǫ−1 (or equivalently R) the
relative location of the black and white contours in the mid-section shift further such that
only the right most intersections remain thus leaving only the two stable equilibria on
the right. The trajectories in Figure 14(b) suggest that the majority of starting positions
migrate towards the two stable equilibria on the right. However, in the context of a
spiral device in which R is continuously changing, this may not be the case and further
investigation is required.
In Figure 13 (b) the focusing data is plotted against the ratio κ = ℓ4/4a3R. In a broad

sense the general trend is similar to the rectangular duct case, specifically the focusing
positions move towards the inside wall and back again with increasing κ. Additionally, for
κ < 10 and κ > 100 the behaviour approximately collapses onto a single curve. However,
for intermediate κ some significant differences in focusing position occur depending on the
particle size. The three smaller particle sizes achieve a stable focusing position within
two units of the left wall for κ in this intermediate range. Each also exhibits a rapid
change in focusing position from the inside half of the duct to the outside half when κ
is a little larger than where the minimum is achieved. Furthermore, this rapid change
occurs at larger κ as the particle size decreases. On the other hand, the largest particle
(a = 0.20) does not get close to the inside wall for any κ (and is only briefly left of centre).
Furthermore, its focusing behaviour appears to be reasonably smooth with respect to κ
compared to that observed for the smaller particles.
It is interesting to consider how these different features of focusing behaviour can affect
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the efficiency of such devices for the sized based separation of particles. The staggering
of the horizontal location of the stable equilibria in the top half and bottom half of
the duct is somewhat undesirable. To some degree this is offset by the larger separation
distances provided by the trapezoidal duct, resulting from stable equilibria being able to
exist in the outer half of the cross-section. An obvious modification of the duct would
be to make the bottom wall slanted (in the opposite direction) to achieve a symmetric
trapezoidal shape. This should eliminate the horizontal staggering of equilibria pairs while
maintaining a large separation distance, although it may be difficult to reliably produce
such cross-sections. We also observe that the focusing location of smaller particles can
change rapidly with respect to small changes in R. While this results in a narrow band
of design parameters in which the particle may be found at multiple locations, it could
also be exploited in carefully designed microfluidic devices to achieve reasonably high
separation efficiency of particles whose size may differ by a comparatively small amount.

Experiments in two different spiral ducts with trapezoidal cross-section using beads
with diameter 2a = 10µm and 2a = 6µm were performed by Wu et al. (2012). Both
ducts had a width of W = 500µm but with the different heights of Hleft = 70µm to
Hright = 100µm from the inner to outer wall in the smaller cross-section andHleft = 90µm
to Hright = 120µm in the larger cross-section. In both cases the larger particles focused
towards the inside wall while the smaller ones were less focused in a region slightly
towards the outside wall from the centre. The corresponding κ (near the outlet where R
is smallest) for the larger particle is approximately 23 and 54 for the smaller and larger
cross-section respectively, while for the smaller particle it is approximately 107 and 250.
Looking at the results in Figure 13(b), noting that the particle sizes a = 0.05, 0.10 are
closest to those of the experiment, we see that the larger particle is indeed expected to
focus near the inside wall for these κ whereas the smaller particle will focus towards
the outer wall. Interestingly the staggering of the equilibria pair is not evident in the
experimental results although this is potentially because the staggering is less than the
width of the fluorescent streaks in the experimental data.

5. Conclusions

This paper develops a general model for the forces that govern the motion of a spherical
particle suspended in flow through a curved duct. A key component in extending the
approach of Hood et al. (2015) from straight ducts to curved ducts is the use of a
rotating coordinate system as a frame of reference in which the flow is approximately
steady. Additionally, an expansion of the background flow into axial and secondary
components identifies how different components of the force on a particle are affected
by the background flow. We performed further analysis on the special case of low flow
rate and neutrally buoyant particles. We found that the the secondary flow drag scales
with κ = ℓ4/4a3R relative to the inertial lift force. We computed the position and stability
of equilibria for several different cross-sectional geometries. Further, a simple first order
model of particle trajectories allows us to plot approximate trajectories and identify a
slow manifold in many cases.

An analysis of the location of stable equilibria in rectangular and trapezoidal cross-
sections demonstrates that κ plays an important role in the general focusing behaviour of
particles. We observed that a stable equilibria pair exists over a large range of bend radii
and particle diameter. While several changes in the lateral ordering of focused particles
are observed we find that the focusing behaviour approximately collapse onto a single
curve when plotted against κ, particularly for rectangular cross-sections. The results
suggest that this is the mechanism for the size based particle/cell separation observed
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in the experimental literature, providing a dimensionless parameter that may aid in the
design and operation of microfluidic ducts under appropriate conditions.
While our study assumes the bend radius to be constant the results can be applied

to provide some insight into the focusing behaviour within spiral microfluidic ducts.
In particular, the final location of a particle in a spiral device can be estimated by
looking at the focusing behaviour in a curved duct with (constant) bend radius matching
that near the outlet of the spiral. Furthermore, our results that illustrate the change in
particle focusing position with respect to ǫ−1 = 2R/ℓ illustrate where particles will focus
towards as the bend radius changes throughout a spiral device. Lastly we note that the
results could be reasonably applied to dilute suspensions of particles/cells provided the
concentration is small enough that interactions between particles/cells can be neglected
and the particles/cells are sufficiently rigid and sphere like in shape.
There are several ways in which this work could be extended. This study considered a

single trapezoidal shaped duct and an interesting extension is to examine how the focusing
dynamics evolve as the slope of the top wall is slowly increased starting from a rectangular
cross-section. Further, one could investigate what happens when the trapezoidal cross-
section is tallest at the inside wall as in the experiment of Sofela et al. (2018). Exploration
of other cross-sectional geometries may also be interesting, for example a symmetric
trapezoidal shape which we expect to eliminate the staggering of equilibria observed with
the asymmetric trapezoidal shape. One could even go further and consider cross-sections
in which the top and bottom walls have a more general polynomial shape.
It would be interesting to explore how a change in density of the particle influences

the existence and stability of equilibria. In particular, if the density of the particle differs
enough from that of the fluid that gravity becomes relevant then this will break the
symmetry of the force on the particles in rectangular cross-sections. Additionally, there
will be a noticeable change in the centrifugal force for a non-neutrally buoyant particle
which will influence the horizontal location of equilibria. The focusing behaviour at
higher flow rates is another important aspect to consider in order to achieve a reasonable
throughput while maintaining a high separation efficiency. Finally, the simple first order
trajectory model might be extended to a more complete second order model which takes
into account axial acceleration/deceleration of the particle as it migrates within the cross-
section. In particular it is reasonable to expect changes to the axial velocity to have an
appreciable effect on the inertial lift force, particularly when κ is large.
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Appendix A. Nomenclature

Table 1 summarises the nomenclature used throughout the paper. We note that a
large number of variables listed are also introduced in the context of a rotating reference
frame which is always denoted with a prime (e.g. as in ∗′). For brevity these variants
are excluded from the table. Dimensionless forms of variables are denoted throughout
the paper with a hat/caret (i.e. as in ∗̂) and are omitted from the table for brevity.
Perturbation expansions are also introduced throughout the paper via a subscript, for
example v̂′ = v0+Repv1+O(Re2p), and are also omitted from the table. We additionally
note that the caret and prime are dropped from perturbation variables for ease of
readability since these are always taken to refer to dimensionless quantities in the rotating
reference frame. Lastly, some terms are decomposed into separate parts dependent on
the axial and secondary components of the background flow typically denoted as ∗a, ∗s.
With the exception of ūa, ūs these too are omitted from the table.

Appendix B. Estimation of the background flow

We provide a brief account of the derivation of the equations governing the background
flow from Harding (2018a) which we utilise in Sections 3 and 4. In the notation of Sec-
tion 2.1 the Navier–Stokes equations for steady flow through a curved duct in cylindrical
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Table 1: Summary of nomenclature used throughout the paper.

symbol description

a radius of the (spherical) particle
D, ∂D duct interior and its boundary (in lab frame)
F force on a particle (in lab frame)
F

′

p cross-sectional forces on particle from our model
F , ∂F fluid domain and its boundary when a particle is present (in lab frame)
G pressure gradient along duct centre-line which drives the fluid flow
H height of the duct cross-section
ℓ characteristic dimension of duct cross-section (taken to be min{H,W})
Ip moment of inertia of the (spherical) particle
I identity tensor
K perturbation parameter of the background fluid flow (taken to be ǫRe2/4)
mp mass of the (spherical) particle
n normal vector on a prescribed surface pointing outwards relative to the fluid
p, p̄ fluid pressure with and without particle present respectively (in lab frame)
q disturbance fluid pressure
r radial coordinate with respect to the x–y plane (in the lab frame)
rp radial coordinate of particle position (frame independent)
R bend radius of the duct (measured to centre of cross-section)
Re Reynolds number (taken to be (ρ/µ)Umℓ)
Rep particle Reynolds number (taken to be (a/ℓ)2Re)
t time variable
T torque on a particle (in lab frame)
u, ū fluid velocity with and without particle present respectively (in lab frame)
ūa, ūs axial and secondary components of the background fluid velocity
up particle velocity (in lab frame)
Um characteristic velocity of background flow (taken as the max of ūa)
Up axial component of the particle velocity
v disturbance fluid velocity
W width of duct cross-section
x spatial coordinates (in lab frame)
xp particle position (in lab frame)
xp, yp, zp Cartesian coordinates of particle position (in lab frame)
ǫ half the characteristic duct length divided by the bend radius, that is ℓ/2R
θ angular coordinate with respect to the x–y plane (in lab frame)
θp angular coordinate of particle position (in lab frame)
Θ angular velocity of the rotating reference frame (z component)
κ dimensionless scale of the secondary flow drag (relative to the inertial lift force)
µ fluid viscosity
ρ fluid density
ρp particle density (taken to be uniform)
Ωp particle spin (in lab frame)
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Solving these equations is most easily done via a non-dimensionalisation that reflects the
scaling of the background flow rather than the flow near a particle. In particular, the
spatial coordinates are non-dimensionalised as (r, z) = (ℓ/2)(r̀, z̀) and the fluid velocity
components are non-dimensionalised as ūθ = Um `̄uθ and (ūr, ūz) = (ǫRe/2)Um(`̄ur, `̄uz).
Observe that R+r = R(1+ǫr̀) where ǫ = ℓ/2R and for convenience we define R̀ := (1+ǫr̀)
such that R+ r = RR̀. We additionally introduce the (dimensionless) stream function Φ
such that ∂Φ/∂z̀ = −R̀`̄ur and ∂Φ/∂r̀ = −R̀`̄uz. The equations (B 1) can then be reduced
to

K

(

−
∂Φ

∂z̀

∂ `̄uθ

∂r̀
+

∂Φ

∂r̀

∂ `̄uθ

∂z̀
− ǫ

`̄uθ

R̀

∂Φ

∂z̀

)

= G+ R̀∆`̄uθ + ǫ
∂ `̄uθ

∂r̀
− ǫ2

`̄uθ

R̀
,

K

(

ǫ
2

R̀3

∂2Φ

∂z̀2
∂Φ

∂z̀
−

1

R̀2

∂Φ

∂z̀

∂∆Φ

∂r̀
+

1

R̀2

∂Φ

∂r̀

∂∆Φ

∂z̀
− ǫ2

3

R̀4

∂Φ

∂z̀

∂Φ

∂r̀
+ ǫ

3

R̀3

∂Φ

∂z̀

∂2Φ

∂r̀2

−ǫ
1

R̀3

∂Φ

∂r̀

∂2Φ

∂r̀∂z̀

)

+
2`̄uθ

R̀

∂ `̄uθ

∂z̀
=

1

R̀
∆2Φ− ǫ

2

R̀2

∂∆Φ

∂r̀
+ ǫ2

3

R̀3

∂2Φ

∂r̀2
− ǫ3

3

R̀4

∂Φ

∂r̀
,

where K = ǫRe2/4 and ∆ := ∂2/∂r̀2 + ∂2/∂z̀2. For small K we can introduce a
perturbation expansion of `̄uθ and Φ with respect to K, specifically

`̄uθ =
∞
∑

i=0

Ki `̄uθ,i, Φ =
∞
∑

i=0

KiΦi.

For K ≪ 1 it is sufficient to estimate the cross-sectional forces on a particle using the
approximation `̄uθ ≈ `̄uθ,0 and Φ ≈ Φ0 where

−G = R̀∆`̄uθ,0 + ǫ
∂ `̄uθ,0

∂r̀
− ǫ2

`̄uθ,0

R̀
,

2`̄uθ,0

R̀

∂ `̄uθ,0

∂z̀
=

1

R̀
∆2Φ0 − ǫ

2

R̀2

∂∆Φ0

∂r̀
+ ǫ2

3

R̀3

∂2Φ0

∂r̀2
− ǫ3

3

R̀4

∂Φ0

∂r̀
.

A Rayleigh–Ritz method for approximating these components, which is used in the
numerics in Section 4, is described in Harding (2018a).
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