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Abstract Quantitative Structure–Activity Relationship

not only provides guidelines regarding structural features

responsible for biological activity but it can be used also

for prediction of desired activity prior to synthesis of

untested chemicals. Therefore, an appropriate validation of

any QSAR is of utmost importance to judge its external

predictive ability. Generally, internal and external valida-

tions (preferred by many) are used in the absence of a true

external dataset. The model developed using external

method may not be reliable as it may not capture all

essential features required for the particular SAR due to

omission of some compounds, especially for small datasets.

In external validation, the splitting is done either rationally

or in random manner before descriptor selection. In the

present study, rational splitting of dataset was performed

using a novel method and its effect on statistical parameters

was analyzed. The analysis reveals that the predictive

ability of a QSAR model is sensitive toward (1) the method

of splitting and (2) distribution of the training and the

prediction sets. In addition, purposeful selection can be

used to influence the statistical parameters; therefore,

external validation based on single split is insufficient to

guarantee the true predictive ability of a QSAR model.

Besides, it appears that the selection of descriptors prior to

splitting (information leakage) has little role to play in

deciding external predictivity of the model. The present

study reveals that as many as possible statistical parameters

should be examined along with boot-strapping instead of

single external validation.

Keywords QSAR � External validation �
Statistical parameters � Splitting methods � Predictivity

Introduction

Under the umbrella of modern drug designing, Computer

Assisted Drug Designing (CADD) is the method of choice

due to faster, cheaper, and result-oriented analysis (Kub-

inyi, 2002; Van Drie, 2007; Yuriev et al., 2011). Over the

years, CADD has matured with the advent of new tech-

niques, algorithms, and software programs. Quantitative

Structure–Activity Relationship (QSAR), molecular dock-

ing, pharmacophore modeling, etc. are thriving techniques

from the tenant of CADD. Of these, QSAR has gained

much attention because of its applicability in risk assess-

ment, toxicity prediction, and regulatory decisions apart

from drug discovery and lead optimization. Further
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application of QSAR models includes prediction of desired

activity/property for a molecule before its synthesis and

testing (Mahajan et al., 2012, 2013; Masand et al., 2012,

2010, 2013). In last decades, QSAR has contributed sig-

nificantly in bringing many successful drugs in the market

(see Fig. 1) (Selassie, 2003).

Therefore, QSAR models are routinely built to establish

the statistical correlation between structural features

(independent or predictor variables) that govern the bio-

logical activity or a physico-chemical property (dependent

variable) (Scior et al., 2009). The four main steps involved

in QSAR model building are (1) Structure drawing and

geometry optimization, (2) calculation of myriad number

of descriptors, (3) generation of model using least (optimal)

number of descriptors, and (4) appropriate validation of

mathematical model (Tropsha, 2010). The success of any

QSAR model depends on various factors like accuracy of

the experimental (input) data, selection of appropriate

number and type of descriptors, statistical method (or

algorithms), and most significantly on apposite validation

of the developed model (see Fig. 2) (Huang and Fan,

2011). The utility of a QSAR model depends on its ability

to predict accurately for unknown chemicals with some

known degree of certainty (Roy et al., 2008). The predic-

tion ability is a crucial aspect related to appropriate vali-

dation of the QSAR models. A QSAR model is considered

appropriately statistically validated if it possesses good

internal and external predictive ability, such models are

successful in predicting the activity/property of unknown

chemical (Scior et al., 2009; Tropsha, 2010).

Recently, appropriate validation of QSAR model is

under hot debate. For thriving QSAR models, validation

must be primarily for statistical robustness, prediction

abilities, and applicability domain of the models (Sahigara

et al., 2012, 2010). There are two standard ways of doing

this (1) internal validation (2) external validation (Hawkins

et al., 2003). These are performed in five different ways:

leave-one-out cross-validation, leave-many-out cross-vali-

dation, Y-randomization, bootstrapping (least known

among the five), and external validation (Hawkins et al.,

2003; Kiralj and Ferreira, 2009).

The widely accepted parameter Q2 (also symbolized as

Rcv
2 , rcv

2 , q2, and QLOO
2 ) for internal validation is calculated

by the formula (Consonni et al., 2010; Todeschini et al.,

2004):

Q2 ¼ 1�

Pn

i¼1

ðbyi� yiÞ2

Pn

i¼1

ðyi� �yÞ2
:

Internal validation, a statistical method regularly

performed using leave-one-out or by leave-many-out

cross-validation, leads to an overestimation of predictive

Fig. 1 Some of the commercial drugs developed with the aid of QSAR

1242 Med Chem Res (2015) 24:1241–1264

123

Author's personal copy



capacity in many instances. But, it is useful for verification

of robustness of the model. Therefore, internal validation

may not be sufficient for validation, but it is essential

(Consonni et al., 2010; Golbraikh and Tropsha, 2002;

Gramatica, 2013; Tropsha, 2010). It is still useful,

especially, when the dataset is small or of modest size

(Hawkins et al., 2003).

On the other hand, external validation involves splitting

the available data into training (or learning) and test (or

prediction) sets. For external validation, selection of proper

size of training and prediction sets is very crucial (Kiralj

and Ferreira, 2009; Roy et al., 2008). Generally, this

splitting is performed using random division, but pur-

poseful or rational splitting for selection of compounds

whose chemistry covers the whole (or maximum) popula-

tion, but does not introduce any bias is a good idea

(Hawkins et al., 2003). Rational or purposeful splitting

methods can divide datasets into training and prediction

sets in an intelligent fashion (Martin et al., 2012). Different

algorithms like Kennard-Stone, minimal prediction set

dissimilarity, and sphere exclusion algorithms have been

developed for smarter way of dividing the datasets into

training and prediction sets with the aim of producing more

predictive models (Chirico and Gramatica, 2012; Consonni

et al., 2010; Gramatica 2013; Huang and Fan 2011; Kiralj

and Ferreira 2009; Martin et al., 2012; Scior et al., 2009).

Even though, earlier studies have pointed out the superi-

ority of rational division algorithms over the simple ran-

dom splitting and activity sorting methods. Yet,

appropriate selection of rational division method is still

unclear because of the conflicting results (Huang and Fan

2011). Recent literature survey indicates that the method/

algorithm of choice for splitting has little influence on the

statistical performance of a QSAR model. Recently, Martin

and co-workers reported the influence of rational selection

of training and prediction sets on the model’s predictivity

(Martin et al., 2012). However, if the prediction set is

small, unknowingly, the researcher may get a prediction set

for which the developed model might show a high pre-

dictive ability (Baumann and Stiefl, 2004; Chirico and

Gramatica, 2012; Consonni et al., 2009; Consonni et al.,

2010; Hawkins, 2004; Huang and Fan, 2011; Martin et al.,

2012; Scior et al., 2009; Todeschini et al., 2004; Tropsha,

2010).

The aim of the present study is to compare the statistical

performance of different algorithms of rational selection,

and to study the effect of descriptors selection prior to

splitting (information leakage) on the external predictive

ability of the model. In addition, the aim of the present

study is to devise, evaluate, and compare a novel non-

algorithmic method for rational splitting that influences the

statistical parameters of QSAR model.

Experimental section

Datasets

For the present study, three datasets of varying size are

used. The first dataset consists of forty-four N-Phenyl

Ureidobenzenesulfonate Derivatives (N-PUSs) with wide

variety of substituents present at different positions, as

shown in Table 1, was selected from the literature (Tur-

cotte et al., 2012). The activities of these compounds

Fig. 2 Flowchart diagram for the methodology used in present study
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Table 1 Substituted N-Phenyl Ureidobenzenesulfonate derivatives along with -logIC50 (pIC50) and descriptor values

S. no. X R1 R2 pIC50 (M)

(HT-29)

F07

[C–N]

F05

[C–C]

Mor29e Mor03m RDF095v

1 O 4-OH 4-CEU 5.824 1 12 0.728 -3.81 1.503

2 O 2-Me 3-CEU 4.481 2 13 0.04 -5.025 5.266

3 O 2-CH2-CH3 3-CEU 5.367 2 14 0.283 -5.342 3.314

4 O 2-(CH2)2-CH3 3-CEU 4.824 2 16 0.04 -4.293 5.093

5 O 4-OH 3-CEU 3.921 2 12 0.408 -4.627 4.138

6 O 2-CH2-CH3 4-CEU 4.770 1 14 0.246 -2.51 1.679

7 O 2-(CH2)2-CH3 4-CEU 5.602 1 16 0.249 -4.542 3.791

8 NH 2-Me 3-CEU 4.149 2 13 0.044 -5.776 5.265

9 NH 2-CH2-CH3 3-CEU 4.319 2 14 0.003 -4.2 3.792

10 NH 2-(CH2)2-CH3 3-CEU 4.824 2 16 -0.015 -5.66 6.562

11 NH 2-Me 4-CEU 4.260 2 13 -0.056 -4.842 4.379

12 NH 2-CH2-CH3 4-CEU 4.398 2 14 -0.199 -4.036 3.316

13 NH 2-(CH2)2-CH3 4-CEU 4.678 2 16 -0.109 -5.379 4.276

14 O 2-Me 3-CPU 4.678 2 13 -0.099 -4.91 4.18

15 O 2-CH2-CH3 3-CPU 4.638 2 14 0.057 -5.709 3.351

16 O 2-(CH2)2-CH3 3-CPU 4.854 2 16 0.09 -4.777 5.737

17 O 4-OH 3-CPU 4.292 2 12 0.371 -3.81 3.557

18 O 2-Me 4-CPU 4.585 1 13 0.026 -3.933 2.952

19 O 2-CH2-CH3 4-CPU 4.824 1 14 0.1 -4.001 2.835

20 O 2-(CH2)2-CH3 4-CPU 4.886 1 16 -0.033 -4.132 4.372

21 O 4-OH 4-CPU 4.301 1 12 0.137 -3.322 2.426

22 NH 2-Me 3-CPU 4.377 2 13 0.144 -4.557 4.698

23 NH 2-CH2-CH3 3-CPU 4.018 2 14 -0.233 -5.079 4.639

24 NH 2-(CH2)2-CH3 3-CPU 4.824 2 16 -0.265 -5.077 5.298

25 NH 2-Me 4-CPU 4.194 2 13 -0.247 -2.874 2.342

26 NH 2-(CH2)2-CH3 4-CPU 4.585 2 16 -0.199 -5.308 4.241

27 O 2-Me 4-CEU 5.328 1 13 0.182 -4.774 3.14

28 O 2-Me 3-EU 4.357 2 13 0.048 -3.826 3.679

29 O 2-CH2-CH3 3-EU 4.481 2 14 0.123 -3.92 3.658

30 O 2-(CH2)2-CH3 3-EU 4.602 2 16 0.064 -4.152 5.884

31 O 4-OH 3-EU 4.125 2 12 0.245 -3.361 3.747

32 O 2-Me 4-EU 4.921 1 13 0.226 -3.517 2.458

33 O 2-CH2-CH3 4-EU 4.921 1 14 0.289 -3.603 2.334

34 O 2-(CH2)2-CH3 4-EU 5.620 1 16 0.179 -3.78 3.85

35 O 4-OH 4-EU 4.921 1 12 0.275 -2.822 2.042

36 O 3-Me 4-CEU 5.143 1 12 0.179 -5.158 2.729

37 NH 2-Me 3-EU 3.991 2 13 0.114 -4.003 5.481

38 NH 2-CH2-CH3 3-EU 4.824 2 14 -0.077 -3.948 3.99

39 NH 2-(CH2)2-CH3 3-EU 4.387 2 16 -0.121 -3.772 4.862

40 NH 2-CH2-CH3 4-EU 4.066 2 14 -0.106 -3.638 2.681

41 NH 2-(CH2)2-CH3 4-EU 4.495 2 16 -0.179 -3.383 3.517

42 O 4-Me 4-CEU 4.523 1 12 0.411 -2.191 3.995

43 O 4-OMe 4-CEU 4.745 1 13 0.579 -3.646 2.832

44 O 4-N(Me)2 4-CEU 4.409 2 14 0.274 -3.852 5.562

CEU 2-chloroethylurea, CPU 3-chloropropylurea, EU ethylurea

1244 Med Chem Res (2015) 24:1241–1264

123

Author's personal copy



reported as IC50 (lM) against HT-29 colon carcinoma cells

were converted to pIC50 (M). These derivatives of N-PUS,

their corresponding -logIC50 (pIC50) values along with the

values of descriptor are presented in Table 1.

The second data consists of one hundred and twelve

4-aminoquinoline derivatives (Hwang et al., 2011) with a

variety of substituents at different positions (see Table 2).

The anti-malarial activity tested against chloroquine (CQ)

sensitive (3D7) strain of P. falciparum reported as EC50

(lM) values were converted to pEC50 (M) for smoother

statistical calculations. These derivatives of 4-aminoquin-

olines, their corresponding -logEC50 (pEC50) values and

values of descriptor are presented in Table 2.

The third dataset, which is a subset of the dataset 2,

comprises cytotoxicity data of one hundred 4-aminoquin-

olines (Hwang et al., 2011) tested against HepG2 cell lines

(see Table 3). For convenience, EC50 (lM) values were

converted to pEC50 (M).

Calculation and selection of descriptors

The structures were drawn using Chemsketch 12 freeware,

optimized using MMFF94 force field in TINKER, and then

subjected to calculation of a large number of descriptors

using e-Dragon, and PowerMV. Objective feature selection

was performed to eliminate highly correlated and constant

variables using QSARINS v1.2 and RapidMiner 5.0.

Redundant descriptors were identified and eliminated using

objective feature selection (Chirico and Gramatica, 2012;

Gramatica, 2013; Mahajan et al., 2013; Masand et al.,

2012, 2010, 2013). The procedure reported in the literature

was employed for objective feature selection (Chirico and

Gramatica 2012; Gramatica, 2013; Mahajan et al., 2013;

Masand et al., 2012, 2010, 2013). As a general rule, con-

stant for [80 % molecules, low-variance and correlated

(|R| C 0.6) descriptors were excluded prior to modeling.

Methodology

The general procedure of external validation involves

selection of descriptor on the basis of training set after

splitting. It is well established that a QSAR model well

predicts for a prediction molecule that is structurally very

similar to the training set molecules because the descriptor

(hence, the model) has captured common features of the

training set molecules and is proficient to detect them in the

new molecule (Consonni et al., 2009, 2010; Huang and

Fan, 2011; Schuurmann et al., 2008; Todeschini et al.,

2004), reverse is true for a new molecule which has very

little in common with the training set data. That is, the

confidence in its prediction should be low. Recently, Roy

et al. proposed a new approach to overcome this critical

issue, in which they used undivided dataset for selection of

variables and performed internal validation (LOO cross-

validation) in two different ways to ensure external pre-

dictivity of the developed model (Mitra et al., 2010). In the

present work, descriptor selection was performed for the

whole data set prior to splitting (information leakage) to

determine the effect of selection of descriptors on external

predictivity and behavior of different statistical parameters

of the model. Genetic Algorithm (GA) available in QSA-

RINS v1.2 was employed for the selection of optimum

number and the set of descriptors applying the default

settings (Chirico and Gramatica, 2011, 2012). Though, this

step contravenes the basic rule that prediction set com-

pounds should be excluded from the model development

procedure, that is, they should be unknown to the devel-

oped model. But, this ensures that the selected descriptors

capture the essential features that control the biological

activity. In addition, it allows determining the effect of

early descriptor selection (that is, prior to splitting or

information leakage) on external predictivity of the mod-

els. Ferreira and Kiralj have termed such models as

‘Auxiliary models’ (Kiralj and Ferreira, 2009).

In QSARINS (Gramatica et al., 2014, 2013), CV (cross-

validation) techniques are used as the optimization

parameter (fitness function) for GA-based variable selec-

tion and also to verify model robustness and to avoid naı̈ve

Q2 (Chirico and Gramatica, 2011, (2012). The novel

methodology for splitting (first time reported in this work,

termed as residual-based method (RBM)) begins with the

creation of an original model on the basis of undivided

dataset followed by splitting of dataset into training and

prediction sets on the basis of sign of residuals (difference

between the actual and predicted value by original model)

for each sample. In short, for the whole undivided dataset,

a statistically robust GA-MLR model (Original Model) was

built. For some molecules, this original model resulted in

positive residuals and negative for the rest. Now, for the

novel methodology of splitting i.e., RBM, the whole

dataset was divided rationally into training and prediction

sets on the basis of sign of the residuals (obtained in the

original model with the condition that the bigger set as

training set). A GA-MLR QSAR model was built for the

training and the prediction sets created by RBM method.

For comparison purpose, the whole dataset was again

divided randomly (random splitting model, termed as

RSM) and rationally (using sphere exclusion model,

termed a SEM method) into the training and the prediction

sets with number of compounds similar to training and

prediction sets as in RBM, that is, during these various

splitting, the number of molecules in training and predic-

tion set is identical in RBM, RSM, and SEM. A molecule

in the training set of one method (RBM or RSM or SEM)

may or may not be in the training set of other method

(RBM or RSM or SEM). The identical data split with

Med Chem Res (2015) 24:1241–1264 1245
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Table 2 4-aminoquinolines used in present study along with pEC50 and descriptors

Sr. no. R1 R2 pEC50 (M) Mor13e RDF040v F06 [N–O]

1 PhO Furfuryl 5.620 -0.218 7.086 2

2 PhO 2-HO-3-MeO-Bn 5.854 -0.81 7.784 1

3 PhO Piperonyl 5.921 -1.085 8.62 1

4 PhO 3-F-6-MeO-Bn 5.959 -0.506 7.366 1

5 2-MeO-PhO Furfuryl 6.143 -0.729 8.331 1

6 2-MeO-PhO 2-HO-3-MeO-Bn 6.152 -1.446 9.537 1

7 2-MeO-PhO Piperonyl 6.223 -1.455 9.351 1

8 2-MeO-PhO 3-F-6-MeO-Bn 6.236 -0.523 9.875 1

9 3-MeO-PhO Furfuryl 6.503 -0.319 7.272 1

10 3-MeO-PhO 2-HO-3-MeO-Bn 6.527 -0.748 9.432 1

11 3-MeO-PhO Piperonyl 6.545 -1.079 9.32 1

12 3-MeO-PhO 3-F-6-MeO-Bn 6.547 -0.64 9.523 1

13 4-MeO-PhO Furfuryl 6.600 -0.245 7.489 1

14 4-MeO-PhO 2-HO-3-MeO-Bn 6.652 -0.838 9.878 1

15 4-MeO-PhO Piperonyl 6.682 -1.017 9.645 1

16 4-MeO-PhO 3-F-6-MeO-Bn 6.754 -0.392 9.149 1

17 4-F-PhO Furfuryl 6.790 -0.428 6.34 1

18 4-F-PhO 2-HO-3-MeO-Bn 6.790 -0.651 8.072 1

19 4-F-PhO Piperonyl 6.842 -0.842 8.321 1

20 4-F-PhO 3-F-6-MeO-Bn 6.860 -0.691 7.491 1

21 4-Cl-PhO Furfuryl 6.863 -0.252 8.598 1

22 4-Cl-PhO Furfuryl 6.879 -0.778 9.636 1

23 4-Cl-PhO Piperonyl 6.893 -0.749 10.379 1

24 4-Cl-PhO 3-F-6-MeO-Bn 6.896 -0.636 10.35 1

25 3-Me2 N-PhO Furfuryl 6.928 -0.024 7.162 1

26 3-Me2 N-PhO 2-HO-3-MeO-Bn 6.936 -0.727 8.607 1

27 3-Me2 N-PhO Piperonyl 6.975 -0.858 8.745 1

28 3-Me2 N-PhO 3-F-6-MeO-Bn 7.018 -0.212 7.919 1

29 4-tertBu-PhO Furfuryl 7.036 0.559 8.276 1

30 4-tertBu-PhO 2-HO-3-MeO-Bn 7.046 1.005 9.795 1

31 4-tertBu-PhO Piperonyl 7.051 0.206 9.918 1

32 4-tertBu-PhO 3-F-6-MeO-Bn 7.066 -0.375 10.119 1

33 4-F-Ph Furfuryl 7.125 -0.585 5.107 0

34 4-F-Ph 2-HO-3-MeO-Bn 7.180 -0.77 6.327 0

35 4-F-Ph Piperonyl 7.244 -0.931 6.653 0

36 4-F-Ph 3-F-6-MeO-Bn 7.252 -1.058 6.982 0

37 3,5-CF3-Ph Furfuryl 7.260 -0.722 5.599 0

38 3,5-CF3-Ph 2-HO-3-MeO-Bn 7.268 -0.92 7.079 0

39 3,5-CF3-Ph Piperonyl 7.268 -1.35 7.336 0

40 3,5-CF3-Ph 3-F-6-MeO-Bn 7.268 -0.935 7.85 0

41 1-Naphtyl Furfuryl 7.301 -0.703 6.82 0

42 1-Naphtyl 2-HO-3-MeO-Bn 7.337 -0.761 7.719 0

43 1-Naphtyl Piperonyl 7.337 -1.118 8.451 0

44 1-Naphtyl 3-F-6-MeO-Bn 7.387 -0.556 8.566 0

45 4-CF3-Ph Furfuryl 7.387 -0.594 5.258 0

46 4-CF3-Ph 2-HO-3-MeO-Bn 7.398 -0.331 6.622 0

47 4-CF3-Ph Piperonyl 7.398 -0.877 7.122 0

48 4-CF3-Ph 3-F-6-MeO-Bn 7.398 -0.562 7.114 0
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Table 2 continued

Sr. no. R1 R2 pEC50 (M) Mor13e RDF040v F06 [N–O]

49 Ph Furfuryl 7.398 -0.449 5.193 0

50 Ph 2-HO-3-MeO-Bn 7.409 -0.4 6.467 0

51 Ph Piperonyl 7.409 -0.754 6.74 0

52 Ph 3-F-6-MeO-Bn 7.420 -0.588 6.815 0

53 4-tertBu-Ph Furfuryl 7.469 -0.104 7.086 0

54 4-tertBu-Ph 2-HO-3-MeO-Bn 7.481 0.348 8.467 0

55 4-tertBu-Ph Piperonyl 7.495 -0.658 8.7 0

56 4-tertBu-Ph 3-F-6-MeO-Bn 7.509 0.472 9.679 0

57 Piperonyl Furfuryl 7.509 0.326 4.927 0

58 Piperonyl 2-HO-3-MeO-Bn 7.509 -0.592 7.546 0

59 Piperonyl Piperonyl 7.538 -0.501 7.801 0

60 Piperonyl 3-F-6-MeO-Bn 7.538 -0.268 8.098 0

61 4-MeO-Ph Furfuryl 7.553 0.539 6.398 0

62 4-MeO-Ph 2-HO-3-MeO-Bn 7.569 -0.221 8.104 0

63 4-MeO-Ph Piperonyl 7.569 -0.536 8.312 0

64 4-MeO-Ph 3-F-6-MeO-Bn 7.569 -0.071 7.819 0

65 4-F-Bn Furfuryl 7.569 0.959 5.326 0

66 4-F-Bn 2-HO-3-MeO-Bn 7.585 -0.233 8.929 0

67 4-F-Bn Piperonyl 7.585 -0.067 10.705 0

68 4-F-Bn 3-F-6-MeO-Bn 7.602 0.219 8.134 0

69 iso-butyl Furfuryl 7.602 1.507 6.712 0

70 iso-butyl 2-HO-3-MeO-Bn 7.638 0.808 9.125 0

71 iso-butyl Piperonyl 7.658 0.497 6.044 0

72 iso-butyl 3-F-6-MeO-Bn 7.658 0.112 10.014 0

73 cHex Furfuryl 7.699 1.544 7.704 0

74 cHex 2-HO-3-MeO-Bn 7.699 0.438 11.277 0

75 cHex Piperonyl 7.699 0.752 10.997 0

76 cHex 3-F-6-MeO-Bn 7.699 0.756 9.319 0

77 1-Et-Pr Furfuryl 7.721 1.399 6.966 0

78 1-Et-Pr 2-HO-3-MeO-Bn 7.721 0.074 9.59 0

79 1-Et-Pr Piperonyl 7.745 0.193 8.59 0

80 1-Et-Pr 3-F-6-MeO-Bn 7.745 0.864 7.615 0

81 3-CF3-Bn Furfuryl 7.745 0.117 7.599 0

82 3-CF3-Bn 2-HO-3-MeO-Bn 7.745 -0.196 9.004 0

83 3-CF3-Bn Piperonyl 7.770 0.261 8.227 0

84 3-CF3-Bn 3-F-6-MeO-Bn 7.770 0.413 8.458 0

85 4-CN-Bn Furfuryl 7.770 1.409 8.512 0

86 4-CN-Bn 2-HO-3-MeO-Bn 7.824 -0.322 9.482 0

87 4-CN-Bn Piperonyl 7.824 0.399 9.507 0

88 4-CN-Bn 3-F-6-MeO-Bn 7.824 0.776 9.032 0

89 Bn Furfuryl 7.854 1.122 8.522 0

90 Bn 2-HO-3-MeO-Bn 7.886 0.25 10.837 0

91 Bn Piperonyl 7.886 -0.019 6.437 0

92 Bn 3-F-6-MeO-Bn 7.886 0.494 10.293 0

93 3,5-Me-Bn Furfuryl 7.886 1.444 6.402 0

94 3,5-Me-Bn 2-HO-3-MeO-Bn 7.959 1.194 10.845 0

95 3,5-Me-Bn Piperonyl 7.959 1.419 11.419 0

96 3,5-Me-Bn 3-F-6-MeO-Bn 7.959 0.887 8.162 0
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respect to number of compounds in the training and the

prediction sets was used in external validation for all

models of a dataset to allow better comparison between the

respective statistics (Kiralj and Ferreira, 2009). GA-MLR

models were built also for the RSM and SEM. Briefly, four

models were generated for each dataset.

Results and discussion

For small- and moderate-sized datasets, which is the real-

istic situation for a QSAR modeler, a very serious problem

in developing QSAR models with reduced sets of data

(splitting the sets) is the loss of considerable amount of

information due to holding out of some compounds for

validation purpose (Chirico and Gramatica, 2011, 2012;

Consonni et al., 2009, 2010; Hawkins, 2004; Hawkins

et al., 2008; Huang and Fan, 2011; Mitra et al., 2010; Roy

et al., 2008; Schuurmann et al., 2008; Scior et al., 2009).

Other confines associated in using small datasets include

fortuitous correlation, poor regression statistics, failure of

carrying out various statistical tests, and abnormal behavior

in performed tests (Kiralj and Ferreira, 2009). This may

lead to spurious conclusions in model interpretation and

incorrect proposals for the mechanism of action of the

compounds.

In the present study, the main emphasis is on various

methods for splitting the dataset. For external validation,

random as well as rational splitting methods were adopted

to create training and prediction sets. For the rational

splitting, a special method RBM was also evaluated.

Interestingly, for all the datasets, the residual-based method

resulted in radical splitting with *55–60 % and

*40–45 % compounds in the training and the prediction

sets, respectively. GA-MLR models were rebuilt for

training and prediction sets using the same descriptors that

were used for building the original model. In addition to

RBM, sphere exclusion algorithm (SEM) and random

(RSM) methods were also used for creating training and

prediction sets, keeping the number of compounds the

same as in residual-based method in the training and pre-

diction sets. This ensures better comparison of various

statistical parameters.

The analysis of Tables S1–S3 and 4, 5, 6 indicates that

(i) the training and prediction sets used in RBM, RSM, and

SEM models cover the diversity of the datasets and (ii)

many compounds in the training and the prediction sets are

close to each other (see supplementary figure S1, S2,

and S3).

The statistical results for the original model for the three

datasets are presented in Table 7. The minimum acceptable

statistics (or recommended threshold values of statistical

parameters) (Chirico and Gramatica, 2011, 2012; Huang

and Fan, 2011; Kiralj and Ferreira, 2009; Martin et al.,

2012) for regression models in QSAR include following

conditions: R2 [ Q2, Q2 C 0.5, Rtr
2 C 0.6, Rex

2 C 0.6,

RMSEtr \ RMSEcv, DK C 0.05, CCC C 0.85, Q2-

Fn C 0.70, and rm
2 C 0.6 with RMSE, and MAE should be

close to zero. In addition, the chance correlation of a QSAR

model is validated on following criteria: RYrand
2 [ QYrand

2 ,

QYrand
2 \ 0.2 and RYrand

2 \ 0.2 ? no chance correlation;

Table 2 continued

Sr. no. R1 R2 pEC50 (M) Mor13e RDF040v F06 [N–O]

97 2-Cl-4-F-Bn Furfuryl 7.959 0.839 11.876 0

98 2-Cl-4-F-Bn 2-HO-3-MeO-Bn 7.959 -0.479 9.369 0

99 2-Cl-4-F-Bn Piperonyl 7.959 -0.34 10.094 0

100 2-Cl-4-F-Bn 3-F-6-MeO-Bn 8.000 0.067 9.652 0

101 iso-pentyl Furfuryl 8.046 1.491 7.984 0

102 iso-pentyl 2-HO-3-MeO-Bn 8.046 1.243 8.878 0

103 iso-pentyl Piperonyl 8.046 0.237 9.109 0

104 iso-pentyl 3-F-6-MeO-Bn 8.046 0.566 7.314 0

105 cHexmethyl Furfuryl 8.046 1.37 8.807 0

106 cHexmethyl 2-HO-3-MeO-Bn 8.046 0.976 10.656 0

107 cHexmethyl Piperonyl 8.097 0.756 11.296 0

108 cHexmethyl 3-F-6-MeO-Bn 8.155 1.236 8.876 0

109 PhEt Furfuryl 8.398 0.843 7.842 0

110 PhEt 2-HO-3-MeO-Bn 8.398 0.615 9.586 0

111 PhEt Piperonyl 8.398 0.336 7.842 0

112 PhEt 3-F-6-MeO-Bn 9.000 0.636 14.152 0
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Table 3 4-aminoquinolines used in present study along with pEC50 and descriptors

Sr. no. R1 R2 pEC50 GATS1p E3u E1 m H6u R2e

1 PhO 2-HO-3-MeO-Bn 5.046 0.959 0.41 0.552 1.306 1.88

2 PhO Piperonyl 5.886 1.052 0.383 0.578 1.446 2.004

3 PhO 3-F-6-MeO-Bn 6.097 0.907 0.396 0.576 1.404 1.952

4 2-MeO-PhO Furfuryl 5.538 1.089 0.309 0.483 1.1 1.988

5 2-MeO-PhO 2-HO-3-MeO-Bn 4.812 1.011 0.279 0.572 1.212 2

6 2-MeO-PhO Piperonyl 5.215 1.085 0.288 0.595 1.355 2.133

7 2-MeO-PhO 3-F-6-MeO-Bn 5.076 0.964 0.353 0.586 1.485 2.008

8 3-MeO-PhO Furfuryl 5.086 1.089 0.447 0.507 1.073 1.934

9 3-MeO-PhO 3-F-6-MeO-Bn 5.161 0.964 0.316 0.602 1.42 1.983

10 4-MeO-PhO Furfuryl 5.553 1.089 0.45 0.507 1.07 1.935

11 4-MeO-PhO 2-HO-3-MeO-Bn 5.367 1.011 0.364 0.523 1.445 1.925

12 4-MeO-PhO Piperonyl 5.066 1.085 0.429 0.607 1.096 2.03

13 4-MeO-PhO 3-F-6-MeO-Bn 5.041 0.964 0.375 0.602 1.402 1.959

14 4-F-PhO 2-HO-3-MeO-Bn 4.857 0.875 0.435 0.657 1.331 1.906

15 4-F-PhO 3-F-6-MeO-Bn 5.066 0.845 0.395 0.683 1.402 1.974

16 4-Cl-PhO Furfuryl 4.996 0.974 0.471 0.686 1.21 1.89

17 4-Cl-PhO Furfuryl 5.167 0.901 0.395 0.771 1.293 1.88

18 4-Cl-PhO Piperonyl 5.056 0.986 0.389 0.786 1.446 1.997

19 4-Cl-PhO 3-F-6-MeO-Bn 5.215 0.858 0.389 0.798 1.264 1.899

20 3-Me2 N-PhO 2-HO-3-MeO-Bn 4.963 1.049 0.361 0.55 1.153 1.948

21 3-Me2 N-PhO 3-F-6-MeO-Bn 5.699 0.993 0.382 0.581 1.17 1.965

22 4-tertBu-PhO Furfuryl 5.409 1.043 0.446 0.427 1.59 1.972

23 4-tertBu-PhO 2-HO-3-MeO-Bn 5.921 0.949 0.413 0.482 1.646 1.957

24 4-tertBu-PhO Piperonyl 5.921 1.043 0.404 0.501 1.858 2.096

25 4-tertBu-PhO 3-F-6-MeO-Bn 5.056 0.898 0.389 0.505 1.617 1.977

26 4-F-Ph Furfuryl 5.013 0.84 0.332 0.592 0.974 1.888

27 4-F-Ph 2-HO-3-MeO-Bn 5.027 0.799 0.393 0.665 1.252 1.91

28 4-F-Ph Piperonyl 4.921 0.882 0.281 0.706 1.214 2.013

29 4-F-Ph 3-F-6-MeO-Bn 6 0.77 0.424 0.69 1.269 1.955

30 3,5-CF3-Ph Furfuryl 5.523 0.739 0.262 0.663 0.878 2.48

31 3,5-CF3-Ph 2-HO-3-MeO-Bn 5.921 0.735 0.353 0.759 1.538 2.267

32 3,5-CF3-Ph Piperonyl 5.854 0.765 0.307 0.762 1.322 2.519

33 3,5-CF3-Ph 3-F-6-MeO-Bn 6 0.73 0.347 0.783 1.441 2.283

34 1-Naphtyl Furfuryl 5.092 0.98 0.452 0.48 1.156 1.903

35 1-Naphtyl 2-HO-3-MeO-Bn 5.432 0.863 0.367 0.575 1.259 1.918

36 1-Naphtyl Piperonyl 5.161 0.986 0.4 0.582 1.469 2.008

37 4-CF3-Ph Furfuryl 5.167 0.749 0.34 0.688 0.919 2.109

38 4-CF3-Ph 2-HO-3-MeO-Bn 5.377 0.74 0.414 0.756 1.279 2.107

39 4-CF3-Ph Piperonyl 5.481 0.79 0.406 0.77 1.306 2.245

40 4-CF3-Ph 3-F-6-MeO-Bn 5.092 0.728 0.381 0.775 1.169 2.136

41 Ph Furfuryl 5.092 1.012 0.33 0.51 0.975 1.854

42 Ph 2-HO-3-MeO-Bn 5.409 0.892 0.354 0.566 1.181 1.883

43 Ph Piperonyl 5.328 1.015 0.279 0.637 1.21 1.979

44 Ph 3-F-6-MeO-Bn 5.456 0.835 0.374 0.603 1.165 1.919

45 4-tertBu-Ph Furfuryl 5.409 1.009 0.353 0.447 1.453 2.019

46 4-tertBu-Ph 2-HO-3-MeO-Bn 6.155 0.886 0.377 0.497 1.569 2.037

47 4-tertBu-Ph Piperonyl 5.796 1.011 0.415 0.528 1.756 2.163

48 4-tertBu-Ph 3-F-6-MeO-Bn 6 0.83 0.357 0.528 1.577 2.061
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Table 3 continued

Sr. no. R1 R2 pEC50 GATS1p E3u E1 m H6u R2e

49 Piperonyl Furfuryl 5.076 1.057 0.255 0.582 1.033 2.073

50 Piperonyl 2-HO-3-MeO-Bn 5.721 0.985 0.213 0.589 1.608 2.026

51 Piperonyl Piperonyl 5.119 1.057 0.218 0.604 1.474 2.155

52 Piperonyl 3-F-6-MeO-Bn 5.046 0.939 0.208 0.688 1.718 2.084

53 4-MeO-Ph Furfuryl 5.119 1.05 0.197 0.532 1.306 1.908

54 4-MeO-Ph 2-HO-3-MeO-Bn 5.602 0.956 0.354 0.504 1.68 1.96

55 4-MeO-Ph Piperonyl 5.187 1.049 0.225 0.502 1.641 2.051

56 4-MeO-Ph 3-F-6-MeO-Bn 5.041 0.905 0.32 0.497 1.551 1.963

57 4-F-Bn Furfuryl 5.215 0.838 0.35 0.597 0.765 1.941

58 4-F-Bn 2-HO-3-MeO-Bn 5.027 0.797 0.28 0.605 1.016 1.945

59 4-F-Bn Piperonyl 5.155 0.88 0.433 0.663 0.961 1.977

60 4-F-Bn 3-F-6-MeO-Bn 5.538 0.768 0.407 0.645 1.403 1.874

61 iso-butyl 2-HO-3-MeO-Bn 5.409 0.925 0.286 0.395 1.138 2.053

62 iso-butyl Piperonyl 5.569 1.05 0.423 0.438 1.042 2.107

63 iso-butyl 3-F-6-MeO-Bn 5.444 0.865 0.303 0.373 1.305 2.041

64 cHex Furfuryl 5.18 1.012 0.312 0.476 1.052 2.075

65 cHex 2-HO-3-MeO-Bn 5.77 0.892 0.353 0.464 1.251 2.082

66 cHex Piperonyl 5.268 1.015 0.256 0.541 1.231 2.129

67 cHex 3-F-6-MeO-Bn 5.495 0.835 0.228 0.517 1.377 2.031

68 1-Et-Pr Furfuryl 4.987 1.049 0.299 0.484 1.331 1.969

69 1-Et-Pr 2-HO-3-MeO-Bn 6.959 0.925 0.361 0.444 1.619 2.021

70 1-Et-Pr Piperonyl 5.131 1.05 0.304 0.527 1.334 2.121

71 1-Et-Pr 3-F-6-MeO-Bn 5.032 0.863 0.271 0.584 1.882 1.973

72 3-CF3-Bn Furfuryl 5.409 0.746 0.369 0.722 1.296 2.168

73 3-CF3-Bn 2-HO-3-MeO-Bn 5.678 0.737 0.356 0.499 1.701 2.132

74 3-CF3-Bn Piperonyl 5.602 0.787 0.337 0.732 1.565 2.246

75 3-CF3-Bn 3-F-6-MeO-Bn 6.398 0.725 0.311 0.525 1.738 2.205

76 4-CN-Bn Furfuryl 4.943 0.963 0.23 0.602 0.981 1.931

77 4-CN-Bn 2-HO-3-MeO-Bn 5.066 0.872 0.32 0.566 1.335 1.853

78 4-CN-Bn Piperonyl 5.066 0.983 0.152 0.578 1.257 1.97

79 4-CN-Bn 3-F-6-MeO-Bn 5.119 0.824 0.157 0.581 1.388 1.802

80 Bn 2-HO-3-MeO-Bn 5.092 0.891 0.14 0.491 1.554 1.792

81 Bn Piperonyl 5.086 1.014 0.436 0.481 1.119 2.066

82 Bn 3-F-6-MeO-Bn 5.081 0.834 0.211 0.508 1.435 1.787

83 3,5-Me-Bn Furfuryl 5.143 1.009 0.355 0.494 1.25 1.983

84 3,5-Me-Bn 2-HO-3-MeO-Bn 5.602 0.887 0.176 0.473 1.993 1.875

85 3,5-Me-Bn Piperonyl 5.523 1.012 0.189 0.49 1.639 1.991

86 3,5-Me-Bn 3-F-6-MeO-Bn 6.046 0.831 0.318 0.499 1.465 2.046

87 2-Cl-4-F-Bn Furfuryl 5.06 0.789 0.385 0.674 1.245 1.82

88 2-Cl-4-F-Bn 2-HO-3-MeO-Bn 5.538 0.757 0.266 0.597 1.555 1.975

89 2-Cl-4-F-Bn Piperonyl 5.276 0.834 0.273 0.744 1.297 2.003

90 2-Cl-4-F-Bn 3-F-6-MeO-Bn 5.495 0.733 0.403 0.624 1.312 1.957

91 iso-pentyl 2-HO-3-MeO-Bn 5.194 0.922 0.332 0.625 1.365 2.086

92 iso-pentyl Piperonyl 5.538 1.047 0.3 0.689 1.134 2.228

93 iso-pentyl 3-F-6-MeO-Bn 6 0.865 0.306 0.451 1.106 2.031

94 cHexmethyl Furfuryl 5.658 1.011 0.33 0.478 1.266 2.051

95 cHexmethyl 2-HO-3-MeO-Bn 5.921 0.891 0.278 0.473 1.733 2.079

96 cHexmethyl Piperonyl 5.027 1.014 0.234 0.553 1.335 2.27
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Any QYrand
2 and 0.2 \ RYrand

2 \ 0.3 ? negligible chance

correlation;

Any QYrand
2 and 0.3 \ RYrand

2 \ 0.4 ? tolerable chance

correlation;

Any QYrand
2 and RYrand

2 [ 0.4 ? recognized chance

correlation.

(1-r2/ro
2) \ 0.1, 0.9 B k B 1.1 or (1-r2/r’o

2) \ 0.1,

0.9 B k’ B 1.1 with | ro
2 - r’o

2| \ 0.3

Except for the dataset-3, the statistical parameters point

out that the GA-MLR original models for the dataset-1 and

2 are statistically robust with statistically acceptable values

of R tr
2 , Radj.

2 , Rcv
2 , RLMO

2 , RYrand
2 , s, Kxx, DK, RMSEtr,

RMSEcv, CCCtr, CCCcv, MAEtr, MAEcv, and F. Thus, from

the internal validation point of view, the original models

for the dataset 1 and 2 are satisfying all the essential

conditions and criteria. The positive or negative contribu-

tion of a descriptor to activity remains the same during the

data split and building original model indicating self-con-

sistency of data(Kiralj and Ferreira, 2009), which is useful

for model interpretation and mechanism of action.

Since, for a dataset, the same descriptors that cover the

diversity of training and prediction sets are used to build

models for different types of training and prediction sets,

the statistical performance of residual based, random

splitting and sphere exclusion should be comparable with

each other for all the datasets. But, the statistical perfor-

mance of each model is different (see Tables 7, 8, 9, 10).

This indicates that the method of splitting has significant

effect on the behavior of statistical parameters. Addition-

ally, since the descriptors have been selected prior to

splitting, the built models have captured common features

of training and prediction set molecules, therefore, the

models are capable to detect them in the test molecules,

also. Consequently, the external predictivity of models

should be high and comparable to each other for a dataset.

However, the analysis of Tables 8, 9, and 10 indicates that

the external predictivity of different models is different.

Thus, it appears that the selection of descriptors prior to

splitting has little role to play in deciding external pre-

dictivity of model. In fact, it is the diversity of training and

prediction set that decides the external predictivity of any

QSAR model. In other words, if the compounds in pre-

diction set resemble the training set compounds, high

predictive ability is observed for the developed model.

Therefore, more number of model based on different

training and prediction sets for a dataset must be devel-

oped, else, boot-strapping is an attractive option.

Results for the dataset-1

A comparison of various statistical parameters viz. R tr
2 ,

Radj.
2 , Rcv

2 , RLMO
2 , RYrand

2 , s, Rex
2 , Kxx, DK, RMSEtr, RMSEcv,

CCCtr, CCCcv, MAEtr, MAEcv, rm
2 av, and F reveals that the

performance of RBM model is better than the other mod-

els, which suggests that the model is statistically soundful

and has good predictive ability. The rm
2 statistic, which

penalizes the model profoundly for large difference

between predicted and the corresponding experimental

response, is higher for residual-based model indicating

good external predictivity (Mitra et al., 2010; Roy and

Mitra, 2012). A plausible reason for this could be the

distribution of the training and the prediction sets in the

chemical space because both the sets used in RBM model

covers diversity of the dataset. Though RBM model

appears statistically robust but apropos of many statistical

parameters, everything is not rosy-red for it.

For a good predictive ability RMSEex and MAEex should

be as low as possible (Chirico and Gramatica, 2011), but

for RBM model, the values for these parameters are higher

than the rest of the models. The large difference between

RMSEtr (=0.118) and RMSEex (=0.441) as well as between

MAEtr (=0.089) and MAEex (=0.394) raises question on

residual-based model’s generalizability (Chirico and

Gramatica, 2011, 2012). In addition, the lower values of

CCCex, Q2-F1, Q2-F2, and Q2-F3 for RBM model than

RSM and SEM models indicate low external predictivity of

this model (Chirico and Gramatica 2011, 2012; Consonni

et al., 2009, 2010; Schuurmann et al., 2008). Thus, the

RBM model is appearing statistically soundful on the basis

of many parameters, but some parameters raise doubts on

its external predictivity. A possible reason could be the

sensitivity of Q2-F1and Q2-F2 toward the presence of

outliers in the prediction set (Consonni et al., 2010). That

is, the presence of more number of outliers in the predic-

tion set of RBM model than the other models is responsible

for its low external predictivity. Therefore, it can be stated

Table 3 continued

Sr. no. R1 R2 pEC50 GATS1p E3u E1 m H6u R2e

97 cHexmethyl 3-F-6-MeO-Bn 5.553 0.834 0.293 0.476 1.355 2.082

98 PhEt 2-HO-3-MeO-Bn 5.119 0.799 0.278 0.535 1.744 1.963

99 PhEt Piperonyl 5.229 0.832 0.204 0.554 1.546 1.854

100 PhEt 3-F-6-MeO-Bn 5.252 1.013 0.317 0.542 1.794 1.96
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Table 4 Experimental and predicted pIC50 by different models for dataset-1

ID pIC50 Status Pred. pIC50

(Originalmodel)

Status Pred. pIC50

RBM

Status Pred. pIC50

RSM

Status Pred. pIC50

SEM

1 5.8240 Training 5.2945 Prediction 4.9468 Training 5.5246 Training 5.2338

2 4.4810 Training 4.1434 Prediction 4.0651 Prediction 4.3532 Prediction 4.0669

3 5.3670 Training 5.1114 Prediction 4.6446 Training 5.1312 Prediction 5.0960

4 4.8240 Training 4.6201 Prediction 4.5856 Prediction 4.6241 Training 4.7066

5 3.9210 Training 4.3456 Training 4.2006 Prediction 4.7011 Training 4.2484

6 4.7700 Training 4.9528 Training 4.8453 Training 4.7697 Training 5.0715

7 5.6020 Training 5.4692 Prediction 5.2327 Training 5.4758 Prediction 5.5231

8 4.1490 Training 4.4768 Training 4.1421 Prediction 4.5794 Training 4.3759

9 4.3190 Training 4.4971 Training 4.2888 Training 4.3606 Prediction 4.5313

10 4.8240 Training 4.8351 Prediction 4.5429 Prediction 4.8050 Training 4.8310

11 4.2600 Training 4.2126 Prediction 4.0629 Prediction 4.2534 Prediction 4.1652

12 4.3980 Training 4.3672 Prediction 4.1746 Prediction 4.0790 Prediction 4.4456

13 4.6780 Training 4.8172 Training 4.6643 Prediction 4.8165 Prediction 4.8690

14 4.6780 Training 4.2410 Prediction 4.0579 Training 4.2332 Training 4.2110

15 4.6380 Training 4.8594 Training 4.5173 Training 4.9219 Training 4.8445

16 4.8540 Training 4.7210 Prediction 4.6080 Prediction 4.7724 Prediction 4.7689

17 4.2920 Training 4.3798 Training 4.1487 Training 4.4670 Prediction 4.3226

18 4.5850 Training 4.6987 Training 4.5177 Training 4.6012 Training 4.6975

19 4.8240 Training 4.9861 Training 4.7799 Training 4.8915 Prediction 5.0179

20 4.8860 Training 5.0662 Training 4.9380 Prediction 4.9073 Prediction 5.1382

21 4.3010 Training 4.5949 Training 4.3935 Training 4.4711 Training 4.5774

22 4.3770 Training 4.3227 Prediction 4.1462 Training 4.4158 Prediction 4.2844

23 4.0180 Training 4.2580 Training 4.1286 Training 4.2083 Training 4.2826

24 4.8240 Training 4.5794 Prediction 4.4278 Prediction 4.4112 Training 4.6660

25 4.1940 Training 3.8950 Prediction 3.9259 Prediction 3.6105 Training 3.9953

26 4.5850 Training 4.6599 Training 4.5970 Training 4.6743 Prediction 4.7344

27 5.3280 Training 5.0269 Prediction 4.6933 Prediction 5.0460 Training 4.9675

28 4.3570 Training 4.3042 Prediction 4.1023 Training 4.1680 Training 4.3111

29 4.4810 Training 4.5794 Training 4.3587 Prediction 4.4580 Prediction 4.6178

30 4.6020 Training 4.6885 Training 4.5141 Training 4.5384 Prediction 4.7488

31 4.1250 Training 4.2266 Training 3.9974 Prediction 4.1417 Training 4.1867

32 4.9210 Training 4.9349 Training 4.6648 Training 4.8049 Prediction 4.9387

33 4.9210 Training 5.2090 Training 4.9217 Prediction 5.0860 Training 5.2472

34 5.6200 Training 5.3283 Prediction 5.1025 Prediction 5.1492 Training 5.4025

35 4.9210 Training 4.7116 Prediction 4.4781 Prediction 4.5533 Prediction 4.7109

36 4.9590 Training 4.9578 Prediction 4.5756 Training 5.0387 Prediction 4.8530

37 3.9910 Training 4.1116 Training 3.9965 Training 4.1346 Training 4.0684

38 4.8240 Training 4.3522 Prediction 4.1887 Prediction 4.1562 Training 4.4158

39 4.3870 Training 4.5814 Training 4.4422 Training 4.2705 Prediction 4.7137

40 4.0660 Training 4.3520 Training 4.2611 Training 4.1534 Prediction 4.4426

41 4.4950 Training 4.5532 Training 4.4897 Prediction 4.2078 Training 4.7186

42 4.5230 Training 4.3868 Prediction 4.3279 Training 4.3650 Training 4.3516

43 4.7450 Training 5.1121 Training 4.8920 Training 5.2956 Training 5.0681

44 4.4090 Training 4.3261 Prediction 4.2793 Prediction 4.4605 Prediction 4.3016

RBM Residual-based model, RBM Random splitting model, SEM Sphere exclusion model
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Table 5 Experimental and predicted pEC50 by different models for dataset-2

ID pEC50(M) Status Pred. pEC50

(Original model)

Status Pred. pEC50

RBM

Status Pred. pEC50

RSM

Status Pred. pEC50

SEM

1 5.620 Training 5.6830 Training 5.3535 Prediction 5.8460 Training 5.6082

2 5.854 Training 6.5075 Training 6.2924 Prediction 6.5813 Training 6.4897

3 5.921 Training 6.5065 Training 6.2847 Training 6.5663 Prediction 6.4877

4 5.959 Training 6.5481 Training 6.3330 Prediction 6.6285 Training 6.5248

5 6.143 Training 6.5698 Training 6.3449 Prediction 6.6337 Training 6.5420

6 6.152 Training 6.4911 Training 6.2631 Training 6.5357 Prediction 6.4734

7 6.223 Training 6.4744 Training 6.2494 Training 6.5223 Training 6.4594

8 6.236 Training 6.7401 Training 6.4880 Prediction 6.7765 Prediction 6.6853

9 6.503 Training 6.5859 Training 6.3683 Training 6.6674 Prediction 6.5571

10 6.527 Training 6.6512 Training 6.4103 Prediction 6.6959 Prediction 6.6101

11 6.545 Training 6.5626 Training 6.3303 Prediction 6.6101 Prediction 6.5347

12 6.547 Training 6.6844 Training 6.4399 Training 6.7272 Prediction 6.6382

13 6.600 Training 6.6207 Training 6.3983 Training 6.6982 Prediction 6.5865

14 6.652 Training 6.6644 Training 6.4187 Training 6.7015 Prediction 6.6207

15 6.682 Training 6.6030 Prediction 6.3645 Training 6.6446 Prediction 6.5687

16 6.754 Training 6.7149 Prediction 6.4709 Prediction 6.7637 Training 6.6648

17 6.790 Training 6.4868 Prediction 6.2853 Training 6.5849 Training 6.4738

18 6.790 Training 6.5683 Prediction 6.3457 Training 6.6367 Prediction 6.5412

19 6.842 Training 6.5417 Prediction 6.3193 Training 6.6062 Training 6.5182

20 6.860 Training 6.5133 Prediction 6.3001 Training 6.5919 Prediction 6.4950

21 6.863 Training 6.7057 Prediction 6.4669 Prediction 6.7638 Prediction 6.6576

22 6.879 Training 6.6599 Prediction 6.4166 Prediction 6.7011 Prediction 6.6172

23 6.893 Training 6.7250 Prediction 6.4700 Prediction 6.7531 Training 6.6718

24 6.896 Training 6.7500 Prediction 6.4931 Training 6.7783 Training 6.6931

25 6.928 Training 6.6484 Prediction 6.4264 Prediction 6.7312 Prediction 6.6106

26 6.936 Training 6.5918 Prediction 6.3628 Training 6.6509 Training 6.5605

27 6.975 Training 6.5710 Prediction 6.3426 Training 6.6280 Prediction 6.5426

28 7.018 Training 6.6622 Prediction 6.4328 Training 6.7322 Prediction 6.6214

29 7.036 Training 6.8761 Prediction 6.6254 Prediction 6.9378 Training 6.8033

30 7.046 Training 7.1023 Training 6.8198 Prediction 7.1363 Training 6.9942

31 7.051 Training 6.9193 Prediction 6.6514 Training 6.9531 Prediction 6.8380

32 7.066 Training 6.7948 Prediction 6.5360 Training 6.8266 Prediction 6.7317

33 7.125 Training 7.2652 Training 7.1980 Training 7.3070 Prediction 7.3185

34 7.180 Training 7.3159 Training 7.2344 Training 7.3368 Prediction 7.3602

35 7.244 Training 7.3026 Training 7.2195 Prediction 7.3181 Prediction 7.3484

36 7.252 Training 7.2977 Training 7.2123 Prediction 7.3078 Training 7.3438

37 7.260 Training 7.2706 Training 7.1989 Training 7.3042 Training 7.3225

38 7.268 Training 7.3385 Training 7.2489 Training 7.3466 Training 7.3785

39 7.268 Training 7.2549 Prediction 7.1703 Training 7.2595 Prediction 7.3069

40 7.268 Training 7.3952 Training 7.2943 Prediction 7.3897 Prediction 7.4258

41 7.301 Training 7.3706 Training 7.2803 Prediction 7.3827 Training 7.4062

42 7.337 Training 7.4269 Training 7.3244 Training 7.4233 Training 7.4530

43 7.337 Training 7.3980 Training 7.2920 Prediction 7.3824 Prediction 7.4275

44 7.387 Training 7.5425 Training 7.4232 Prediction 7.5236 Prediction 7.5505

45 7.387 Training 7.2748 Prediction 7.2056 Prediction 7.3140 Training 7.3265

46 7.398 Training 7.4449 Training 7.3498 Prediction 7.4595 Prediction 7.4697

47 7.398 Training 7.3523 Prediction 7.2611 Prediction 7.3594 Prediction 7.3902
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Table 5 continued

ID pEC50(M) Status Pred. pEC50

(Original model)

Status Pred. pEC50

RBM

Status Pred. pEC50

RSM

Status Pred. pEC50

SEM

48 7.398 Training 7.4276 Training 7.3300 Prediction 7.4341 Training 7.4544

49 7.398 Training 7.3047 Prediction 7.2334 Training 7.3447 Training 7.3521

50 7.409 Training 7.4161 Training 7.3248 Prediction 7.4336 Prediction 7.4454

51 7.409 Training 7.3521 Prediction 7.2640 Training 7.3657 Training 7.3905

52 7.420 Training 7.3980 Prediction 7.3054 Training 7.4098 Prediction 7.4295

53 7.469 Training 7.5359 Training 7.4292 Prediction 7.5418 Training 7.5467

54 7.481 Training 7.7528 Training 7.6162 Training 7.7333 Prediction 7.7299

55 7.495 Training 7.5284 Training 7.4092 Training 7.5073 Prediction 7.5383

56 7.509 Training 7.8774 Training 7.7202 Prediction 7.8364 Training 7.8346

57 7.509 Training 7.4709 Prediction 7.3874 Training 7.5136 Training 7.4941

58 7.509 Training 7.4541 Prediction 7.3507 Training 7.4532 Training 7.4765

59 7.538 Training 7.4960 Prediction 7.3869 Training 7.4903 Prediction 7.5118

60 7.538 Training 7.5754 Training 7.4571 Training 7.5639 Prediction 7.5791

61 7.553 Training 7.6372 Training 7.5275 Prediction 7.6535 Training 7.6340

62 7.569 Training 7.5872 Training 7.4678 Prediction 7.5755 Training 7.5892

63 7.569 Training 7.5275 Prediction 7.4115 Training 7.5129 Prediction 7.5380

64 7.569 Training 7.6011 Training 7.4829 Prediction 7.5941 Prediction 7.6014

65 7.569 Training 7.6547 Training 7.5522 Training 7.6888 Prediction 7.6503

66 7.585 Training 7.6488 Training 7.5174 Training 7.6226 Training 7.6406

67 7.585 Training 7.8276 Training 7.6663 Prediction 7.7699 Training 7.7908

68 7.602 Training 7.6956 Training 7.5667 Training 7.6824 Training 7.6816

69 7.602 Training 7.8951 Training 7.7607 Prediction 7.9036 Training 7.8535

70 7.638 Training 7.9151 Training 7.7593 Prediction 7.8830 Training 7.8675

71 7.658 Training 7.5994 Prediction 7.4958 Prediction 7.6221 Training 7.6022

72 7.658 Training 7.8168 Training 7.6621 Training 7.7707 Prediction 7.7825

73 7.699 Training 7.9816 Training 7.8316 Training 7.9726 Training 7.9259

74 7.699 Training 7.9941 Training 7.8138 Training 7.9251 Training 7.9320

75 7.699 Training 8.0479 Training 7.8653 Prediction 7.9831 Training 7.9783

76 7.699 Training 7.9178 Training 7.7601 Training 7.8823 Training 7.8694

77 7.721 Training 7.8890 Training 7.7530 Training 7.8932 Training 7.8479

78 7.721 Training 7.7745 Training 7.6269 Prediction 7.7360 Training 7.7469

79 7.745 Training 7.7250 Prediction 7.5898 Prediction 7.7038 Training 7.7061

80 7.745 Training 7.8106 Training 7.6761 Prediction 7.8049 Training 7.7803

81 7.745 Training 7.6292 Prediction 7.5104 Training 7.6256 Prediction 7.6257

82 7.745 Training 7.6636 Prediction 7.5303 Training 7.6360 Training 7.6531

83 7.770 Training 7.7130 Prediction 7.5819 Training 7.6980 Prediction 7.6963

84 7.770 Training 7.7678 Prediction 7.6300 Training 7.7483 Prediction 7.7427

85 7.770 Training 8.0122 Training 7.8530 Training 7.9893 Prediction 7.9510

86 7.824 Training 7.6705 Prediction 7.5327 Prediction 7.6349 Training 7.6585

87 7.824 Training 7.8463 Training 7.6933 Training 7.8085 Training 7.8083

88 7.824 Training 7.9001 Training 7.7463 Training 7.8697 Training 7.8548

89 7.854 Training 7.9437 Training 7.7903 Prediction 7.9214 Training 7.8926

90 7.886 Training 7.9143 Training 7.7445 Training 7.8535 Prediction 7.8646

91 7.886 Training 7.5056 Prediction 7.4069 Prediction 7.5227 Training 7.5218

92 7.886 Training 7.9307 Training 7.7639 Training 7.8788 Prediction 7.8792

93 7.886 Training 7.8557 Prediction 7.7272 Training 7.8698 Training 7.8203

94 7.959 Training 8.1426 Training 7.9532 Training 8.0793 Training 8.0592
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that residual-based model possesses poor external predic-

tivity, hence should not be adopted to create QSAR mod-

els. In addition, as many as possible parameters should be

reported for a QSAR model developed using single split-

ting method. Because, the true predictive ability of resid-

ual-based model was captured, only when many statistical

parameters were calculated.

For some parameters viz. R tr
2 , Radj.

2 , Rcv
2 , RLMO

2 , RYrand
2 ,

s, Kxx, DK, RMSEtr, RMSEcv, CCCtr, CCCcv, MAEtr,

MAEcv, and F, the performance of random splitting model is

either statistically satisfactory or comparable with the other

models. But, for some parameters viz. CCCex, rm
2 av, and rm

2 ,

the performance of the model is questionable. A large dif-

ference of 0.309 between R tr
2 (=0.674), and Rcv

2 (=0.365) for

sphere exclusion model reflects large inaccuracy of the

model (Schuurmann et al., 2008) or overfitting (Kiralj and

Ferreira, 2009). A probable reason could be either the small

size of dataset-1 or size of training and prediction sets. But,

the problem of large inaccuracy of model or overfitting is

not visible for other models. Similarly, the very low value of

F (=7.023) indicates low statistical reliability of the sphere

exclusion model. A very surprising and rare observation for

sphere exclusion model is the higher values of Q2-F1

(=0.706), Q2-F2 (=0.705), and Q2-F3 (=0.828) than R2

(=0.674), leading to the contrasting conclusion that the

model is able to predict new data better than fitting available

ones (Chirico and Gramatica, 2011; 2012).

For residual-based and random splitting models, RMSEtr

and MAEtr are lower than RMSEex and MAEex,

respectively. This indicates that the samples for which the

models fit very well are present in the training set. Exactly

reverse is true for the sphere exclusion model, for which

RMSEtr and MAEtr are higher than RMSEex and MAEex,

respectively. This observation points out one serious

drawback of common practice followed in external vali-

dation, in which single split is performed to validate the

model. If a researcher purposely selects training and pre-

diction sets such that RMSEtr and MAEtr are higher than

RMSEex and MAEex, respectively then, the model will be

with lower internal predictivity but with high external

predictivity. In such case, many parameters will give false

positive results because of the purposeful selection of

training and prediction sets. Therefore, one cannot merely

rely on external validation based on single split; instead,

boot-strap or multiple modeling (Masand et al., 2014) must

be followed to develop a good number of statistically

robust QSAR models with good external predictive ability.

As the number of compounds is same in the training and

the prediction sets for the three models, the difference

between R2 and Q2 should be comparable for all the

models. But, different models have different variation

indicating that the method of splitting has good influence

on many statistical parameters.

Results for the dataset-2

Similar to the dataset-1, different statistical parameters viz.

R tr
2 , Radj.

2 , Rcv
2 , RLMO

2 , RYrand
2 , s, R ex

2 , Kxx, DK, RMSEtr,

Table 5 continued

ID pEC50(M) Status Pred. pEC50

(Original model)

Status Pred. pEC50

RBM

Status Pred. pEC50

RSM

Status Pred. pEC50

SEM

95 7.959 Training 8.2417 Training 8.0391 Training 8.1678 Prediction 8.1430

96 7.959 Training 7.8589 Prediction 7.7158 Training 7.8435 Training 7.8208

97 7.959 Training 8.1376 Training 7.9401 Prediction 8.0571 Training 8.0536

98 7.959 Training 7.6238 Prediction 7.4910 Training 7.5906 Training 7.6188

99 7.959 Training 7.7140 Prediction 7.5675 Prediction 7.6677 Prediction 7.6948

100 8.000 Training 7.7776 Prediction 7.6292 Prediction 7.7381 Training 7.7496

101 8.046 Training 7.9907 Prediction 7.8377 Training 7.9769 Training 7.9333

102 8.046 Training 8.0007 Prediction 7.8395 Prediction 7.9719 Training 7.9408

103 8.046 Training 7.7762 Prediction 7.6324 Prediction 7.7457 Training 7.7490

104 8.046 Training 7.7153 Prediction 7.5914 Prediction 7.7155 Training 7.6994

105 8.046 Training 8.0258 Prediction 7.8630 Training 7.9979 Prediction 7.9622

106 8.046 Training 8.0753 Training 7.8931 Training 8.0159 Training 8.0020

107 8.097 Training 8.0722 Prediction 7.8851 Prediction 8.0021 Training 7.9986

108 8.155 Training 7.9989 Prediction 7.8379 Prediction 7.9701 Prediction 7.9392

109 8.398 Training 7.8233 Prediction 7.6858 Training 7.8136 Prediction 7.7908

110 8.398 Training 7.9046 Prediction 7.7459 Training 7.8649 Training 7.8579

111 8.398 Training 7.7010 Prediction 7.5740 Prediction 7.6926 Prediction 7.6866

112 9.000 Training 8.2665 Prediction 8.0393 Prediction 8.1465 Prediction 8.1606
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Table 6 Experimental and predicted pEC50 by different models for dataset-3

ID pEC50

(M)

Status Pred. pEC50

(Original model)

Status Pred. pEC50

RBM

Status Pred. pEC50

RSM

Status Pred. pEC50

SEM

1 5.0460 Training 5.2880 Training 5.0711 Prediction 5.2655 Training 5.2987

2 5.8860 Training 5.3162 Prediction 5.1067 Prediction 5.1656 Training 5.3758

3 6.0970 Training 5.4203 Prediction 5.1851 Training 5.4203 Prediction 5.4266

4 5.5380 Training 5.1536 Prediction 5.0015 Prediction 5.0639 Training 5.2397

5 4.8120 Training 5.1292 Training 4.9953 Prediction 5.0477 Prediction 5.1723

6 5.2150 Training 5.2416 Training 5.0927 Prediction 5.0486 Training 5.3319

7 5.0760 Training 5.3873 Training 5.1679 Prediction 5.3175 Training 5.4200

8 5.0860 Training 5.2170 Training 5.0278 Training 5.1048 Prediction 5.2875

9 5.1610 Training 5.2564 Training 5.0749 Training 5.1851 Training 5.2775

10 5.5530 Training 5.2207 Prediction 5.0306 Training 5.1083 Training 5.2915

11 5.3670 Training 5.3308 Prediction 5.1010 Prediction 5.2687 Training 5.3750

12 5.0660 Training 5.1657 Training 5.0194 Prediction 4.9778 Prediction 5.2299

13 5.0410 Training 5.2956 Training 5.0944 Training 5.2224 Training 5.3125

14 4.8570 Training 5.2932 Training 5.0920 Training 5.2728 Training 5.2583

15 5.0660 Training 5.3473 Training 5.1502 Prediction 5.3307 Prediction 5.3120

16 4.9960 Training 5.1086 Training 4.9515 Prediction 4.9761 Training 5.0904

17 5.1670 Training 4.9870 Prediction 4.8743 Prediction 4.8687 Prediction 4.9219

18 5.0560 Training 5.0659 Training 4.9428 Prediction 4.8331 Training 5.0495

19 5.2150 Training 4.9953 Prediction 4.8925 Prediction 4.9007 Training 4.9143

20 4.9630 Training 5.1377 Training 4.9818 Training 5.0357 Prediction 5.1872

21 5.6990 Training 5.2073 Prediction 5.0408 Training 5.1339 Training 5.2368

22 5.4090 Training 5.6696 Training 5.3335 Training 5.6231 Training 5.7631

23 5.9210 Training 5.6557 Prediction 5.3315 Training 5.6635 Training 5.7037

24 5.9210 Training 5.7666 Prediction 5.4245 Training 5.6428 Training 5.8705

25 5.0560 Training 5.6574 Training 5.3471 Training 5.7013 Prediction 5.6881

26 5.0130 Training 5.1211 Training 4.9909 Prediction 5.2146 Prediction 5.0824

27 5.0270 Training 5.2824 Training 5.1005 Training 5.3394 Prediction 5.2222

28 4.9210 Training 5.0851 Training 4.9867 Training 5.0342 Prediction 5.0581

29 6.0000 Training 5.3765 Prediction 5.1800 Training 5.4363 Prediction 5.3123

30 5.5230 Training 5.6885 Training 5.5625 Prediction 5.7878 Training 5.7320

31 5.9210 Training 5.7055 Prediction 5.4872 Prediction 5.7108 Prediction 5.6846

32 5.8540 Training 5.8074 Prediction 5.6322 Training 5.7752 Training 5.8473

33 6.0000 Training 5.6413 Prediction 5.4524 Prediction 5.6397 Training 5.6148

34 5.0920 Training 5.3899 Training 5.1492 Training 5.4014 Training 5.4303

35 5.4320 Training 5.3296 Prediction 5.1263 Prediction 5.3885 Prediction 5.3132

36 5.1610 Training 5.4215 Training 5.1878 Training 5.3298 Prediction 5.4626

37 5.1670 Training 5.3199 Training 5.2029 Prediction 5.4170 Training 5.2786

38 5.3770 Training 5.4780 Training 5.2955 Training 5.5066 Prediction 5.4217

39 5.4810 Training 5.5637 Training 5.3845 Prediction 5.5192 Training 5.5493

40 5.0920 Training 5.4044 Training 5.2601 Prediction 5.4386 Training 5.3439

41 5.0920 Training 5.0119 Prediction 4.8827 Training 4.9975 Training 5.0372

42 5.4090 Training 5.2179 Prediction 5.0396 Training 5.2640 Prediction 5.2032

43 5.3280 Training 4.9977 Prediction 4.8990 Prediction 4.8683 Prediction 5.0198

44 5.4560 Training 5.2855 Prediction 5.1040 Training 5.3574 Prediction 5.2528

45 5.4090 Training 5.5518 Training 5.2783 Training 5.5371 Training 5.6367

46 6.1550 Training 5.7172 Prediction 5.4084 Training 5.7770 Prediction 5.7592

47 5.7960 Training 5.8079 Training 5.4795 Prediction 5.6956 Prediction 5.9094

48 6.0000 Training 5.7385 Prediction 5.4377 Training 5.8305 Training 5.7611
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Table 6 continued

ID pEC50

(M)

Status Pred. pEC50

(Original model)

Status Pred. pEC50

RBM

Status Pred. pEC50

RSM

Status Pred. pEC50

SEM

49 5.0760 Training 5.0362 Prediction 4.9532 Prediction 4.9090 Training 5.1036

50 5.7210 Training 5.2562 Prediction 5.0786 Prediction 5.1665 Prediction 5.2963

51 5.1190 Training 5.2491 Training 5.1047 Training 5.0739 Prediction 5.3336

52 5.0460 Training 5.2651 Training 5.1029 Training 5.1386 Training 5.2798

53 5.1190 Training 4.9765 Prediction 4.8580 Training 4.8949 Prediction 5.0200

54 5.6020 Training 5.5567 Prediction 5.2637 Training 5.5449 Prediction 5.6006

55 5.1870 Training 5.3790 Training 5.1589 Prediction 5.2824 Prediction 5.4672

56 5.0410 Training 5.5276 Training 5.2577 Training 5.5819 Training 5.5568

57 5.2150 Training 5.1070 Prediction 5.0042 Training 5.2056 Training 5.0763

58 5.0270 Training 5.1689 Training 5.0449 Training 5.2921 Training 5.1264

59 5.1550 Training 5.1929 Training 5.0573 Training 5.1803 Training 5.1693

60 5.5380 Training 5.3921 Prediction 5.1635 Prediction 5.4864 Prediction 5.3224

61 5.4090 Training 5.5410 Training 5.3063 Prediction 5.6685 Prediction 5.6176

62 5.5690 Training 5.5278 Prediction 5.2954 Training 5.4907 Training 5.6434

63 5.4440 Training 5.7260 Training 5.4307 Prediction 5.9172 Training 5.7908

64 5.1800 Training 5.3365 Training 5.1632 Training 5.3221 Prediction 5.4211

65 5.7700 Training 5.6413 Prediction 5.3814 Prediction 5.7366 Training 5.6995

66 5.2680 Training 5.3039 Training 5.1497 Training 5.2291 Prediction 5.3851

67 5.4950 Training 5.4599 Prediction 5.2491 Training 5.5817 Training 5.4745

68 4.9870 Training 5.2660 Training 5.0696 Training 5.2030 Prediction 5.3385

69 6.9590 Training 5.7388 Prediction 5.4117 Prediction 5.7975 Training 5.8029

70 5.1310 Training 5.3843 Training 5.1923 Prediction 5.2749 Prediction 5.4800

71 5.0320 Training 5.5372 Training 5.2608 Prediction 5.5536 Training 5.5362

72 5.4090 Training 5.5461 Training 5.3585 Prediction 5.5900 Prediction 5.5134

73 5.6780 Training 6.0272 Training 5.6627 Prediction 6.2168 Prediction 6.0480

74 5.6020 Training 5.6556 Training 5.4393 Training 5.6306 Prediction 5.6522

75 6.3980 Training 6.0451 Prediction 5.6965 Training 6.2229 Training 6.0713

76 4.9430 Training 4.8893 Prediction 4.8292 Training 4.8592 Training 4.8908

77 5.0660 Training 5.2310 Training 5.0376 Prediction 5.2929 Training 5.2048

78 5.0660 Training 4.9741 Prediction 4.8859 Training 4.9271 Training 4.9982

79 5.1190 Training 5.0173 Prediction 4.8858 Training 5.1317 Training 4.9584

80 5.0920 Training 5.1228 Training 4.9395 Prediction 5.2270 Training 5.1068

81 5.0860 Training 5.5045 Training 5.2698 Training 5.4702 Prediction 5.5902

82 5.0810 Training 5.1924 Training 4.9968 Prediction 5.3423 Prediction 5.1544

83 5.1430 Training 5.3475 Training 5.1368 Training 5.3156 Prediction 5.4093

84 5.6020 Training 5.4963 Prediction 5.2000 Training 5.5783 Training 5.5088

85 5.5230 Training 5.3221 Prediction 5.1095 Training 5.2794 Training 5.3884

86 6.0460 Training 5.6648 Prediction 5.3883 Training 5.7883 Prediction 5.6897

87 5.0600 Training 5.1604 Training 4.9940 Prediction 5.2306 Training 5.0745

88 5.5380 Training 5.4862 Prediction 5.2545 Training 5.6187 Training 5.4473

89 5.2760 Training 5.0955 Prediction 4.9946 Prediction 5.0613 Training 5.0430

90 5.4950 Training 5.5162 Training 5.2800 Prediction 5.6582 Training 5.4595

91 5.1940 Training 5.3851 Training 5.1992 Prediction 5.3311 Prediction 5.4108

92 5.5380 Training 5.1659 Prediction 5.0812 Prediction 4.9477 Training 5.2390

93 6.0000 Training 5.5070 Prediction 5.2861 Training 5.6562 Prediction 5.5464

94 5.6580 Training 5.4254 Prediction 5.2085 Prediction 5.3977 Training 5.5069

95 5.9210 Training 5.7454 Prediction 5.4344 Training 5.8117 Training 5.8043

96 5.0270 Training 5.4707 Training 5.2993 Training 5.3705 Training 5.5809
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RMSEcv, CCCtr, CCCcv, MAEtr, MAEcv, and rm
2 av indicate

good predictive ability and robust statistical performance

of the residual-based model than the other models. The

high value of rm
2 (=0.744) for residual model, though lower

than sphere exclusion model (=0.804), indicates good

external predictivity. A very high F (=328.459) value for

residual-based model than the other models (=112.835 for

random splitting and 111.362 for sphere exclusion model)

indicates very high statistical significance of regression

model. Similar to dataset-1, a large difference between

RMSEtr (=0.143) and RMSEex (=0.405) as well as between

MAEtr (=0.109) and MAEex (=0.353) suggests low

Table 6 continued

ID pEC50

(M)

Status Pred. pEC50

(Original model)

Status Pred. pEC50

RBM

Status Pred. pEC50

RSM

Status Pred. pEC50

SEM

97 5.5530 Training 5.6583 Training 5.3984 Training 5.8009 Prediction 5.6963

98 5.1190 Training 5.6214 Training 5.3299 Prediction 5.7446 Prediction 5.6112

99 5.2290 Training 5.2426 Training 5.0457 Training 5.3492 Prediction 5.2081

100 5.2520 Training 5.4367 Training 5.1699 Training 5.3379 Training 5.4874

Table 7 Comparison of statistical parameters for original model for

dataset-1, 2 and 3

Statistical Parameter DataSet-1 DataSet-2 DataSet-3

Rtr
2 0.709 0.841 0.410

Radj.
2 0.670 0.837 0.378

Rcv
2 0.597 0.827 0.344

RLMO
2 0.723 0.843 0.419

RYrand
2 0.120 0.242 0.050

QYrand
2 -0.185 -0.488 -0.076

s 0.250 0.242 0.300

Kxx 0.425 0.245 0.208

DK 0.025 0.209 0.027

RMSEtr 0.233 0.238 0.291

RMSEcv 0.274 0.248 0.307

CCCtr 0.830 0.914 0.581

CCCcv 0.763 0.906 0.537

MAEtr 0.193 0.172 0.226

MAEcv 0.226 0.179 0.239

F 18.50 190.388 13.047

r2 0.601 0.827 0.347

ro
2 0.429 0.793 -0.574

1-(r2/ro
2) 0.285 0.040 2.653

r’o
2 0.597 0.827 0.344

1-(r2/r’o
2) 0.007 0.000 0.009

k 0.996 0.999 0.997

k’ 1.001 1.000 0.999

Table 8 Comparison of statistical parameters for original, residual-

based rational, random splitting, and sphere exclusion models for

dataset-1

Statistical

Parameter

Original

model

Residual-

based model

Random

splitting

Model

Sphere

exclusion

model

Rtr
2 0.709 0.855 0.801 0.674

Radj.
2 0.670 0.813 0.743 0.578

Rcv
2 0.597 0.732 0.640 0.365

RLMO
2 0.723 0.871 0.815 0.709

s 0.250 0.137 0.241 0.320

Rex
2 – 0.845 0.418 0.722

RYrand
2 0.120 0.223 0.238 0.231

QYrand
2 -0.185 -0.443 -0.421 -0.433

Kxx 0.425 0.457 0.452 0.446

DK 0.025 0.036 0.015 0.017

RMSEtr 0.233 0.118 0.207 0.275

RMSEcv 0.274 0.159 0.279 0.384

RMSEex – 0.441 0.344 0.200

CCCtr 0.830 0.922 0.890 0.805

CCCcv 0.763 0.859 0.795 0.621

CCCex – 0.606 0.611 0.845

MAEtr 0.193 0.089 0.161 0.238

MAEcv 0.226 0.122 0.220 0.325

MAEex – 0.394 0.260 0.169

Q2-F1 – 0.443 0.266 0.706

Q2-F2 – 0.097 0.266 0.705

Q2-F3 – -1.039 0.451 0.828

r2m – 0.762 0.290 0.655

r2m av – 0.678 0.270 0.612

r2m de – 0.168 0.040 0.085

F 18.50 20.120 13.714 7.023

r2 0.601 0.845 0.418 0.722

ro
2 0.429 0.757 0.256 0.677

1-(r2/ro
2) 0.285 0.105 0.386 0.062

r’o
2 0.597 0.836 0.324 0.713

1-(r2/r’o
2) 0.007 0.011 0.223 0.012

k 0.996 0.916 0.974 1.005

k’ 1.001 1.089 1.021 0.993
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generalizability of the residual-based model. In addition,

the lower value of CCCex, Q2-F1, Q2-F2, and Q2-F3 for

residual-based model than random splitting model, and

sphere exclusion model points out low true external pre-

dictivity of this model.

A conceivable reason for the lower values of Q2-F1,

Q2-F2, and Q2-F3 could be the presence of prediction set

objects near the boundary of the training set (Chirico and

Gramatica, 2011, 2012; Consonni et al., 2009, 2010;

Schuurmann et al., 2008). Again, these statistical

parameters are sensitive to mean of training and prediction

sets, a simple analysis of Table 11 reveals that the mean of

the test and the training sets of residual-based model have

higher difference than the rest (Chirico and Gramatica

2011, 2012; Consonni et al., 2009, 2010; Schuurmann

et al., 2008). This observation once again confirms that the

distribution of the test and the training set has important

impact on performance of many statistical parameters.

Thus, the residual-based model is scoring high for many

parameters suggesting statistical robustness of this model,

Table 9 Comparison of statistical parameters for original, residual-

based rational, random splitting, and sphere exclusion models for

dataset-2

Statistical

Parameter

Original

model

Residual-

based model

Random

splitting

Model

Sphere

exclusion

model

Rtr
2 0.841 0.945 0.856 0.854

Radj.
2 0.837 0.942 0.848 0.847

Rcv
2 0.827 0.934 0.836 0.834

RLMO
2 0.843 0.947 0.859 0.855

s 0.242 0.148 0.212 0.227

R ex
2 – 0.877 0.842 0.816

RYrand
2 0.242 0.052 0.053 0.051

QYrand
2 -0.488 -0.087 -0.086 -0.089

Kxx 0.245 0.246 0.293 0.220

DK 0.209 0.231 0.201 0.219

RMSEtr 0.238 0.143 0.205 0.220

RMSEcv 0.248 0.157 0.219 0.234

RMSEex – 0.405 0.287 0.266

CCCtr 0.914 0.972 0.922 0.921

CCCcv 0.906 0.967 0.912 0.911

CCCex – 0.777 0.876 0.893

MAEtr 0.172 0.109 0.149 0.166

MAEcv 0.179 0.119 0.160 0.177

MAEex – 0.353 0.197 0.187

Q2-F1 – 0.553 0.809 0.822

Q2-F2 – 0.442 0.809 0.810

Q2-F3 – 0.561 0.717 0.788

r2m – 0.744 0.689 0.804

r2m av – 0.803 0.581 0.720

r2m de – 0.118 0.217 0.168

F 190.388 328.459 112.835 111.362

r2 0.827 0.877 0.842 0.816

ro
2 0.793 0.877 0.649 0.768

1-(r2/ro
2) 0.040 0.000 0.229 0.060

r’o
2 0.827 0.854 0.809 0.816

1-(r2/r’o
2) 0.000 0.026 0.039 0.000

k 0.999 0.953 1.000 0.992

k’ 1.000 1.048 0.998 1.007

Table 10 Comparison of statistical parameters for original, residual-

based rational, random splitting, and sphere exclusion models for

dataset-3

Statistical

parameter

Original

model

Residual-

based model

Random

splitting

Model

Sphere

exclusion

model

Rtr
2 0.410 0.621 0.527 0.478

Radj.
2 0.378 0.583 0.478 0.426

Rcv
2 0.344 0.516 0.430 0.365

RLMO
2 0.419 0.634 0.537 0.495

s 0.300 0.134 0.279 0.305

R ex
2 – 0.662 0.237 0.280

RYrand
2 0.050 0.093 0.090 0.092

QYrand
2 -0.076 -0.144 -0.153 -0.142

Kxx 0.208 0.176 0.232 0.203

DK 0.027 0.084 0.028 0.079

RMSEtr 0.291 0.127 0.263 0.288

RMSEcv 0.307 0.143 0.289 0.318

RMSEex – 0.524 0.353 0.306

CCCtr 0.581 0.766 0.690 0.647

CCCcv 0.537 0.704 0.625 0.575

CCCex – 0.339 0.480 0.488

MAEtr 0.226 0.099 0.203 0.212

MAEcv 0.239 0.112 0.225 0.236

MAEex – 0.458 0.280 0.257

Q2-F1 – 0.239 0.112 0.246

Q2-F2 – -0.728 0.105 0.238

Q2-F3 – -5.512 0.145 0.414

r2m – 0.516 0.151 0.238

r2m av – 0.302 0.113 0.127

r2m de – 0.430 0.077 0.220

F 13.047 16.382 10.909 9.158

r2 0.347 0.662 0.237 0.280

ro
2 -0.574 -0.093 -0.235 -0.602

1-(r2/ro
2) 2.653 1.141 1.991 3.150

r’o
2 0.344 0.614 0.106 0.257

1-(r2/r’o
2) 0.009 0.073 0.554 0.082

k 0.997 0.916 0.995 1.006

k’ 0.999 1.089 1.001 0.257
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but some parameters raise doubts on its external

predictivity.

Results for the dataset-3

Various statistical parameters viz. R tr
2 , Radj.

2 , Rcv
2 , RLMO

2 ,

RYrand
2 , s, R ex

2 , Kxx, DK, RMSEtr, RMSEcv, CCCtr, CCCcv,

MAEtr, MAEcv, rm
2 av, and F (see Table 10) indicate low

predictive ability and poor statistical performance of all the

models. But, a closer inspection of various models indi-

cates that the performance of residual-based model is better

than the other models. Some of the statistical parameters

like R tr
2 , RLMO

2 , s, R ex
2 , RMSEtr, RMSEcv, MAEtr, and

MAEcv are with acceptable values. However, the model

possesses low internal and external predictivity. As stated

earlier, it is not a useful model at all for the prediction and

pattern recognition. The Q2-F2 and Q2-F3 are negative

which indicates that the model is useless for external

predictivity.

Comparison of performance of splitting methodologies

and statistical behavior of statistical parameters

In the present analysis, information leakage was purposely

performed for RBM. The descriptors were selected using

the whole dataset, therefore, due to the information leak-

age, the selected descriptors must have captured the com-

mon structural features that influence the activity, and

consequently, after splitting in any pattern/composition, the

performance of RBM model for the all the datasets must be

superior than SEM and RSM with respect to internal and

external cross-validation parameters, i.e., must show high

level of external predictivity with high validation score.

Surprisingly, for RBM model, various validation parame-

ters do not show expected behavior and values for all the

datasets.

The random splitting models, for all the datasets, have

varying performance; this could be due to the fact that

during splitting the training or prediction set may not be

covering the diversity of the whole dataset or the com-

pounds are not close to each other. Repeating the random

splitting several times is a good solution to arrive at best

random splitting (Huang and Fan, 2011; Kiralj and Ferre-

ira, 2009). Yet, as pointed out in a recent study, a QSAR

model with high external predictivity for one prediction set

does not necessarily indicate high accuracy for another

external set (Huang and Fan, 2011). Therefore, precautions

must be taken in using single random splitting.

Since, the performance of the RBM, RSM, and SEM

models is varying, but by luck or due to rational splitting,

the researcher may arrive at the training and prediction sets

that indicate high external predictive ability, such situation,

though, leads to a statistically robust but a misguiding

QSAR model as observed in RBM. An easy and handy

solution to this problem is to develop a model using

undivided dataset and compare its performance with the

other models. Herein, in all the datasets, the performance

of original model, though not better than residual based and

sphere exclusion models, is still statistically satisfactory. It

is expected that a model developed with no prediction set

will be most accurate and possess the highest coverage for

external evaluation set. But, a recent study reports exactly

opposite results in certain situations (Martin et al., 2012).

Therefore, we recommend and accentuate reporting of a

statistically robust QSAR model that is developed using

undivided whole dataset and same set of descriptors, which

were selected and used in splitting-based model. Then,

such a model tells the true effect of inclusion of compounds

in the dataset. That is, it is useful in understanding the

effect of increase/decrease in size of dataset as well as for

capturing less privileged yet useful structural features that

govern the activity.

A higher value of Rtr
2 for residual-based model in all

the datasets than the rest of the models indicates a better

fitting or explanation of variance (see Tables 8–10).

Similar trend for Rex
2 for residual-based model for dif-

ferent datasets confers as if the residual based splitting is

better method of splitting. Therefore, a QSAR modeler

may consider the residual-based model superior than

others. This apparent superiority can be attributed to the

purposeful selection of the training and the prediction

sets, that is, the method of splitting has significant impact

on many statistical parameters. Moreover, a careful

comparison of residual values for all the models (see

Fig. 3) reveals that the difference between the experi-

mental and predicted in many instances is large in case of

residual-based model than the others. But, during the

calculation of various statistical parameters either sum or

average is used. Therefore, the statistical parameters are

unable to recognize this serious pitfall. In fact, a QSAR

model based on splitting method with an unusually robust

training set Rtr
2 of 0.8 or greater than Rtr

2 of undivided set

Table 11 Mean of experimental pIC50 for prediction and training

sets of various models for datasets 1–3

DataSet Set Original Residual-

based

model

Random

splitting

Model

Sphere

exclusion

model

1 Prediction – 4.8308 4.6389 4.6509

Training 4.6397 4.4652 4.6404 4.6295

2 Prediction – 7.5342 7.3803 7.3017

Training 7.3867 7.2633 7.3921 7.4577

3 Prediction – 5.6296 5.3598 5.3570

Training 5.3778 5.1799 5.3925 5.3941
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For Data set-1
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Fig. 3 Difference between

experimental and predicted

pIC50 by various models for

dataset-1, 2, and 3 (X-axis:

Compound number and Y-axis:

pIC50/pEC50; X-axis: Serial

number of compound, Y-axis:

pIC50 value)
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should be viewed with suspicion. Some parameters like

CCCex, Q2-F1, Q2-F2, Q2-F3, and rm
2 are more suc-

cessful in identifying this crucial aspect. This can be

ascribed to the method of calculation of these parameters

(Chirico and Gramatica, 2011, 2012); (Consonni et al.,

2009, 2010; Schuurmann et al., 2008).

Q2 � F1 ¼ 1�

Pnext

i¼1

ðbyi� yiÞ2

Pnext

i¼1

ðyi� �ytrÞ
2

Q2 � F3 ¼ 1�

Pnext

i¼1

ðbyi� yiÞ2=next

Pntr

i¼1

ðyi� �ytrÞ
2=ntr

Q2 � F2 ¼ 1�

Pnext

i¼1

ðbyi� yiÞ2

Pnext

i¼1

ðyi� �yextÞ
2

r2
m ¼ r2ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r2

o

q
Þ

:

Thus, rm
2 considers agreement between the actual and the

predicted values as an essential factor to establish the true

predictivity (Mitra et al., 2010; Roy and Mitra, 2012).

Thence, the statistical parameters viz. CCCex, Q2-F1, Q2-

F2, Q2-F3, and rm
2 reflect the factual performance of model

regarding true external predictivity of a QSAR model.

Therefore, these parameters should be used as criteria for

selection of a consensus model, as in QSARINS v1.2. In

QSARINS v1.2, MAEtr, MAEex, RMSEtr, RMSEex, CCCtr,

CCCex, Q2-F1, Q2-F2, Q2-F3, and some other

parameters are used to find a consensus model.

In agreement with the previous reports, the trend of

lower CCC with higher RMSE value is true for all the

datasets (Chirico and Gramatica, 2011, 2012). However,

the claim that the smaller the dataset size, the better the

performances of rm
2 -EyPx and CCC compared to the

other external validation measures was not observed for

any of the dataset (Chirico and Gramatica, 2011, 2012).

The similar values of Q2-F1and Q2-F2 for random

splitting model for dataset 1 and 2 can be attributed to

the fact that these parameters depend on agreement

between the mean of the training and the prediction set

values (Consonni et al., 2009, 2010). For dataset 1 and

2, the mean of test and training sets values is very close

to each other (see Table 11). A good difference between

the mean of the undivided set and the training set values

of the residual-based model for all the datasets indicates

that the prediction set was not selected properly. Such a

noticeable difference is absent in case of other models.

This again indicates that residual-based method of

splitting cannot be functionalised for splitting the data-

set for external validation.

Since the whole dataset is involved in descriptor selec-

tion and model development, another point view toward the

present approach is to consider it as a methodology to

develop a model with good external predictivity using

advantages of internal validation method. A model with

good internal predictivity may or may not be good at

external predictivity (Chirico and Gramatica, 2011, 2012;

Consonni et al., 2009, 2010; Gramatica 2013, Schuurmann

et al., 2008). In the present analysis, sphere exclusion

model with higher values of Q2-F3, CCCex, and lower

values of RMSEex, MAEex indicate good external predic-

tivity of model.

Consonni et al. argued that increasing the mean of

training set values increases Q2 artificially (Consonni et al.,

2009). From Table 11, it is observed that the mean of the

training set values for the random (for dataset- 1 and 2) and

the sphere exclusion models (for dataset-1) is very close to

mean of undivided set values; therefore, the value of Q2 for

these models should be close to Q2 of the original model.

However, for random splitting model, Q2 = 0.640 for

dataset-1, and Q2 = 0.836 for dataset-2 are higher than that

of the original model (Q2 = 0.597). In addition, lower

Q2 = 0.365 for sphere exclusion model for dataset-1 than

Q2 = 0.597 for original model conflicts the finding of

Consonni et al. The mean of the training set for residual

model (=4.4652) is lower than mean of training set of

undivided set (=4.6397). Therefore, for the sphere exclu-

sion model, Q2 should be lower than the Q2 for original

model, but the results are exactly opposite. Therefore,

further studies are required to understand the effect of

mean of training set on Q2.

Conclusions

In conclusion, external validation based on single splitting is

neither perfect nor absolutely accurate method of QSAR

model validation as the statistical parameters can be influ-

enced easily due to the biased and purposeful selection of the

training and prediction sets. Moreover, the predictive ability

of a QSAR model is sensitive toward the method of splitting

and its manipulation is feasible. Thus, it is still insufficient to

guarantee the true predictability of a QSAR model. The true

external predictivity of any QSAR model cannot be decided

on the basis of one or two parameters, that is, as many as

possible statistical parameters should be calculated to judge

the external predictivity. A good number of statistical

parameters need to be calculated and presented to identify

the true external predictivity of any QSAR model. We
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suggest and emphasize reporting of at least one statistically

robust QSAR model that is developed using undivided whole

dataset with appropriate cross validation.

In the present study, we presented a novel method for

splitting the dataset for external validation. The residual

method, though, generates statistically robust model but

with low external predictivity. Further studies are in pro-

gress for the improvement of this method.
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