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long wave side it appears that there may be some additional bands. The
magnitude of this spacing indicates that we have to do with one of the
transverse or ‘‘deformation’ oscillations of the molecule, and the com-
plexity of the bands is evidently due to the existence of several vibrational
levels having nearly the same energy. In the case of the ideal linear mole-
cule with Hooke’s law binding the energy levels corresponding to the trans-
verse vibrations are degenerate, but in the actual molecule this degeneracy
is of course at least partly removed and there will be several transitions
which will give rise to bands in nearly the same position in the spectrum.
A somewhat similar complexity of structure has been observed in the ultra-
violet bands of cyanogen.?

1 Hurd and Pilgrim, J. Am. Chem. Soc., 55, 757 (1933).
2 L. O. Brockway and L. Pauling, Proc. Nat. Acad. Sci., 19, 860 (1933).
3 Sho-Chow Woo and Richard M. Badger, Phys. Rev., 39 (1932).
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1. Introduction.—In the application of relativistic mechanics and
relativistic thermodynamics to cosmology, it has been usual to consider
homogeneous models of the universe, filled with an idealized fluid, which
at any given time has the same properties throughout the whole of its
spatial extent. This procedure has a certain heuristic justification on
account of the greater mathematical simplicity of homogeneous as com-
pared with non-homogeneous models, and has a measure of observational
justification on account of the approximate uniformity in the large scale
distribution of extra-galactic nebulae, which is found out to the some 108
light-years which the Mount Wilson 100-inch telescope has been able to
penetrate. Nevertheless, it is evident that some preponderating ten-
dency for inhomogeneities to disappear with time would have to be demon-
strated, before such models could be used with confidence to obtain ex-
trapolated conclusions as to the behavior of the universe in very distant
regions or over exceedingly long periods of time.

It is the object of the present note to contribute to our knowledge of
the effects of inhomogeneity on the theoretical behavior of cosmological
models. For the immediate purposes of this investigation we shall con-
fine our attention to very simple models composed of dust particles (nebulae)
which exert negligible pressure and which are distributed non-uniformly
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but nevertheless with spherical symmetry around some particular origin.
This will permit us to employ expressions for the line element and its
consequences which are equivalent to those recently developed by
Lemattre! for investigating the formation of nebulae. The result of the
investigation will be to emphasize the possible dangers of drawing con-
clusions as to the actual universe from long range extrapolations made on
the basis of a homogeneous model.

2. The Energy-Momentum Tensor—For the purposes of the investi-
gation it will be simplest to use a set of co-moving coérdinates such that
the spatial components are determined by a network of meshes drawn
so as to connect neighboring particles and allowed to move therewith.
Making use of the postulated spherical symmet:ty and the absence of
pressure and hence also of pressure gradients, it can then readily be shown
that the line element for the model can be reduced to the form

ds® = —¢" dr? — ¢°(d6® + sin%d¢?) + di? 0))

where \ and w are functions of r and #. We may hence consider the
energy-momentum tensor corresponding to our model and to this line
element.

On the one hand, since the material filling the model is by hypothesis
dust, exerting no pressure, we can use

T =p— — @)

as an expression for this tensor, where p is the density of the dust as mea-
sured by a local observer moving therewith, and the quantities (dx*/ds)
and (dx®/ds) are components of the velocity of the dust with respect to
the codrdinates in use. And in co-moving codrdinates with the line
element (1), this reduces to give a single surviving component

Ti=» Tg = 0 (axor B+ 4). ©))

On the ‘other hand, the components of the energy-momentum tensor
corresponding to the line element (1) can be computed from the formulae
given for this general form by Dingle,? and by combining the results thus
provided with the information given by (3), we easily obtain as a set of
equations, connecting the metrical variables N and w with the density p,

STl = e — -*“’ +w+'w —A=0 @)
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sreTh = —&eTt = 22 - X 4 o — o, )

where the accents denote differentiation with respect to 7 and the dots
with respect to ¢, and A is the cosmological constant.

3. Solution of the Equations.—To treat these equations it is convenient
to begin by eliminating A. As a first integral of (7) we can evidently write

ew'?/4
fr)
where f%(r) is an undetermined function of r having values which are
necessarily positive.

Substituting (8) into (1), we may then rewrite the line element in: the
form (3) ‘

®

e’w'?/4

ds? = — dr? — e“(d9® + sin0d¢?) + di2. 9
oy 0= € a4 ®
Substituting (8) into (4), we obtain
¢ (&}+Z¢52—A) + {1 — (N} = 0. (10)
As the first integral of this equation we may evidently write
2
en (4 =30 ) + 21 = PO} = FO, (1)

where F(r) is a second undetermined function of 7. And as the integral
of this equation we can write

de‘"/a
= F ,
/ Jf’(r) — 14 % F(r)er +% & "+ ) (12)

where F(7) is a third undetermined function.

Substituting (8) into (5), it is readily found that the result is equivalent
to (10), so that further consideration of (5) is not necessary.

Finally, substituting (8) into (6), we obtain for the density of the dust

Smp =e"‘{1 — P —‘V(ﬁ)’)ﬂ} + §d2+%‘;‘:j—A. 13)
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This result can be expressed in a variety of forms. Eliminating f(r) with
the help of (10), we obtain

= . o’ § oy2 we!
8rmp = —3w 20—,—, QW 2-‘7 + 2A. (14)

On the other hand, combining with (11), we obtain
1e72/2 JF(r)

8o = ' or (15)

Differentiating (15) we then obtain

Ologp 3. o’
STt Tl )
2?1 3. o (o'}

- —3i- 5+ () a

or by combining with (14) .and (16)

dlogp _ (b log p) 2 (é’)z

o —At s\ t3\o) (18)

4. Applications—We are now ready to consider the application of
these results to the behavior of cosmological models. From a mathe-
matical point of view, it is evident from equations (10), (11) and (12) that
we can choose the three undetermined functions F(r), F(r) and F(r).in
such a way as to correspond to any initial values of w, w and w as functions
of r at ¢ = 0 that we wish to consider, and then at least in principle could
compute the later behavior of w as a function of 7 and ¢ with the help of
(12). From a more physical point of view, this means that we can start
our model off at ¢ = 0, with [e“w'2/4f%(r)] so chosen as to give us in ac-
cordance with the form of the line element (9) any desired initial relation
between the radial codrdinate » and distances as actually measured from
the origin, with w so chosen as to give us in accordance with the co-moving
character of the coérdinates any desired initial distribution for the mea-
sured radial velocity of the dust in the model as a function of 7, with » then
further so chosen as to give us in accordance with (14) any desired initial
distribution for the density of dust as a function of 7, and with the help
of our equations could then follow the later behavior of the dust composing
the model. This possibility of procedure may now be applied to some
specific cases.

a. Static Einstein Model.—At ¢t = 0, let us choose the distributions

e =12 w=0 w = 0. (19)
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In accordance with (9), (10), (11) and (12) this leads to Einstein’s original
static cosmological line element

d 2
ds? = — 1——"Ar2 — r2d6* — r?sin? 6de? + di?, (20)

and in accordance with (14) we should have the well-known uniform density
.in the Einstein model

dop = A (21)

which would remain static in agreement with (16) and (17).
b. Distorted Einstein Model.—At ¢t = 0, let us choose the distributions

e =1 w=0 & = wol?), (22)

where o is initially any desired function of r.
In accordance with (14), (16) and (18) we shall then have at¢ = 0

PO PR P @)
Ologp '
% 0 (24)
o?log p
o 4mp — A. (25)

Hence in this distorted Einstein model, we no longer have the uniform
density of dust given by (21), and although the density of dust is initially
not changing with time, the density will start to increase at those values
of r where it is greater than the simple Einstein value 4mp = A, and to
decrease where it is less. This demonstrates a further kind of instability
for the Einstein model—in addition to that already discussed by Eddington
and others—since the initial behavior is such as to emphasize the existing
differences from the uniform Einstein distribution.* Furthermore, in
regions where the density starts to increase it is evident from the full form
of equation (18) that reversal in the process of condensation would not
occur short of arrival at a singular state involving infinite density or of
the breakdown in our simplified equations. It will also be noted from
(25) for the case of naturally flat space, A = 0, that any spherically sym-
metrical stationary distribution of dust would start to condense, in agree-
ment with intuitions developed at the Newtonian level of gravitational
theory.

¢. Non-Static Friedmann Model.—At ¢ = 0 let us choose the distribu-
tions

e’ = efor? w="g w = g, (26)
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where go, go and go are the instantaneous values corresponding to a certain
function g(¢). In accordance with (9), (10), (11) and (12) this will lead
to the known Friedmann line element for a uniform distribution of expand-
ing or contracting dust

ds? = —¢® ( dr, TR + e + o sin? od«»’) +de, (@)

where R, is a constant the value of which can be obtained with the help
of (10), and g(¢) has the known form of dependence on ¢ for a homogeneous
model containing nothing but dust exerting negligible pressure.

In accordance with (14), (16) and (18) the initial distribution and
behavior of the dust in the model would be given by

3. 3.
4mp = A — 2 g — 7 & (28)
Ologp 3.
0?2 log p_ _ 1 (dlog p)2
—on _tm A+3< YR (30)
d. Distorted Friedmann Model.—At ¢ = 0 let us choose the distributions
& = ébor? = g @ = w(r), (31)

where g, and g, are the same quantities as before but w is initially any
desired function of 7.
In accordance with (14), (16) and (18) we shall then have at¢ = 0

3. 1. 3.
4rp = A — g0 — 5w 'y _Zg° 32)
o1
og P~ 2go (33)
o log p_ (b log p)
o2 —A+3 ot ) . 3%

Comparing this initial state with that for the Friedmann case, we see,
although the rate of expansion or contraction in all parts of the model
has been chosen the same as before, that the density of dust and the second
derivative for its change with time are no longer uniform in different parts
of the model. Indeed, by comparing (30) and (34) we can write for the
two models at ¢ = 0

O%log pp  0%log pr
o2 o

= 4T(PD - pF)» (35)
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where the subscripts distinguish between the Friedmann and this dis-
torted Friedmann model. Hence at those values of 7 where the density
in the distorted model is different from that in the Friedmann model
there is at least an initial tendency for the differences to be emphasized,
and from the full form of (18) it is evident in cases where condensation is
taking place that the discrepancies will continue to increase until we reach
a singular state involving infinite density or reach a breakdown in the
simplified equations. This demonstrates a type of instability also for the
Friedmann model.

e. Combination of Uniform Distributions.—As a final application of
the equations, we may consider an initial distribution at ¢ = 0 which
corresponds in a given zone, say from 0 to 7,, to the instantaneous conditions
in a particular Friedmann model in accordance with the equations

& = elirﬁ w = g.l (:) = 2]- (36)

This can then be surrounded by a transition zone from 7, to 7, where the
values change to a new set which correspond for a further range from 7, to
7, to a different Friedmann model in accordance with the equations

e = eb'r? W= g 0= g, 37

and this can be followed by such additional transition zones and Fried-
mann zones as may be desired.

In accordance with (9), (10), (11) and (12), the dust in each Friedmann
zone will then behave as in some particular completely homogeneous
model without reference to the behavior of other parts of the model.®

5. Conclusion.—The foregoing results demonstrate the lack of existence
of any general kind of gravitational action which would necessarily lead
to the disappearance of inhomogeneities in cosmological models. This is
shown both by the discovery of cases where disturbances away from an
originally uniform static or non-static distribution of density would tend
to increase with time, and by the possibility for models with non-interacting
zones in which the behavior would agree with that for quite different
homogeneous distributions.

In applying these findings to the phenomena of the actual universe,
the highly simplified character of the models must of course be recognized.
In the first place, although the models permit lack of homogeneity, for
purposes of mathematical simplification they still retain spherical sym-
metry around a particular origin. Hence the phenomena of the actual
universe will be affected by a more drastic kind of inhomogeneities than
those here considered. In the second place, the fluid in the models was
taken as dust exerting negligible pressure. Hence no allowance is made
for effects such as thermal flow from one portion of matter to another
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which in the actual universe might provide a non-gravitational kind of
action which would tend to iron out inhomogeneities.

In view of the lack of complete correspondence between our models and
reality we must not be too dogmatic in making assertions as to the actual
universe. Nevertheless, it is at least evident from the results obtained,
that we must proceed with caution in applying to the actual universe
any wide extrapolations—either spatial or temporal—of results deduced
from strictly homogeneous models. In agreement with the possibility
for zones where the behavior would correspond to any desired homogene-
ous model, it is of course proper to treat the phenomena, in our own neigh-
borhood out say to 10® light-years and over a limited range of time say 10°
years, as approximately represented by the line element for an appropriate
homogeneous model. To assert, however, that this same line element
would apply to the universe as a whole, or that a homogeneous model
would remain a suitable approximation at times of great condensa-
tion would not be necessarily sound. Hence, it would appear wise at the
present stage of theoretical development, to envisage the possibility that
regions of the universe beyond the range of our present telescopes might
be contracting rather than expanding and contain matter with a density
and stage of evolutionary development quite different from those with
which we are familiar. It would also appear wise not to draw too definite
conclusions from the behavior of homogeneous models as to a supposed
initial state of the whole universe.

1 Lemaitre, Ann. de la Soc. Scient. de Bruxelles, A53, 51 (1933).

2 These PROCEEDINGS, 19, 559 (1933).

3 Allowing for the difference in nomenclature, equations (9), (10), (11) and (15) are,
respectively, eqmvalent to the equations of Lemaitre, loc. cit., (8.1), (8.4), (8.2) and
(83).

4 Professor Dingle has been good enough to send me proof of a forthcoming article,
received as this note was being completed, in which the question of the stability of
homogeneous models is treated in a different manner from that here employed.

§ This agrees with the procedure of Lemaitre, loc. cit., in treating a condensing nebula
surrounded by an expanding universe as analogous to two different Friedmann zones.
In the present considerations we are contemplating different zones all of which are
large enough to contain many nebulae.



