# University of Windsor Scholarship at UWindsor

**Electronic Theses and Dissertations** 

Theses, Dissertations, and Major Papers

1-1-1971

# Effect of inlet swirl on annular diffuser performance.

Uwe H. Schneider University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

#### **Recommended Citation**

Schneider, Uwe H., "Effect of inlet swirl on annular diffuser performance." (1971). *Electronic Theses and Dissertations*. 6639.

https://scholar.uwindsor.ca/etd/6639

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

### **INFORMATION TO USERS**

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.

ProQuest Information and Learning 300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA 800-521-0600



# NOTE TO USERS

This reproduction is the best copy available.

# UMI®

#### EFFECT OF INLET SWIRL ON ANNULAR

#### DIFFUSER PERFORMANCE

#### A THESIS

Submitted to the Faculty of Graduate Studies through the Department of Mechanical Engineering in partial fulfilment of the requirements for the Degree of Master of Applied Science at the University of Windsor

by

Uwe H. Schneider

B.A.Sc., University of Windsor

Windsor, Ontario

1971

#### UMI Number: EC53104

#### INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

# UMI®

UMI Microform EC53104 Copyright 2008 by ProQuest LLC All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

> ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106-1346

ABX1909

967325

Approved by & Silkin Iti-lade-

#### ABSTRACT

Four Equiangular Annular Diffusers were investigated with an inlet flow having swirl. The total expansion angles of the inner and outer cones of the diffusers were 40° and the area ratios were 1.25, 1.50, 2.00, 3.00 respectively. The performance of each of these diffusers was studied at various amounts of inlet swirl. The mean swirl angle at the inlet was varied from approximately zero (axial flow) to a value of about 25°. The performance of the diffuser was studied at five different inlet swirl angles with the aim of finding the effect of inlet swirl on the performance. It was found that the Equiangular Annular Diffuser performance was good at axial flow, decreased at low exirl and increased at higher swirl.

The performance of the present diffuser geometry was compared to a set of annular diffusers whose inner cone converged and outer cone diverged. The Equiangular Divergent Annular Diffuser performed better than the Equiangular Divergent-Convergent Annular Diffuser.

**ii**1

#### ACKNOWLEDGEMENTS

The author is grateful to Rev. A. R. Howell and Prof. W. G. Colborne of the Department of Mechanical Engineering for providing the opportunity and for their support for this project.

The author also wishes to express his gratitude to Dr. K. Sridhar for his supervision, generous aid and encouragement throughout this work.

Thanks are also due to Dr. H. J. Tucker for his most helpful advice, to Mr. O. Brudy, Mr. R. Myers and Mr. Paul Corbett for their technical assistance in building the test facility, and to United Aircraft Ltd., for their assistance in the design of the swirl vane generator. The author is also indebted to Miss Mary Lauder and Mr. P.O. Schneider for their general but important assistance and to Miss Laura Lauder for typing the thesis.

The author would also like to express a very personnal thanks to Mr. Oskar O.H. Schneider for his firm encouragement throughout the project.

The research for this thesis was supported by the Defence Research Board of Canada, Grant Number: 9550-44.

iv

|            |                                       | Page |
|------------|---------------------------------------|------|
| ABSTRACT   |                                       | iii  |
| ACKNOWLEDG | EMENTS                                | iv   |
| TABLE OF C | ONTENTS                               | v    |
| NOTATION   |                                       | viii |
| LIST OF TA | BLES                                  | x    |
| LIST OF FI | GURES                                 | xi   |
| CHAPTER 1  |                                       |      |
| INTROD     | DUCTION                               | 1    |
| CHAPTER 2  |                                       |      |
| LITERA     | TURE SURVEY                           | 3    |
| 2.1.0.     | General Remarks on Diffusers          | 3    |
| 2.2.0      | Diffuser Performance                  | 4    |
| 2.3.0      | Previous Investigations of Diffusers  | 5    |
| 2.3.1      | Conical and Plane Walled Diffusers    | 5    |
| 2.3.2      | Annular Diffusers                     | 6    |
| 2.4.0      | Specification of Inlet Swirl          | 7    |
| 2.4.1      | Previous Investigations of Diffusers- |      |
|            | With Inlet Swirl                      | 8    |
| 2.5.0      | Aims of Present Investigation         | 9    |
| CHAPTER 3  | · · · · · · · · · · · · · · · · · · · |      |
| TEST F     | ACILITIES AND EXPERIMENTAL PROCEDURE  | 10   |
| 3.1.0      | Test Facilities                       | 10   |
| 3.1.1      | Air Supply and Flow-Calibration Pipe  | 10   |
| 3.1.2      | Expansion Cone and Plenum Chamber     | 10   |
| 3.1.3      | Smirl Vane Unit                       | 11   |

| 3.1.4     | Annular Pipes                            | 12 |
|-----------|------------------------------------------|----|
| 3.1.5     | The Test Section: The Diffuser           | 13 |
| 3.2.0     | Experimental Procedure                   | 13 |
| 3.3.0     | Instrumentation                          | 16 |
| CHAPTER 4 |                                          |    |
| RESULT    | 'S AND DISCUSSION                        | 17 |
| 4.1.0     | Experimental Results                     | 17 |
| 4.2.0     | Inlet Conditions                         | 17 |
| 4.2.1     | Swirl and Tangential Velocity            |    |
|           | Distributions                            | 18 |
| 4.2.2     | Velocity and Dynamic Pressure Distribut- |    |
|           | ions                                     | 19 |
| 4.2.3     | Static Pressure Distributions            | 19 |
| 4.3.0     | Diffuser Duct and Outlet                 | 20 |
| 4.3.1     | Swirl and Tangential Velocity Distribut- |    |
|           | ions                                     | 20 |
| 4.3.2     | Velocity and Pressure Distributions      | 21 |
| 4.3.3     | Static Pressure Rise in Diffuser         | 22 |
| 4.4.0     | Effect of Turbulence .                   | 22 |
| 4.5.0     | Discussion of Performance Parameters     | 24 |
| 4.5.1     | Pressure Recovery Factor                 | 24 |
| 4.5.2     | Diffuser Effectiveness                   | 28 |
| CHAPTER 5 |                                          |    |
| CONCLUS   | SIONS                                    | 30 |

----

| APPENDIX A       | Computer Programmes           | 31  |
|------------------|-------------------------------|-----|
| APPENDIX B       | Diffuser Effectiveness        | 39  |
| APPENDIX C       | Design of the Swirl Generator | 44  |
| APPENDIX D       | Error Analysis                | 49  |
| APPENDIX E       | Mass-weighted Averages        | 53  |
| LIST OF REFERENC | ES                            | 54  |
| TABLES           |                               | 58  |
| FIGURES          |                               | 121 |
| VITA AUCTORIS    |                               | 199 |

.

•

#### NOTATION

•

| А              | Flow Area                                                                        |
|----------------|----------------------------------------------------------------------------------|
| At             | Throat Area                                                                      |
| AR             | Area Ratio                                                                       |
| В              | Inlet Opening of Swirl Vane Unit                                                 |
| $c_{PR}$       | Pressure Recovery Factor Based on Mass-Weighted<br>Average Value of Dynamic Head |
| CPRT           | Ideal Pressure Recovery Factor Based on Free                                     |
| 44             | Vortex Flow                                                                      |
| D              | Diffusion Factor                                                                 |
| h              | Height of the Annular Passage                                                    |
| $\mathbf{L}$   | Length of the Diffuser Measured Along the Wall                                   |
| M              | Mass Flow Rate                                                                   |
| $P_s$          | Static Pressure                                                                  |
| $P_{T}$        | Total Pressure                                                                   |
| . <b>6</b> 7   | Radius                                                                           |
| 5              | Hub Radius                                                                       |
| r,             | Tip Radius                                                                       |
| v              | Absolute Velocity                                                                |
| Va             | Axial Velocity                                                                   |
| V <sub>r</sub> | Radial Velocity                                                                  |
| vt             | Tangential Velocity                                                              |
| У              | Distance from Inner Surface of Outer Wall                                        |
| <b>忆</b>       | Diffuser Effectiveness                                                           |
| Ψ              | Swirl Angle                                                                      |
| Y              | Density                                                                          |

viii

- Diffuser Divergence Angle or Diffuser Expansion
   Angle
- Sweep Angle of Flow Contour for Design of
   Swirl Vane Unit

#### Subscripts

- i Inner Wall
- 0 Outer Wall
- I Ideal
- 1 Diffuser Inlet
- 2 Diffuser Outlet

Bar over the symbol means mass-weighted average quantity except where it is otherwise stated.

## LIST OF TABLES

| TABLE |                                                                            | PAGE        |
|-------|----------------------------------------------------------------------------|-------------|
| I     | Inlet Experimental Data                                                    | 58          |
|       | Inlet Calculated Results                                                   | 58          |
| II    | Exit Experimental Data                                                     | 59          |
|       | Exit Galculated Results                                                    | 59          |
| III   | Inlet Turbulence Data                                                      | 60          |
|       | Relative Turbulence                                                        | 60          |
| IV    | Mass Weighted Results                                                      | <b>1</b> 18 |
| V     | Divergent-divergent Annular Diffuser                                       | 120         |
|       | Experimentally Measured $\overline{C_{PR}}, \overline{\Psi}, \eta$ Values. |             |

x

#### LIST OF FIGURES

.

.

| FIGURE |                                          | Page |
|--------|------------------------------------------|------|
| 1      | Diffuser Classification                  | 121  |
| 2      | Schematic Diagram of Test Facilities     | 122  |
| . 3    | Apparatus Layout                         | 123  |
| . 4    | Centrifugal Blower                       | 123  |
| 5      | Diffuser Test Section                    | 124  |
| 6      | Yaw Probe at Diffuser Exit               | 124  |
| 7      | Settling Chamber                         | 125  |
| 8      | Swirl Vane Unit                          | 125  |
| 9      | Diffuser Geometry                        | 126  |
| 10     | Measurement Stations                     | 127  |
| 11     | Comparison of Mean Velocity Distribution |      |
|        | With Results of Brighton and Jones       | 128  |
| 12     | Design Plots for Swirl Vane Generator    |      |
| A      | Profile 1 : Swirl Vane Design            | 129  |
| В      | Schneider's: Velocity Distribution Vs.   |      |
|        | Sweep Angle, No Swirl                    | 130  |
| С      | Schneider's: Static Pressure Vs. Sweep   |      |
|        | Angle, No Swirl                          | 131  |
| D      | Schneider's: Velocity Distribution Vs.   |      |
|        | Sweep Angle, Swirl                       | 132  |
| E      | Schneider's: Static Pressure Vs. Sweep   |      |
|        | Angle, Swirl                             | 133  |

| FIGURE |                                          | Page |
|--------|------------------------------------------|------|
| F      | Profile 2: Iever's Analysis              | 134  |
| G      | lever's: Velocity Distribution Vs. Sweep |      |
|        | Angle, No Swirl                          | 135  |
| H      | lever's: Static Pressure Vs. Sweep Angle |      |
|        | No Swirl                                 | 136  |
| I      | Iever's: Velocity Distribution Vs. Sweep |      |
|        | Angle, Swirl                             | 138  |
| J      | lever's: Static Pressure Vs. Sweep Angle |      |
|        | Swirl                                    | 139  |
| 13     | Inlet Swirl Angle Profiles               | 140  |
| 14     | Inlet Tangential Velocity Profiles       | 144  |
| 15     | Inlet Dynamic Pressure Profiles          | 148  |
| 16     | Inlet Absolute Velocity Profiles         | 152  |
| 17     | Inlet Axial Velocity Profiles            | 156  |
| 18     | Inlet Static Pressure Profiles           | 160  |
| 19     | Outlet Swirl Angle Profiles              | 164  |
| 20     | Outlet Tangential Velocity Profiles      | 168  |
| 21     | Outlet Dynamic Pressure Profiles         | 172  |
| 22     | Outlet Absolute Velocity Profiles        | 176  |
| 23     | Outlet Axial Velocity Profiles           | 180  |
| 24     | Static Pressure Rise                     | 184  |
| 25     | Inlet Turbulence                         | 188  |
| 26     | Pressure Recovery Factor Vs. L/h         | 192  |

xii

| FIGURE |                                           | Page        |
|--------|-------------------------------------------|-------------|
| 27     | Pressure Recovery Factor Vs. Swirl Angle  | 193         |
| 28     | Comparison of Present Results to Results  |             |
|        | of Sovran and Klomp                       | 194         |
| 29     | University of Waterloo: Pressure Recovery |             |
|        | Factor Variation With Length for Various  |             |
|        | Swirl Distributions.                      | <b>1</b> 95 |
| 30     | University of Waterloo: Pressure Recovery | •           |
|        | Factor Variation With Inlet Swirl For     |             |
|        | Constant Length                           | <b>1</b> 96 |
| 31     | Diffuser Effectiveness Vs. L/h            | 197         |
| 32     | Diffuser Effectiveness Vs. Swirl Angle    | 198         |

#### CHAPTER I

#### INTRODUCTION

Plane-walled and conical diffusers have been extensively investigated at least, in the absence of swirl; annular diffusers, however, have not yet been thoroughly investigated. Since the flow in turbomachinery is largely through annuli this type of duct is of great interest.

In investigating the performance of a diffuser it is important to measure certain performance parameters, such as pressure recovery and diffuser efficiency, and also to determine the effect if any, of the various geometric and flow variables on the performance parameters.

A comparatively simple type of annular diffuser of practical interest is that in which the mean flow surface is a cone of increasing radius. For such a configuration there are four basic geometrical variables, the inlet hub/tip ratio, the over-all area ratio, the angle of the inner wall, and the angle of the outer wall.

It is also essential that several aerodynamic parameters be carefully measured if a meaningful analysis of diffuser performance is sought. For the inlet, these parameters are the inlet profile shape, turbulence and inlet swirl.

Defects in mass flux and momentum flux at the inlet may be of several kinds, associated with the boundary layer or with the radial or circumferential variations in

1

flow velocity and pressure. In order to reduce the number of experimental configurations, it was desired to establish a flow that is axisymmetric and to employ a fully developed flow, which would establish a "thick" boundary layer. Repeatability is best achieved if the boundary layer builds up in a long constant area duct.

In practical applications of annular diffusers the flow enters the diffuser with a swirl. The effect of inlet swirl is of major importance, and no performance data on this type of diffuser can be considered complete unless it includes the effect of inlet swirl.

The aim of this research is to investigate the effects of inlet swirl on the performance of a number of annular diffusers of equal divergent angles, but different area ratios.

2

#### CHAPTER 2

#### LITERATURE SURVEY

The material covered in this chapter summarizes briefly the existing literature and also, introduces some of the terminology used in diffuser research.

#### 2.1.0 General Remarks on Diffusers

The diffuser is a davice which converts the kinetic energy of a moving stream of fluid into static pressure. Continuity is satisfied by the corresponding reduction in mean velocity. The mean velocity reduction is accompanied by a pressure rise; however, this relationship, between decreasing velocity and increasing pressure is complex. The axial momentum is reduced not only because of the increased pressure, but also because of mixing processes occurring and the shear forces developed on the diffuser walls. With a diffuser a wide variation in axial velocity occurs across the outlet section, the flow separating from the walls if the diffuser expansion angle is sufficiently large.

The simplest flow passing through a diffuser may be considered as one-dimensional. As the flow enters, the streamlines diverge and the fluid experiences a deacceleration, velocity decreasing as the flow continues through the diffuser, but static pressure increasing. Most of the analysis on diffuser performance in the past has been done using one dimensional flow through

the diffuser.

Diffusers are classified into three general groupsplane-walled, conical and annular. The various types of diffusers are in Figure (1).

#### 2.2.0 Diffuser Performance

The performance parameters most commonly used in the analysis of diffuser performance are the pressure recovery factor,  $C_{\rm PR}$  and the diffuser effectiveness, 7/.

The pressure-recovery factor relates the actual pressure rise of a diffuser to the dynamic pressure at the diffuser inlet, i.e.,

$$\overline{C}_{PR} = \underline{AP}_{\overline{Q}_{1}}$$

$$= \overline{F_{g_{p}} - \overline{P_{g_{1}}}}_{\overline{Q}_{1}}$$

$$(2)$$

The overall diffuser effectiveness is the ratio of actual pressure rise to that achievable from the same diffuser with, one dimensional ideal fluid flow at the same flow rate, i.e.,

$$\mathcal{I} = \frac{\overline{C}_{PR}}{C_{PR}} 
 \tag{2-2}$$

where the ideal pressure recovery factor can be readily shown to be a function of only the area ratio of the

-1)

diffuser, i.e.,

Often in the diffuser literature, the term diffuser efficiency is used, rather than effectiveness. Efficiency implies losses, whereas,  $\gamma$ , as defined here, is more representative of the effectiveness with which the area change of a diffuser is used for diffusion purposes than it is of the loss which occurs within the device.

When swirl is introduced into the flow, the maximum pressure rise may be obtained at an optimum swirl angle and the effectiveness could be greater than unity. An expression for the pressure recovery factor for ideal fluid flow through an annular diffuser with a free vortex swirl is derived and presented in Appendix B.

2.3.0. Previous Investigations of Diffusers

#### 2.3.1. Conical and Plane Walled Diffusers

Although diffuser research dates back to the eighteenth century, it was not until the early twentieth century that serious, extensive investigations were carried out by Gibson and Eiffel (ref. 3). Both men investigated conical diffusers, the former using air the latter water. McDonald and Fox (ref. 9) did further investigations on conical diffusers, obtaining performance and flow regimes information for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(2-2)

a wide range of diffuser geometries. Later Patterson and Peters (ref. 10 and 11) correlated diffuser losses with the angle of expansion of the diffuser, the shape of the diffuser and the area ratio of the diffuser.

Professor Kline (ref. 7) and his associates investigated extensively the performance and design of straight twodimensional diffusers (Plane walled). Kline found four primary flow regimes, regions of unstalled flow, large transitory stall flow, two-dimensional stall flow, and jet flow and presented these as functions of overall diffuser geometry. The performance of both stalled and unstalled diffuser was mapped for a wide range of geometries and inlet boundary layer thicknesses. In analyzing the diffuser performance, two performance parameters were found- the pressure recovery factor,  $C_{PR}$ , and the diffuser effectiveness, 17 . Using these values, performance plots were obtained. It was found that in the region of unstalled flow,  $C_{pR}$  is determined by the area ratio, the diffuser effectiveness is determined by the diffuser expansion angle. In the region of large transitory stall,  $C_{PR}^{-}$  is determined by the expansion angle. In the two-dimensional stall flow and in the jet flow  $C_{pR}$  remains fairly constant.

#### 2.3.2. Annular Diffusers

Johnston (ref. 6) investigated the effect of inlet conditions on the flow, in annular diffusers.

The expansion angles of his annular diffuser varied

from 6.5 to 15°. For a variety of inlet velocity distributions the performance of each diffuser was measured. He found that diffuser efficiency deteriorated as inlet conditions become more non-uniform, this tendency increasing with diffuser angle. 7

Hensler and Howard (ref. 5) investigated equiangular and annular diffusers (converging inner cone, diverging outer cone) with angles ranging between 7 and 20°. They were able to establish the flow regimes and performance as functions of the geometrical parameters of the diffusers. The flow was fully developed at the inlet, without swirl, and it was noticed that the behaviour of the equiangular diffuser was similar to that of two dimensional diffusers.

Thornton-Trump (ref. 15) investigating annular diffusers with a straight inner concentric core and a diverging outer cone found that the performance of the diffuser laid between two-dimensional diffusers and conical diffusers.

Sovran and Klomp (ref. 13) studied the performance of a wide variety of annular diffusers, for flow without swirl, using thin boundary layers and different inner and outer wall angles to obtain a performance chart. They concluded that wall angles and the inlet radius ratio did not affect the performance appreciably; however, the area ratio and the non-dimensional diffuser length, were important controlling factors.

#### 2.4.0. Specification of Inlet Swirl

In most practical applications of annular diffuser

the fluid motion is not one-dimensional, but possesses also a swirl motion. Such a motion in a flow may be set up by means of a swirl vane, turbine blades or compressor blades. Due to the swirl motion, the flow entering the diffuser now has an axial velocity component and also a tangential velocity component. A swirl angle, $\psi$ , the angle of the flow measured relative to a plane through the center line of the duct, is defined. If the swirl angle distribution has a profile of its own, it becomes necessary to find an overall average value of the swirl angle. Schwartz defined a mass weighted average value of the swirl angle denoted by  $\overline{\psi}$ .

2.4.1. Previous Investigations of Diffusers-With Inlet Swirl

In 1953, Schwartz (ref. 12) investigated the effects of swirl on the annular diffusers with constant outer diameters and effective angles of 8° and 16°. He found that regions of maximum efficiency occurred when the angle of inflow (swirl angle) equalled the conical angle of expansion and also when the flow was axial. There are sharp reductions in efficiency at high angles of swirl.

The effect of swirl on the Flow Regimes and Performance of Equiangular, Divergent-Convergent Annular Diffuser was investigated by Srinath (ref. 14). It was found that the diffuser performed most efficiently when the mean inlet swirl angle was close to the total expansion angle of the diffuser. Swirl removed stall completely from the outer

wall and transitory stall set in almost immediately on the inner wall. At higher swirl angles, there was great reduction in the efficiency of the diffuser.

#### 2.5.0. Aims of Present Investigation

In view of the need for a better understanding of the effect of swirl on annular diffuser performance and of its importance in numerous practical applications, the present work aims to investigate the effects of inlet swirl on the performance of a number of annular diffusers, of equal inner and outer divergent angles.

#### CHAPTER 3

#### TEST FACILITIES AND EXPERIMENTAL PROCEDURE

#### 3.1.0. Test Facilities

A schematic diagram is given in Figure (2) showing the letter code used in the following description of the test facilities. Figure (3) to (8) show a series of photos of the test facilities.

#### 3.1.1. Air Supply and Flow-Calibration Pipe

Air was supplied by a type E, size 7 Canadian Buffalo blower, B, with a rating of 2000 C.F.M., 56.1 inches of water S.P., 3500 R.P.M. and 31.9 B.H.P.. This blower was driven by a 40 H.P., 550 volts and 3500 R.P.M. General Electric induction motor. The air flow could be varied by a 10 inch blast plate and a damper, A, fitted at the intake of the blower.

The flow entered a short converging section and then passed into a 30 inch long cold rolled seamless steel pipe, C, with 5 inch O.D.. This pipe served as a flow measuring section. A standard pitot-static probe mounted on a traversing mechanism was able to traverse across the pipe and the air flow thus could be determined by knowing the velocity profiles inside the pipe.

#### 3.1.2. Expansion Cone and Plenum Chamber

The expansion cone, D, approximately eight feet long, was constructed out of 1/8 inch plywood sheets. The inner surface was sanded and varnished to ensure a smooth surface.

The plenum chamber, E, consists of four cylindrical sections, 38 inches diameter, built out of 1/16 inch plexiglass, supported by 3/4 inch plywood frames. These sections were joined to form a six foot long settling chamber which contained also a one foot honeycomb section, G, and three screens, H, (30x30 mesh). A fibre glass filter, F, was mounted at the front of the chamber. The plexiglass wall provides a smooth inner surface and also allows for flow visualization at the inlet of the swirl vane unit.

By means of a velometer the velocity profile at the exit of the plenum chamber was measured. The profile showed that a uniform flow had been achieved.

#### 3.1.3. Swirl Vane Unit

A swirl vane unit ( or swirl generator), I, was mounted in the last section of the plenum chamber. The unit consisted of two machined pieces of wood (axisymmetric), the outer piece mounted on the outer tube of the annulus, the inner piece mounted on the inner tube and suspended in the chamber by a spider. The inner and outer flow contours were obtained after a detailed analysis to achieve the best flow conditions. This analysis was carried out with the help of United Aircraft of Canada Limited (ref. 16).

According to the analysis, presented briefly in Appendix C, the flow in the swirl unit is continuously accelerated with minimum losses and enters the annular passage at the end. If inlet flow conditions are as

11.

specified in the analysis, no flow separation should occur at the walls.

Between the outer and inner parts of the swirl unit a 1.6 inch gap allows the mounting of twenty-four NACA 0012 airfoils (3 inch chord). By means of a ring mechanism, all twenty-four vanes can be turned through the same angle and different degrees of swirl introduced into the flow. 3.1.4. Annular Pipes

From the swirl vane unit, the air passed through the annular space between two twelve-foot aluminum pipes, J, the inner pipe being 5 inch O.D., the outer pipe 8 inch I.D.. Spacers were not used to separate the annular pipes in order to reduce distortion of the swirl asit passed down the annular passage. To ensure concentricity of the pipes and keep vibrations to a minimum, considerable work was done to suspend the inner pipe firmly at one end by a spider located in the plenum chamber, at the other end by a solid-angle stand. The outer pipe was cradled firmly by two solid stands, which also allowed levelling of the outer pipe to ensure concentricity of the inner and outer pipes. The last foot of the outer pipe was replaced by a plexiglass section, K, of the same diameter. The section was threaded and flanged on, so that the probe attached to it could be rotated about the inner pipe.

#### 3.1.5. The Test Section: The Diffuser

From the annular passage, the flow entered the test section-the annular diffuser,L. The annular diffuser, shown in Figure (9) consisted of two cones, total expansion angle of each cone being 40.° The cones were machined from laminated pieces of basswood and were assembled out of four cone sections, thereby, allowing the study of four annular diffusers, of the same divergent angle but of different lengths. The lengths were chosen, to give area ratios of 1.25, 1.50, 2.0 and 3.0.

At the diffuser inlet, the inner diameter of the outer pipe was 8.0 inches and the inner pipe had an outer diameter of 5.0 inches, resulting in an annular height of 1.5 inches. The hub to tip radius ratio was 0.6., typical of turbine outlet annuli.

The following table gives the area ratios and the corresponding non-dimensional length for the diffusers tested.

| Total Expansion Angle<br>= 40°. |      |
|---------------------------------|------|
| L/h                             | AR   |
| 1.60                            | 1.25 |
| 3.13                            | 1.50 |
| 6.35                            | 2.00 |
| 12.65                           | 3.00 |

#### TABLE 3-1

#### 3.2.0. Experimental Procedure

The following measurements were made for each diffuser,

the largest diffuser being analyzed first.

Each annular diffuser was studied for five different swirl conditions, approximately zero swirl to a maximum swirl of about 25°. For each swirl condition, pressure variations along the diffuser and the flow conditions at the inlet and the outlet of the diffuser were measured. The degree of swirl was set, by turning the external control knob, which rotated all of the twenty-four vanes simultaneously through the same angle (0° to  $45^\circ$ ).

Initially, the airfoils were turned to a neutral position, allowing zero swirl or axial flow to be introduced into the flow. Two inches upstream of the diffuser inlet, a yaw probe was inserted, and measurements were made at ten positions, radially across the annular gap. The probe also allowed measurements of static pressure and total pressure at these positions. It should be noted that first, the probe was rotated to the null direction and then swirl angle and pressure readings were taken.

The inlet flow conditions were measured at three different radial locations 120 apart, by rotating the plexiglass section about the inner pipe.

The flow was adjusted for each swirl condition by adjustment of the damper, to ensure a constant flow rate of approximately 1900 cfm at a Reynold's Number of 2x10.

14.

Following the inlet swirl and pressure measurements, the yaw probe was removed and replaced by a hot wire, probe to measure the inlet turbulence level. Care was taken to locate the hot wire at the same position as the yaw probe and for each position to rotate the hot wire to the same angle as was measured, with the yaw probe at the corresponding position. Once the hot wire was properly aligned average D.C. voltage and RMS voltage readings were recorded.

Care was taken not to bring the hot wire probe too close to the wall, in order to reduce the chances of damaging the hot wire. This precaution allowed turbulation ent measurements only at eight positions, instead of ten.

At the exit, another yaw probe was mounted and similar measurements were made at ten positions; however, only one traverse was made. No static pressure measurements were made, assuming that the exit static pressure was atmospheric. Also, no turbulence measurements were made at the exit.

The pressure variations in the diffuser were noted by means of three rows (120 apart) of static pressure taps, fourteen per row, along the diffuser wall. These pressure taps were hooked up to a thirty-six tube sloping bank manometer.

In Figure (10), the stations at which measurements were taken are shown.

15

#### 3.3.0. Instrumentation

The inlet conditions were measured with a probe that contained a cobra yaw probe, a circular stainless steel <sup>-</sup> hypodermic tube (0.06 in 0. D. ) to measure total pressure and a similar hypodermic tube of the same outer dimensions with two small holes on the side to measure static pressure. The yaw probe was aligned for zero swirl by placing it in a uniform velocity field of a windtunnel. The static pressure and total pressure tubes were calibrated with a standard Kiel Probe in a windtunnel.

Outlet conditions were measured with another cobra yaw probe, whose central hyp odermic tube measured the total pressure. The probe was aligned and calibrated in the windtunnel. Static pressure was assumed atmospheric at the exit.

Thirty static pressure taps, .040 in diameter, were drilled into the outer wall and allowed measurement of the static pressure rise in the diffuser.

A NPL-Type Multitube Tilting Manometer was utilized in making all pressure measurements.

The relative inlet turbulence was measured with a Disa, Constant-Temperature Anemoneter, 55A01, using a Type 55A36 Miniature Hot Wire Probe. The cold resistance of this probe was approximately 3.40 ohms. Calibration of the hot wire was done periodically in the windtunnel and the test apparatus itself.

16

#### CHAPTER 4

#### RESULTS AND DISCUSSION

#### 4.1.0. Experimental Results

Before measurements were taken, it was shown that the flow, for zero swirl, was fully developed. Since the length of the annulus was 80 times the hydraulic diameter, it was reasonable to assume that the flow at the diffuser inlet was fully developed. Also the velocity profile at the diffuser inlet was compared with the velocity profiles of Brighton and Jones (ref. 1) for fully developed turbulent flow, Figure 11, showing very good agreement. It was observed that the inlet velocity profile could be repeated well and at zero swirl did not vary considerably for different flow rates. The last observation showed that the Reynold's Number effects were quite small, within the range of experimentation.

#### 4.2.0. Inlet Conditions

Inlet measurements, taken at three traverses, 120 apart, indicated a good circumferential uniformity. The flow was, therefore, assumed to be a function of radial distance only (axisymmetric). 17
In order to check the magnitude of three-dimensional effects, a three-dimensional five-hole yaw probe was employed and a traverse made at the diffuser inlet. The pressure difference in the pitch plane was small; therefore, the flow in the radial direction was considered to be negligibly small.

Inlet data and calculated results are given in Table I.

# 4.2.1. Swirl and Tangential Velocity Distributions

Figure (13) shows the various inlet swirl distributions at which the diffusers were tested. It is seen that for low and medium swirl, the swirl angle is nearly constant across the core of the annulus. At higher swirl, the swirl angle increases toward the outer wall, the slope of the profile increasing as the swirl angle increases. The same trend is evident for all four diffusers.

Figure (14) shows the various inlet tangential velocity distributions for the four diffusers. A trend similar to the swirl angle distributions is evident. For low and medium swirl, the profiles are flat, the tangential velocity being nearly constant across the core of the annulus. At higher swirl, the tangential velocity increases towwards the outer wall.

From the tangential velocity profiles across the annulus, it is evident that the inlet swirl distribution does not follow a free vortex pattern. This can be

attributed to the fact that the flow is fully developed at the entry to the diffuser and also that the annulus is quite small. Therefore, the whole flow region is affected by shear stresses and hence there is no non-viscous flow region for the free vortex pattern of swirl to develop.

At higher swirl angles, the slope of the swirl angle and the tangential velocity distributions increase, because the flow is being shifted outwards.

4.2.2. Velocity and Dynamic Pressure Distributions

Figure (15) shows the dynamic pressure distributions for the four diffusers, and Figures (16 and 17) show the absolute and axial velocity profiles are almost identical. As the swirl angle increases, the absolute velocity profile becomes increasingly affected by both the tangential velocity and the axial velocity. The figures show, however, that the trend of the axial velocity distribution is also dominant in the corresponding absolute velocity distribution. Both profiles show that with increasing swirl, the profile becomes more skewed towards the outer wall (the point of maximum velocity shifts toward the outer wall). This trend becomes even more proncunced in the dynamic pressure distributions where the velocity is squared and plotted.

4.2.3 Static Pressure Distribution

The inlet static pressure distribution for the four diffuser studied are shown in Figure (18).

It is seen that as the swirl increases the static pressure decreases, becoming more negative at the diffuser inlet. Note that this condition is a favorable condition, for it causes the diffuser to be more efficient. A decreasing static pressure at the inlet increases the flow rate.

The static pressure distributions show the static pressure to be generally constant near the inner wall and increasing towards the outer wall. In the outer region, the static pressure becomes increasingly affected by a combination of the boundary layer effects and the centrifugal forces created by the swirl flow.

As the the diffuser length increases, it is observed that the inlet static pressure decreases. This could be explained by the fact that the exit static pressure for all diffusers is equal to ambient pressure.

# 4.3.0. Diffuser Duct and Outlet

Outlet data and calculated results are given in Table II.

## 4.3.1. Swirl and Tangential Velocity Distributions

Swirl angle and tangential velocity distributions at the diffuser outlet are shown in Figures (19 and 20). The profiles are not as smooth as the inlet profiles; however, do show the same trend as was evident for high inlet swirl, the swirl angle increasing towards the outer wall. For all swirl conditions, the massweighted swirl angle decreases from the diffuser inlet

to the diffuser outlet.

For low and medium swirl the reduction in mean swirl angle from inlet to the outlet, is accompanied by a change in distribution from a relatively uniform rotation in the inlet to a non-uniform gradient with maximum swirl angle at the outer wall at the exit.

The tangential velocity distributions show the tangential velocity to be constant across the core of the annulus for all swirl conditions.

4.3.2. Velocity and Pressure Distributions

Dynamic pressure and velocity distributions for the diffuser outlet are presented in Figures (21,22, and 23). The distributions for the dynamic pressure, absolute velocity and axial velocity show similar trends, greater skewness towards the outer wall as the swirl angle increases. The outward shift is more pronounced at the diffuser exit. For low swirl, the maximum velocity is near the inner wall; and at high swirl, it has shifted considerably towards the outer wall. Comparison of the curves of the dynamic pressure at the diffuser inlet to that at the outlet, shows the curves to be steeper at the exit, having a more pronounced maximum point. The diffuser magnifies any distortion of the flow parameters. This amplification is due to the diffusing action which occurs.

With increasing swirl, the absolute velocity distribution changes significantly; static pressure and

flow-angle distributions on the contrary were essentially constant from inlet to exit of the diffuser.

# 4.3.3. Static Pressure Rise in Diffuser

The static pressure distribution along the diffuser length is shown in figure (24) for the four annular diffuser investigated. It is seen that as the diffuser length increases the static pressure rise increases accordingly. Swirl appears to have no appreciable effect on the distributions.

# 4.4.0. Effect of Turbulence

Kline (ref.7) his associates have done extensive investigations on plane walled diffusers and they concluded that for Mach number less than unity and for Reynold's Number greater than  $5\times10^5$ , the most important illet conditions affecting performance are inlet velocity profile and turbulence level. Other researchers have also mentioned turbulence as a prime influence on diffuser performance.

In turbomachines, the boundary layer builds up and often occupies a considerable portion of the annular space of the flow. In swirl flow, because of the tangential mean velocity, neither the turbulence level nor the radial pressure variation need be small in the boundary layer.

Yeh (ref. 17) investigated the development of incompressible turbulent boundary layers along concave and convex stationary annular walls, analytically and experimentally for a swirling flow. He concluded that largescale turbulence eddies "roam" radially back and forth

in the outer half of the annular passage; while, such motion is very much reduced in the inner half. The strong radial turbulent motion near the outer wall pulls the immediate adjacent mean velocity taut, creating a larger velocity gradient and shear stress at the outer wall.

For flow with swirl, the boundary layer near the inner wall is very much like the one for flow with no swirlapproaching the equilibrium profile for fully-developed turbulent flow without swirl. For the outer wall region, the boundary layer departs much more than for flow with no swirl. The turbulence intensity is generally larger near the outer wall. This is shown to be true for the results found in the present investigation, as shown in Figure (15). The transverse component of turbulence intensity is produced near the outer or concave wall (where the tangential velocity decreases with radius) but is suppressed near the inner or convex wall (where the tangential velocity increases with radius), resulting in a larger intensity near the outer wall.

At the inlet to the annular pipes, the swirl generator sets up a swirling flow; that is, flow with both tangential and axial mean velocities. The turbulence present in the flow decays the turbulent swirl in the flow and also evens out the velocity profile. Kreith and Sonju (ref. 8) observed that swirl in a turbulent pipe flow decays to about 10-20% of its initial value in a distance of about 50 pipe diameters. In the present investigation it was found that a swirl of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45° set up by the swirl generator at the inlet of the annulus, decayed to 26° at the diffuser inlet and to 18° at the diffuser exit. This trend was true for all swirl conditions.

# 4.5.0. Discussion of Performance Parameters

The performance of the four annular diffusers and the effect of inlet swirl on the performance was determined by plotting the parameters--the diffuser effectiveness and the pressure recovery factor. The plots were also compared to the findings of other researchers.

# 4.5.1. Pressure Recovery Factor

For the four diffusers, the pressure recovery factor was plotted against the non-dimensional length for different inlet swirl conditions, shown in Figure (26). In order to find an optium swirl angle, if possible, the pressure recovery factor was plotted against mass weighted average swirl angle  $\overline{\Psi}$ , Figure (27), for each diffuser.

The plots show that the introduction of a certain amount of swirl into the flow has an effect on the performance of the diffuser.

In the plot of CPR versus the non-dimensional diffuser length, the curves are approximately parallel to the curve for zero swirl, indicating that the general trend of the CPR variation with the non-dimensional length is not affected by the swirl. The pressure recovery factor increases as the diffuser length increases and levels off

at higher values of non-dimensional diffuser length.

Srinath who investigated an equiangular divergent convergent annular diffuser, found that the curves of constant swirl angle levelled off and then decreased at higher non-dimensional diffuser lengths, Figure (24). The curves of the  $C_{\rm PR}$  versus L/h plot were also quite flat, compared to the ones of this investigation.

Sovran and Klomp conducted an extensive investigation of a wide variety of annular diffuser configurations, for flow with no inlet swirl. The geometric characteristics were specified by four parameters-the two wall angles, the inlet radius ratio and a non-dimensional length. From their results, several types of diffusers wre chosen, and a plot of pressure recovery factor versus area ratio was made, shown in Figure (28).

Each curve in this plot represents a set of diffusers of the same wall angle but of different lengths. The particular type of annular diffuser is identified by its outer wall angle (which has a positive value if the cone is diverging, negative if the cone is converging), the inner wall angle, the inlet radius ratio and the non dimensional diffuser length. For comparison, the four diffusers of the present investigation have also been plotted. Note that the identification expression for this set of diffusers is 20, 20, 0.6, (1.25,1.50,2.00,3.00).

25

Two sets of diffusers studied by Sovran and Klomp, (30°, 29½°,0.7, L/h and 15°, 15°, 0.7 ,L/h) have a geometry similar to those of the present investigation and show a similar performance trend. Results of the current investigation, for the case of flow with no swirl, are supported strongly by the results of Sovran and Klomp.

26

Referring to Figure (28) again, it is observed that if the outer wall angle is left at 20°, as the inner wall angle becomes less divergent, the pressure recovery factor for a constant value of area ratio decreases. The profile of pressure recovery factor versus area ratio, tends to become flater.

Sovran and Klomp unfortunately did not include any results for a set of diffusers, which had a diverging outer cone and a converging inner cone. The trend of Figure (26) and the results obtained by Srinath predicts that such a set would have had a flat profile.

In the second performance plot Figure (27) pressure recovery factor is plotted against mass-weighted swirl angle for constant diffuser length. For the largest diffuser, swirl apparently has no effect on the pressure recovery factor, for smaller diffuser lengths, however, the inlet swirl has a small effect on the pressure recovery factor. When a small amount of swirl is introduced into the flow, the pressure recovery factor decreases, and as more swirl is added, the pressure recovery factor slowly increases. For the two shorter diffuser lengths the

increased swirl produces pressure recovery factors greater than for no-swirl flow. The diffuser with non-dimensional diffuser length equal to 6.35 (Diffuser B) shows the same trend.

The point of minimum pressure recovery factor shifts to a higher swirl angle as the non-diminsional diffuser lengths increases. The curves of  $C_{\rm PR}$  versus  $\overline{\psi}$  flatten out as the diffuser length increases.

In general, an increase in swirl angle causes sharp radial pressure gradients to develope which will cause better mixing of the outer wall boundary layer with fluid having higher kinetic energy. This delays or even washes off completely the stall or flow separation from the outer wall. The divergence of the flow is thus brought closer to an ideal flow process. The pressure recovery therefore tends to increase.

The profiles, Figure (30), obtained by Srinath for  $C_{\rm PR}$  versus  $\overline{\Psi}$  for the equiangular divergent-convergent annular diffuser show an opposite trend. When swirl is introduced into the flow, the pressure recovery increases to a maximum value and then further increase in swirl decreases it. Srinath concluded that any increase in inlet swirl beyond the optimum value will bring down the diffuser performance.

The geometry of the present annular diffuser; that is the divergence of the inner cone, favors also the divergence of the flow. In the diffuser studied by Srinath, the converging inner cone, allowed early flow separation

27

on the inner wall, especially at higher swirl angles. Here, the radial pressure gradients also leads to an adverse condition resulting from the centripetal flow of low energy air which in turn causes separation of the flow on the inner wall. This separation of flow on the inner wall causes considerable losses especially in the exit portions of the diffuser.

#### 4.5.2. Diffuser Effectiveness

Two additional plots have been included in the performance plots, to show the distribution of the diffuser effectiveness, which has been redefined for the case of flow with inlet swirl. These plots are shown in Figures (31 and 32). The effect of inlet swirl is evident in both plots.

First consider the plot of diffuser effectiveness versus non-dimensional diffuser length. For low swirl, the trend is similar to that shown in the plot of pressure recovery factor versus non-dimensional diffuser length. As the diffuser length increases the diffuser effectiveness increases and tends to flatten out.

For higher swirl, it appears that as the diffuser length increases the diffuser effectiveness decreases sharply, reaches a minimum and then with further increase the effectiveness increases again. The effect of the inlet swirl becomes more pronounced in the plot of diffuser effectiveness versus mass-weighted inlet swirl angle for constant non-dimensional diffuser length.

For the largest diffuser, the diffuser effectiveness remains constant, swirl having no effect. For the other three diffusers, the presence of some swirl decreased the diffuser effectiveness and reached a minimum value. As the inlet swirl was further increased the effectiveness also increased, the increase being more rapid as the diffuser became shorter.

#### CHAPTER 5

## CONCLUSIONS

- The Pressure Recovery Factor, C<sub>Pr</sub>, increases with diffuser length, L/h, and tends to flatten out at higher values of diffuser length.
- 2. For a given Equiangular Divergent Annular Diffuser,  $C_{\rm PR}$  initially decreases with swirl,  $\overline{\psi}$  , and then increases.
- 3. The effect of swirl on Diffuser Effectiveness is similar to its effect on C<sub>PR</sub>. However, the swirl effect on Diffuser Effectiveness, ?? , is more pronounced for shorter diffuser lengths.
- 4. Equiangular Divergent Annular Diffusers perform better than Equiangular Divergent-Convergent Annular Diffusers, the diffuser effectiveness of the Divergent Annular Diffuser being considerably higher at increased inlet swirl.

| T SWIPL ANGLE PRCFILES<br>Ension Ibuf(1,000),Darray(12),Varray(12),Vaarra(12),V<br>aa(12),Phiapr(12)<br>L Plots (Ibuf,1000) | L PLOT (G.0,11,5,3)<br>60 L=1,4<br>¤Av(11)=0.0 | RAY(22)=0。20<br>AFR(11)=C。3<br>AFR(12)=C。3 | L_AXIS_((.0.0.2.2.4 (K-KINK) / (RUTK-RINK),-20,5.0.0.0.0 AKKAY(11), | РАҮ()2))<br>L AXIS (3-0,).0,23HSWIRL ANG/MAX SWIRL ANG.+23,5,0,90。0,РНІАRR(<br>.рнілеріізіі | 2.176.473      |          | 2,174<br>L SYMACL (1 5,5,5,0,14,11HINLET SWIPL,0,0,11) | L SYMBOL (1.5,5.25,0.14,14HANGLE PROFILES,0.0.14) | MAT (1(H DIFFUSER) | TT 17     | "AT (21H SWIPL ANGLE SETTING) | 3. ]=],[(<br>D. 2. DICT AND DC DT HUV HUT DW DT |                | (  Z    - F   1 / 1 - 5 | 54P1<br>=D S+Fr 27:711 | 5%1 7,711/12.9 | 20b1(2.1*tを中国また)          |            |         |                                           | 1= VI/UVI<br>. MT 27, PIST, ANG, PS, PT, UV, UVA, UVT, RM | 14T (BF 8, 3)  | 11 25,DIST,DR,V,VA,VI,DV,UVA,DVI<br>11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |            |             | AU = ( ] ) = O AU = | 12 0 A (1 ) = P S | TINIE: (I) = ANG | L LINF (DARRAY, PHIARP, 10, 1, 1, K) |              | $\int_{1101}^{12} P(07(1,0)-07-3)$ | L SYMAAL (8),0.0,0.0,0.14,22 HUWE SCHNEIDER JOB PLOT,90.C,22) | L PLOT (10,0,0,0,0,-3) |               |       |
|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------|----------|--------------------------------------------------------|---------------------------------------------------|--------------------|-----------|-------------------------------|-------------------------------------------------|----------------|-------------------------|------------------------|----------------|---------------------------|------------|---------|-------------------------------------------|-----------------------------------------------------------|----------------|----------------------------------------------------------------------------|------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------|--------------------------------------|--------------|------------------------------------|---------------------------------------------------------------|------------------------|---------------|-------|
| C INLET SWIPH<br>DIMENSION J<br>15ARAA(12),<br>10 CALL PLOTS                                                                | 23 CALL PLOT 4<br>PO 60 L=1 4<br>PA3®AY(11):   | DARRAY(22):<br>PHIAFR(32):<br>DHIAFR(32)-  | ZI CALL AXTS                                                        | 2040FAY(J2)<br>22 CALL AXIS (<br>311).PHIARD                                                | DA = 2.17C + C |          | 5=320174<br>25 CALL SYM971                             | 23 CALL SYMBO                                     | 15 FURMAT (10)     | LEX_LS_DU | 17 FOCMAT (2)                 |                                                 | 26 FDP 44T (9F |                         | 5=P5+P1<br>P51=P5+r,7  | L'L'U*S=Ūd     | $A = S \circ p T (S = S)$ | VISUD*V=VV | VU/V=V0 | $\nabla V \Delta = V \Delta / U V \Delta$ | PRIMT 27, D                                               | 27 FUP 4AT (BF | 28 CD WAT 25,D                                                             | DAPRAV(1)= | vAPFAY(1) = | VAAFPA(1)=<br>VTAFRA(1)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = [ l] VazySd     | 3-1 CONTINUE     | 35 CALL LINE                         | 5-J COVTINUE | 55 CALL PLOT                       | 91 CALL SYMRD                                                 | 100 CALL PLOT          | 110 CALL EXIT | END   |
|                                                                                                                             | 1003<br>0004<br>0015                           | 6000<br>2000<br>2000                       |                                                                     | 0016                                                                                        | 1100           | <u> </u> | 0114<br>0115                                           | 5100<br>5100                                      | 6118               |           | 0051                          |                                                 | 0024           | <u>1725</u>             | 67.0V<br>70CC          | 5 T T          | 0029                      |            | C 0 32  | 0033                                      | ナ un<br>い n<br>ご に<br>ご ご                                 | 9: 39          | 1037<br>1238                                                               | 0.39       | 0040        | 14CC<br>24CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | u143              | 5044<br>5045     | 9501                                 | 1047         |                                    |                                                               | 0.51                   | 53 (.O        | u.)54 |

|                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | APPENDIX A-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CT TANGGNTIAL VFLOCITY PROFILES         C'NSFON IRUF(1.00.), DAPRAY(12), VARRAY(12), VTARRA(12), PHIASR(12)         FA(12), PHIASR(12)         L PLCTS (1800F, 1000)         L PLCT (0.0, 11, 5, -3)         50 L=1, 4         RAY(11) =0.0         PRA(12) =0.2 | - XALIATEN 2.<br>- XALS (0.2.0.0.20H(R-RINR)/(RCTR-RINR),-20,5.0.0.6.DARRAY(JL),<br>- AXIS (0.0.0.0.19HTAN VEL/MAX TAN VEL,+19,5.0.90.0.VTARRA(11),<br>- L AXIS (0.0.0.0.19HTAN VEL/MAX TAN VEL,+19,5.0.90.0.VTARRA(11),<br>- REA(12)<br>- 2.175-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 05A.1 "<br>1 05A.1 "<br>2.2.174<br>L SYMPCL (1.5,5.5,0,14,16HINLET TANGENTIAL,0,0,16)<br>L SYMPOL (1.5,5.25,0,14,17HVELDCITY PROFILES,0,17)<br>"I 26<br>"I 26<br>MAT (1(H DIFFUSER) | 50 K=1,5<br>MT 17<br>MT 17<br>A.T (2)H SWIFL ANGLE SETTING)<br>A.S. 1=1,10<br>C. 25,(157,ANS,PS,PT,UV,UVA,UVT,RM,RI<br>M.T (6F0, a)<br>C.S.S.TS,ANS,PS,PT,UV,UVA,UVT,RM,RI<br>M.T (6F0, a)<br>C.S.S.TS,ANS,PS,PT,UV,UVA,UVT,RM,RI<br>C.S.S.TS,TS,TS,<br>S.S.TS,TS,TS,<br>C.S.TS,TS,CS,<br>C.S.TS,TS,CS,<br>C.S.TS,TS,CS,<br>C.S.TS,TS,CS,<br>C.S.TS,TS,CS,<br>C.S.TS,TS,CS,<br>C.S.TS,TS,CS,<br>C.S.TS,TS,CS,<br>C.S.TS,TS,CS,<br>C.S.TS,TS,CS,<br>C.S.TS,TS,CS,<br>C.S.TS,TS,CS,<br>C.S.TS,TS,CS,<br>C.S.TS,TS,CS,<br>C.S.TS,TS,CS,<br>C.S.TS,TS,CS,<br>C.S.TS,TS,CS,<br>C.S.TS,TS,CS,<br>C.S.TS,TS,CS,CS,CS,CS,CS,CS,CS,CS,CS,CS,CS,CS,CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -V*5I%(AMG*3,142/280.6)<br>=V/UV<br>=V/UVA<br>=V/UVT<br>=V/UVT<br>=V/UVT<br>=V/UVT<br>=V1/UVT<br>MT 27,EIST,AMG,PS,PT,UV,UVA,UVT,RK<br>MT 27,EIST,AMG,PS,PT,UV,UVA,UVT,RK<br>MT 28,0157;DR,V,VA,VT,DV,DVA,DVT<br>=VAT (288.3)<br>=VAT (288.3)<br>=VAT (288.3)<br>=001<br>=001<br>=001<br>=001<br>=001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Y Q A (1) = PST<br>A R (1) = A NG<br>TT NUE<br>L LIFE (DAR AY, VT AF RA, 10, 1, 1, 1, K)<br>TT R US<br>L PLOT (7, 0, 0, -3)<br>TT R US<br>L PLOT (10, 0, -0, -3)<br>TT R (10, 0, -0, -3)<br>L PLOT (10, 0, -1)<br>L PLOT (10, |
| C IN<br>C IN<br>150<br>150<br>150<br>150<br>150<br>150<br>150<br>150                                                                                                                                                                                             | 1010 22 2001 22 2001 22 2001 22 2001 22 2001 22 2001 22 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2000 2000 20000 200000000 | - 113 - 113<br>- 113 - 113<br>- 114                                                                                                                                                   | 0019<br>1020<br>1021<br>17 FC<br>10225<br>10225<br>10225<br>10225<br>10225<br>10225<br>10225<br>10228<br>10228<br>10228<br>10228<br>10228<br>10228<br>10228<br>10228<br>10228<br>10228<br>10228<br>10228<br>10228<br>10228<br>10228<br>10228<br>10228<br>10228<br>10228<br>10228<br>10228<br>10228<br>10228<br>10228<br>10228<br>10228<br>10228<br>10228<br>10228<br>10228<br>10228<br>10228<br>10228<br>10228<br>10228<br>10228<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10278<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10078<br>10000000000 | с. 31<br>с. 31<br>с. 32<br>с. 33<br>с. 33<br>с. 33<br>с. 33<br>с. 33<br>с. 33<br>с. 23<br>с. 23 | 143<br>0144<br>0144<br>0144<br>0145<br>0145<br>0147<br>0146<br>0146<br>0146<br>0146<br>0146<br>0146<br>0146<br>0146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| -               |                                       |                                                                                                                       |                                       |
|-----------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| 2<br>e          | 1.1.1.1                               |                                                                                                                       |                                       |
| p<br>p          |                                       | L STORATON, DELAGDING OF DECAMONAL LELATINAMMATELY VIAMMATELY LANGATELY                                               |                                       |
| ğ               |                                       | JAA 'AA ATTU ARTAN MAATAA AY A                                                       |                                       |
| ğ               |                                       | F TALE PEULS TIMP (1970)                                                                                              | • • • • • • • • • • • • • • • • • • • |
| ĉe              | 0.1.13                                | 2 + (A(1 - P(1)) + 1) + 3 + 2)                                                                                        |                                       |
| q               | U. 4                                  | CO A9 (=1,+4                                                                                                          |                                       |
| <u> </u>        | 14715                                 | DADCAY(3X) = 0.00                                                                                                     |                                       |
| 5               | 113. 5                                | PAPPAY(12) = -200                                                                                                     |                                       |
| ð               | .: • 7                                | VA(\$PPA(11)=)a())                                                                                                    |                                       |
| an              | 1,199                                 | $VA(t, \nabla A_{1}) = U_{0}(2^{n})$                                                                                  |                                       |
| <u>,</u>        |                                       | $(111) = 8 \text{ e}^{2}$                                                                                             |                                       |
| SS              | 1.10                                  | ET(0)=5.75                                                                                                            |                                       |
| ō               | - 11                                  |                                                                                                                       |                                       |
| 5               |                                       |                                                                                                                       |                                       |
| )f :            | 2112                                  |                                                                                                                       |                                       |
| Ľ,              | 5. ÏJ                                 | 21 CALL AXIS (1,0,0,0,0,20H(R-RINR)/(RU(R-RINP),-20,5,0,0,0,0AFFAY(1,1),                                              |                                       |
| 0               |                                       | 202F0AY(32))                                                                                                          |                                       |
| <u>ŏ</u>        | 114                                   | 22 CALL CX15 (C. 0. 0.0. 23HAXIAL VEL/MAX AXIAL VEL, +23, 500, 9050, VAARPA(                                          |                                       |
| Ŷ               | •                                     | 311), VANDA(12))                                                                                                      |                                       |
| rig             | 1015                                  | PA = 2 1 77+ 1 3                                                                                                      |                                       |
| Ē               | 1.14                                  | $DU = \frac{1}{2} + \frac{94}{2}$                                                                                     |                                       |
| 0               | 1 17                                  | $(z) = 0 + (0, \frac{1}{2}, \frac{1}{2})$                                                                             |                                       |
| ≦               | 1.1                                   | $C = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{bmatrix} 7 \\ 4 \end{bmatrix}$                                       |                                       |
| Те              |                                       |                                                                                                                       |                                       |
|                 | 1                                     | DA CALL 2 Y YU YA YIDEDIYYZA HIMURALI AALAKIYYAYIXY<br>Da Call Cumbol Al B. C. C. A. STUREDCIAN DOCIN DOCIN DI A NATA |                                       |
| ш               | 11.121                                | 25 UPUL STORUL (1993)302390334917PVCLUUTT PRUFILES97309177                                                            |                                       |
| h               | 1.23                                  | $p_2 1 \le r_1 1 \le r_2$                                                                                             |                                       |
| ihe l           |                                       | 16 FORMAT (1914 DIFFUSER)                                                                                             |                                       |
| Ϋ́,             | M-23                                  |                                                                                                                       |                                       |
| ſe              | 11124                                 | 661.017-3-7                                                                                                           |                                       |
|                 |                                       | 17 FORMAT LEVEL SWIFL ANGLE SETTING                                                                                   |                                       |
| a               | 1. 24                                 | 00 2 1 I=1+1/                                                                                                         |                                       |
| L<br>L          | 5.627                                 | PEAN 26 NOT AND PEAN UVAUVA                                                                                           |                                       |
| Ť               | 28                                    | 24 FEALAT (7E9.3)                                                                                                     |                                       |
| ň               |                                       |                                                                                                                       |                                       |
| q               |                                       |                                                                                                                       |                                       |
| <u><u>o</u></u> |                                       |                                                                                                                       | ····-                                 |
| nib             | 1 O.L                                 |                                                                                                                       |                                       |
| Ĭŧ              | 11 C                                  |                                                                                                                       |                                       |
| ď               | 113 <b>1</b>                          | $\frac{1}{100}$                                                                                                       |                                       |
| ≶               | 274                                   | $p_{2} = S_{1} + Z_{2} T_{1}$                                                                                         |                                       |
| Ē               | 5.535                                 | $PPS=S \pm \frac{1}{2}7.5711/12_{0}0$ (20)                                                                            |                                       |
| õ               | 11 76                                 | V=\$0%T(2),**6*P0\$*A)                                                                                                |                                       |
| ≒               |                                       | V/=///////////////////////////////////                                                                                |                                       |
| pe              | 7 52                                  | VT=V*S11(A*16+3×1427)80.(c)                                                                                           |                                       |
| ñ               | 1 70                                  | $PD^{(1)}=(1, 1, 2, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$                                            |                                       |
| nis             |                                       |                                                                                                                       |                                       |
| <u>si</u>       | · · ·                                 |                                                                                                                       |                                       |
| ° n             | 4                                     |                                                                                                                       |                                       |
| ·               | · · · · · · · · · · · · · · · · · · · | $\psi(\mathbf{v}) = \mathbf{v} \cdot \mathbf{v} \cdot \mathbf{v} \cdot \mathbf{v}$                                    |                                       |
|                 | 4.4                                   | (Four Horde Vision)                                                                                                   |                                       |
|                 | 1. Z.L.                               | DETUT 2749131408498349140440449864905                                                                                 |                                       |
|                 | 1.15                                  | 27 FULMST (OFP,3)                                                                                                     | •                                     |
|                 | 2044                                  | PRIME 29+DIST, DR, V, VA, VT, DV, DVA, DVT, DPDM                                                                      |                                       |
|                 | et: 4 <b>7</b>                        | 29 FORMAT (9F9-3)                                                                                                     |                                       |
|                 | 1 49                                  | DATPAY(1) = DE                                                                                                        | ŝ                                     |
|                 | 129                                   | $\nabla(t) : : : : A \setminus \{1\} = : : A$                                                                         | ∞                                     |
|                 | 1.15                                  | $V \land A \in \mathcal{D} \land (T) = \cap V \land$                                                                  |                                       |
|                 | Ξ1                                    | $VTA(CA(T) = \nabla VT$                                                                                               |                                       |
|                 | いという                                  |                                                                                                                       |                                       |
|                 | 22                                    |                                                                                                                       |                                       |
|                 | et, 53                                | PHINER (ITERNO                                                                                                        |                                       |
|                 | 01 54                                 | 6.1928 (CTTT=0.666)                                                                                                   |                                       |

|                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  | AF | PENDIX | A-3 co | ntinued | 4 |
|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|----|--------|--------|---------|---|
| ADSS 3D CONTINUE<br>2056 35 CALL LINE (DARPAY,VAAERA,J0,1,1,K)<br>2057 50 CONTINUE<br>2057 50 CONTINUE<br>2056 55 CALL PLPT (7,6,0,0,-3) | CCS0         64 CONTINUL           UDAR         99 CALL SYMPEL (8,040,0,04,22HUWE SCHNEIDER JOB PLOT,90,0,22)           UDAR         14 CALL SYMPEL (8,04,0,04,0,04,22HUWE SCHNEIDER JOB PLOT,90,0,22)           UDAR         14 CALL SYMPEL (8,04,0,04,0,04,02)           UDAR         14 CALL PLOT (2,0,0,0,099)           UDAR         110 CALL PLOT (2,0,0,099)           UDAR         110 CALL PLOT (2,0,0,099)           UDAR         110 CALL PLOT (2,0,0,099) |  |    |        |        |         |   |

|                                                                                                                                                 |                                                             |                                                                                                                                                                                          |                                                                                                                                                                                                 |                                                                                                                                                                                                                    |                                                                                                                                                                      | APPENDIX                                                                                                                                                                | A-4                  | 35 |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----|
|                                                                                                                                                 | 2C. 5₀ΰ.θ₀υ. DΔϜΡΑΥ(9).D                                    | CE,+21.6°9,90°7,TARRAY(9)<br>ENCE,Vº0,16)<br>M,0°0,12)                                                                                                                                   |                                                                                                                                                                                                 |                                                                                                                                                                                                                    |                                                                                                                                                                      | ร JOR PLDT,9f ู0,22)                                                                                                                                                    |                      |    |
| <pre>C INLET TURRULENCE PROFILE<br/>PINGUSION IRUE(1000),DAFRAY(IC),TARRAY(LO<br/>1) CALL PLOTS (IRUE,1000)<br/>20 CALL PLOTS (IRUE,1000)</pre> | F(0 6.5 L=1,4                                               | ZARGAY(J/)<br>22 CALL AXTS (",A,Je,J,21HPERCENTAGE TUREULEN<br>),TTRPAY(J())<br>25 CALL SYPECL (1,5,6,5,9,14,16HIALET TURBUL)<br>23 CALL SYPECL (1,5,6,25,0,14,12HDISTRIBUTIO<br>POLYTIK | 16 FORMAT (JUH DIFFUSER)<br>10 57 k=1,5<br>21 FORMAT (JH SWIFL ANGLE SETTING)<br>17 FORMAT (JH SWIFL ANGLE SETTING)<br>27 FORMAT (JH SWIFL ANGLE SETTING)<br>27 FORMAT (JH SWIFL ANGLE SETTING) | <pre>Ja F1124AT (TE325)<br/>COTV=(WNC #t2+290,1)/5,27<br/>PT4CTU=76, P4WOC #VPHS/SGETV<br/>PT4CTU=76, P4WOC #VPHS/SGETV<br/>PCTUT 16,01ST, VDC,VRWS,SGRTV,PERCTU<br/>JE F1:4AT (FF6,2)<br/>F1=3 5<br/>F1=3 5</pre> | Fileo[+0]ST<br>DC = (245[)/Lo 5<br>DATEAY(1)=DG<br>TAEAY(1)=DG<br>3. (DVTFWC<br>3. (ALL -117) (FAPEAY, TAPAAY, P.1.1, K)<br>3. (ALL -117) (FAPEAY, TAPAAY, P.1.1, K) | 5) CONTRUE<br>55 CALL PLOT (100,004,0-3)<br>6) CONTINUE<br>9) CALL SYMPOL (200,004,0-34,22HUWE SCHNEIDE<br>105 CALL PLOT (200,00,0-099)<br>105 CALL PLOT (200,00,0-099) | II) CALL EXIT<br>Run |    |
|                                                                                                                                                 | 0.014<br>0.015<br>0.015<br>0.017<br>0.018<br>0.010<br>0.010 | tice<br>Stee                                                                                                                                                                             | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                     |                                                                                                                                                                                                                    | 900                                                                                                                                                                  | 5000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000                                                                                                            | αυτή<br>αυτή<br>τ    |    |

|                                                                                                                                                  |                        |                                                                                                                                                                                                                                                                                                                    |                                                                                             |                                           | •                                                             |                                                                     |                                               |                                 |                                                        |                               | I                                                      | PP   | ENDIX | A-5 | 36 |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------|---------------------------------|--------------------------------------------------------|-------------------------------|--------------------------------------------------------|------|-------|-----|----|
|                                                                                                                                                  |                        |                                                                                                                                                                                                                                                                                                                    |                                                                                             |                                           |                                                               |                                                                     |                                               |                                 |                                                        |                               | •                                                      |      |       |     |    |
| C 5TATIC PPERSUPTION FIGHTMINEDUSER<br>Priversion Tauditation, prebavile), paranvile)<br>To fill plots (Taugity 20)<br>20 fill plot (0,0,1,5,-2) | r                      | <pre>&gt;&gt; C*C* 4 (12) = 1,0<br/>&gt;&gt;&gt; C*L_ A VIS (1,0,0,0,040] STANCE,→8,5,0,0,0 ARPAY (11), FASPAY (12))<br/>&gt;&gt;&gt; C*L_ A VIS (1,0,0,0,0451ATIC PEFSCURE,+1<sup>4</sup>,6,C,9%,0,PASEAY (11), PAF</pre> >>> C*11, A VIS (20,0,0,0,0451ATIC PEFSCURE,+1 <sup>4</sup> ,6,C,9%,0,0,0452AY (11),0AF | AATTED<br>25 CALL SYMMER (1,5,44,5,0,14,334STATIC PRESSUPE RISE DISTRIBUTION, P.A.<br>2,33) | ις επότεις[α]<br>ιδείνει,τ<br>ιποιείνει,τ | PSIVE 12<br>17 FORVAT (214 SKIPL ANGLE SFTING)<br>PD P1 1±110 | υςγινορέμοτες,σελισεμιρες<br>26 Εραγντ (γεσια)<br>26 ΥΞ(Γοςλεραιος) | DOTYT TTYPOISTPSG,PSC,PAV<br>11 FOONT (TTO.3) | CtorstY(I)≝CT<br>Datarty(I)≝DAV | AN CRUTINU:<br>De CALL LING (DAFRAV. PARRAV. 19.1.1.K) | ss could alot (1(°,\%,^,+,a)) | VERTE STOLE (* 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. |      |       |     |    |
| 5001<br>1000<br>1000                                                                                                                             | マンロン<br>おうから<br>そこ(15) |                                                                                                                                                                                                                                                                                                                    | etc)                                                                                        |                                           |                                                               | 6100<br>2100                                                        | 1313                                          | 1122<br>1220                    | 1 5000                                                 | 5210<br>1000<br>1000          |                                                        | 2644 |       |     |    |

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

|   | рт 95,510° 5&PEA(12),PSAFeA(12),PDAFEA(22),VAFPA(12),VAAFRA(12),VTA<br>15CA(12)<br>PO 62 J=1,40<br>VO 1.1 =2.10<br>DL=1,94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|   | 01 = 15 1 74<br>Λ = 7 2 1 74<br>Λ = 12 1 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
|   | 0 101-01 [ ( E V 2 1 )<br>0 101-01 [ ( E V 2 1 )<br>0 101-01 [ ( E V 2 1 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|   | PST=PS* - 7-711<br>PpS=S* - 7 -711<br>Pp=S* - 7 - 71712.<br>V=S^+ - 7 - 71712.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •<br>•<br>• |
|   | ( °0 € 7 / 2 0 × 2 × 3 / 2 € 7 / 3 0 × 2 × 3 / 2 € 7 / 3 0 × 2 × 3 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
|   | 0'1'!T 0,0'55,055,057,07,00,0,0'40,0'<br>0 F(1'AT (2F2 3,//)<br>527-2410-200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|   | V1.1201(T)=V2<br>VT.201(T)=VT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •           |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| - | 00000542V/000(1)%5/00A(1)<br>0000054V/0004(1)%2000A(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |
|   | 05/01/24/11/24/11/2004F24(1)<br>25/01/24/12/24/11/2014/11/2014/11/2014/11/2014/11/2014/11/2014/11/2014/11/2014/11/2014/11/2014/11/2014/11/2014/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -           |
|   | (1)VaUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1)/AUVA=(1) | F           |
|   | ESTIT 2., S. F. K. (1), P. S. R. F. K. (1), P. B. K. K. (1), VAR P. A. (1), VIAR R. A. (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PE          |
|   | 25111 12,5555411), PFCS, PRCPS, PEAPO, PROV, PRCVA, PROVT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PEN         |
|   | () FOR MAT (FELX) //)<br>3. FRUTTHUL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DI          |
| • | $\Lambda_{2} = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x           |
|   | $\nabla c = c = c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1           |
|   | $\chi = \chi^{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>A</b> -( |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6           |
|   | v. \$0%=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |
|   | ΔΔΞΞΔΑΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |
| • | VA?=VLP4VASFPL(])*PS/PF5A(])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
|   | Variation and the second of th |             |
|   | V-V1=VAV+VAAFPA(I)*VAAFFA(I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
|   | VAVEXVEVEVETUS VEVERALT)<br>VASEDA - VASEDA VASEDA LTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3           |
|   | No a Vice Processing and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7           |
|   | $k_P = VAP / Vk SUP$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |

|                           |                      |                         |     |     |   |   | • | •                                                                                           | 1     |      |                                       |                                                    | -            |     |     | 38          |
|---------------------------|----------------------|-------------------------|-----|-----|---|---|---|---------------------------------------------------------------------------------------------|-------|------|---------------------------------------|----------------------------------------------------|--------------|-----|-----|-------------|
|                           | -                    | •                       |     |     |   |   |   |                                                                                             | ;     | APPE | NDIX                                  | A-                                                 | - <u>6</u> ( | ont | nue | 1           |
| •                         |                      | *<br>*<br>*             |     |     | • |   |   | -<br>-<br>                                                                                  | 9<br> |      |                                       | -                                                  |              |     |     |             |
|                           |                      | •                       | -   |     |   |   |   |                                                                                             |       |      |                                       | -                                                  |              |     |     |             |
|                           |                      |                         |     |     |   |   |   | **************************************                                                      | •     |      |                                       |                                                    |              |     |     | *<br>•<br>• |
|                           |                      |                         |     |     |   |   |   | 4<br>                                                                                       |       |      | · · · · · · · · · · · · · · · · · · · |                                                    |              |     |     |             |
|                           |                      |                         |     |     |   | i |   |                                                                                             |       |      |                                       |                                                    |              |     |     |             |
|                           | Ţ                    |                         |     | •   |   |   |   |                                                                                             |       |      |                                       | tr in ing k a                                      |              |     |     |             |
|                           |                      |                         |     |     |   |   |   | and                                                     |       |      |                                       |                                                    | İ            |     |     |             |
|                           |                      |                         | 7   | •   |   |   |   |                                                                                             |       |      |                                       |                                                    |              |     |     | 4           |
|                           |                      |                         |     |     |   |   |   |                                                                                             |       |      |                                       |                                                    | İ            |     |     | 1<br>       |
| M                         |                      |                         |     |     |   |   |   |                                                                                             |       |      |                                       |                                                    |              |     |     |             |
| T , VASI                  |                      |                         |     | •   |   |   |   |                                                                                             |       |      |                                       |                                                    |              |     |     |             |
| Λ, ΥΑΥ                    |                      | (TNSI)                  |     | 1   |   |   |   |                                                                                             |       |      |                                       |                                                    |              |     |     |             |
| AV <b>,</b> V AV          |                      | DEFFIC                  |     |     |   |   |   | n verani                                                                                    |       |      |                                       |                                                    | 1            |     |     |             |
| Υ, Ωα,                    | ۲T                   | ЕРУ СІ                  |     |     |   |   |   | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |       |      |                                       | - Yangi san sa sa sa sa sa sa sa sa sa sa sa sa sa |              |     |     | a ta t      |
| V. 9 1 V.                 | , h.V.A.             | F1 COV                  |     |     |   |   |   |                                                                                             |       |      |                                       |                                                    | ;            |     |     | :           |
| 2 4 A C                   | VN, Ja               | SSURF                   |     |     |   |   |   | *                                                                                           |       |      |                                       | •                                                  |              |     |     | ;           |
| 1) V 3 3<br>5 5 V (1      | , WP . W             |                         |     |     | ; |   |   |                                                                                             | •     |      |                                       | · ·                                                |              |     |     |             |
| 147/17<br>147/10<br>15,51 | 1441<br>1447<br>1447 | 116) 1<br>20,05         |     |     |   |   |   |                                                                                             |       |      |                                       |                                                    | ;            |     |     |             |
| 111-1-0<br>151=K          | 18134<br>18134       | 14120<br>14120<br>14120 |     |     | - |   |   | . •                                                                                         |       |      |                                       |                                                    |              |     |     |             |
|                           | i ii                 | 75                      | 5.4 |     |   |   |   |                                                                                             |       |      |                                       |                                                    |              |     |     |             |
|                           |                      |                         |     |     |   | • |   |                                                                                             |       |      |                                       |                                                    |              |     |     |             |
| 4 C                       |                      | 199<br>199<br>199       | 199 | 11  |   | • |   |                                                                                             |       |      |                                       |                                                    |              |     |     |             |
| ·                         | . =                  |                         |     | 2.2 |   |   |   |                                                                                             |       |      |                                       |                                                    |              |     |     |             |

## APPENDIX B.

# DIFFUSER EFFECTIVENESS

The diffuser effectiveness is defined as the ratio of the actual pressure recovery factor to the ideal pressure recovery factor.  $n = \overline{C_{PR}} / C_{PR}$ , (B-1)



The actual pressure recovery factor is defined as the ratio of the mass weighted static pressure rise from the inlet to the diffuser outlet to the average dynamic pressure at the inlet.

$$C_{PR} = \frac{P_2 - P_3}{P_{DYR}} = \frac{\text{STATIC PRESSURE RISE}}{\text{DYNAMIC HEAD AT INLET}}$$
 (3-2)

In the present study, the ideal pressure recovery factor has been defined on three assumptions. First, the flow is considered to be a free vortex. The streamlines in a free vortex flow are concentric circles about the center of the vortex and the velocity at any point in such a flow field is given by the following two components.

$$V_{4} = K/r \qquad (B-3)$$
$$V_{4} = 0$$

The free vortex motion is irrotational except at the centre, wher  $V_t$  approaches infinity. Secondly, the flow is in radial equilibrium and, thirdly, there are no losses. Then from continuity

$$A, V_{\alpha_1} = A_{\alpha_2} V_{\alpha_2} \qquad (3-4)$$

from Bernoulli

$$\frac{P_{1}}{\gamma} + \frac{1}{2} \frac{N^{2}}{\gamma} = \frac{P_{1}}{2} + \frac{1}{2} \frac{N^{2}}{2} = C \qquad (B-5)$$

from Free Vortex Condition

$$r_{1}V_{2} = r_{2}V_{2}$$
 (B-6)

The absolute velocity can easily be written in terms of its components: the axial velocity and the tangential velocity. The axial velocity is independent of radius; (assuming uniform flow); the tangential velocity is dependent on radius. Therefore,

$$V^{2} = V_{a}^{2} + V_{+}(r)^{2}$$
 (B-7)

Equation 5-5 becomes,

 $\frac{P_{1}(F)}{F} + \frac{1}{2} \left( V_{a_{1}}^{2} + V_{a_{1}}(F)^{2} \right) = \frac{P_{1}(F)}{F} + \frac{1}{2} \left( V_{a_{2}}^{2} + V_{a_{2}}(F)^{2} \right) \quad (2-8)$ 

Rewritting,

 $\frac{P_2(r) - P_i(r)}{V} = \frac{1}{2} \left\{ \left( V_{a_1}^2 - V_{a_2}^2 \right) + \left( V_{a_1}(r)^2 - V_{a_2}(r)^2 \right) \right\} \quad (B-9)$  $= \frac{1}{2} \left\{ \frac{k_{0}^{2} \left(1 - \frac{k_{0}^{2}}{k_{0}^{2}}\right) + \frac{k_{0} \left(r\right)^{2}}{k_{0} \left(r\right)^{2}} + \frac{k_{0} \left(r\right)^{2}}{k_{0} \left(r\right)^{2}} \right) \right\} (3-10)$ 

From Equation (G-4)

$$V_{a_2} = \frac{R_1}{R_2} V_{a_2}$$

From Equation  $(\beta - 6)$ 

 $V_{\frac{1}{2}}(r) = \frac{r_1}{r_2} V_{\frac{1}{2}}(r)$ 

Substituting these values into Equation (B-10) $\frac{P_2(r) - P_1(r)}{\gamma} = \frac{1}{2} \left( \frac{V_{4_1}^2}{F_2^2} + \frac{P_4^2}{F_2^2} + \frac{V_4(r)^2}{F_2^2} + \frac{P_4(r)^2}{F_2^2} \right) \left( \frac{B-11}{F_2^2} \right)$ 

The mass-weighted and non dimensional form of Equation ( 8-11) is  $\overline{B(H)} - \overline{R(H)} = \left\{ \begin{pmatrix} \overline{V_0} \\ \overline{U} \end{pmatrix}^2 \begin{pmatrix} I - \overline{R_1^*} \\ \overline$ Where r<sub>im</sub> and r<sub>em</sub> are mean radii. From the typical velocity triangle Ngshown in Figure, where is defined W as a swirl angle, it is readily Va. shown that (B-13) Va=Vcos

V<sub>t</sub>=Vsin

(B-14)

Substituting these values into Equation (B-12)

 $\frac{\overline{P_{i}(r)} - \overline{P_{i}(r)}}{\frac{1}{2}PV^{2}} = \cos^{2}\overline{\psi_{i}}\left(1 - \frac{R_{i}^{2}}{A_{i}^{2}}\right) + \sin^{2}\overline{\psi_{i}}\left(1 - \frac{r_{i}}{r_{i}}\right) \quad (B-15)$ 

42

Equation B-S is the final expression for the ideal pressure recovery factor, based on the condition of a free vortex flow. The expression differs considerably from the one for ideal one-dimensional flow, because it is not expressed wholly in terms of the diffuser geometry, but also contains the mass-weighted inlet swirl angle. However, at zero-swirl, the expression reduces to the expression for ideal one-dimensional flow.

 $\frac{\overline{E}(r) - \overline{P}(r)}{4 \gamma \gamma r^2} = 1 - \frac{1}{\rho R^2}$ (2-16)

In order to be able to apply the expression, an expression has to be found for the mean radii,  $r_{1m}$  and  $r_{2m}$ .

Consider the variation in the radial direction, in a typical cross-sectional plane. From Bernoulli,

$$\frac{P(r)}{p} + \frac{1}{2}V^2 = constant = C \qquad (B-17)$$

From which

 $P(r) = CY - \sum_{n=1}^{\infty} V^{2}$  $= CY - \sum_{n=1}^{\infty} (V_{n}^{2} + V_{n}(r)^{2})$ 

From Free Montex Flow

K.r=K (3-19)

Substituting Equation 8-19 into Equation 8-18,

$$P(r) = CP - \frac{\gamma}{2} \left( \frac{V_a^2 + K}{r^2} \right)$$
  
=  $CP - \frac{PV_a^2}{2} - \frac{\gamma}{2} \frac{K^2}{r^2}$  (B-20)

Defining

$$M = CP - \frac{PV_a^2}{2} \qquad (B-21a)$$

Equation 22 then becomes

 $N = P R^2/2$ 

$$P(r) = M - N_{ra}.$$

The mass-weighted value of P(r) is found in the plane,

$$\overline{P} = \frac{\int_{r_{in}}^{r_{out}} P(r) 2\pi r dr V_{a} P(r) 2\pi r dr}{\int_{r_{out}}^{r_{out}} 2\pi r dr V_{a} r} = \frac{\int_{r_{in}}^{r_{out}} P(r) 2\pi r dr}{\pi (r_{out}^{2} - r_{in}^{2})} (B-23)$$

$$\overline{F} = 2\pi \int_{r_{in}}^{r_{out}} (m - \frac{N_{e}}{r_{e}}) r dr$$

$$\overline{Tr} (r_{out}^{2} - r_{in}^{2})$$

$$= M - N \frac{2 \ln (r_{out} + r_{in}^{2})}{(r_{out}^{2} - r_{in}^{2})} (B-24)$$

However from Equation B-22 .

$$\overline{P} = M - N/r_m^2 \qquad (B-25)$$

Equating Equations 224 and 225

$$r_m^2 = \frac{(r_{out}^2 - r_{in}^2)}{2\ln(r_{out}/r_{in})} \qquad (B-2b)$$

Therefore, sumarizing

$$C_{PRF} = \frac{\overline{P_2} - \overline{P_1}}{\frac{1}{2}\sqrt{P_1^2}} = \cos^2 \overline{\mathcal{P}_1} \left(1 - \frac{\overline{P_1^2}}{\overline{P_2^2}}\right) + \sin^2 \overline{\mathcal{P}_1} \left(1 - \frac{\overline{P_1^2}}{\overline{P_2m^2}}\right)$$

$$Where \quad r_m^2 = \frac{\left(r_{2m^2} - r_{1m^2}\right)}{\overline{\mathcal{P}_1n} \left(r_{2m^2}/r_{1m}\right)}$$
(B-27)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(B-216) (B-22)

#### APPENDIX C

## DESIGN OF THE SWIRL GENERATOR

The swirl in the annulus is created by a set of vanes arranged radially at the inlet to the annulus. The vanes have an NACA 0012 cross-section and a three inch chord. The angle of the airfoils to the incoming flow may be varied from 0 degrees (no swirl) to 45 degrees. The vane arrangement and the inlet contours are shown in the figure on the next page. This type of arrangement introduces a vortex, similar to a free vortex, into the entering flow.

The vanes have a maximum tip diameter of twentyfour inches.

In order to establish a well behaved swirl or vortex, it was necessary to design a flow contour block. The incoming flow must be continuously accelerated up to the annulus velocity in order to avoid separation and consquent disruption of the swirl.

An analysis was carried out and was subsequently modified by United Aircraft of Canada Limited.



FIGURE C-1 SWIRL VANE UNIT



FIGURE C-2 FLOW CONTOURS

By the continuity equation G=VA

$$\frac{1367}{60} = 7 \times \overline{W} (4.0^2 - 2.5^2) \qquad (C-1)$$

$$V = \frac{1867 \times 1444}{60 \times 30.7} = 146 \text{ ft/sec} \quad (C-2)^{-1}$$

46

.: the velocity at the exit plane is to be 146.0 ft/sic From these conditions and supposing an inlet radius (r<sub>2</sub>TIP) of 11" the angular momentum and continuity equations are used to find the inlet opening "3".

$$T = PQ\left(r_2 V_2 \cos \alpha_2 - r_1 V_1 \cos \alpha_1\right) \quad (C-3)$$

where T becomes zero as in passages where there are no vanes.

$$PQr_2V_2\cos\alpha_2 = PQr_1V_1\cos\alpha_1 \quad (c-4)$$

$$m_2 = \alpha_1 = 0^\circ \quad (\alpha \text{ is the swirl angle})$$

$$r_2V_2 = r_1V_1 \quad (c-5)$$

with

This rV = constant, which is free vortex motion with the tangential component of velocity varying inversely with radius.

Taking the mean value for  $r_2$  of 3.25"  $V_1 = 3.25 \times 146 \times 12/(11\times 12) = 443.0444$  Affsec and  $A = \frac{10.27 \times 1444}{60 \times 48.0444} = 34777B$  (C-6) with r = 11"  $2 = 1067 \times 1^{10}$   $G = 1007 \times 10^{10} \times 277 \times 11$  = 1.503 inches similar calculations for r = 13" yeild 3 = 1.503".

The dust profile subvitted by the writer (called "Torneider analycic") was get through the U.A.C.I. computer without any changes. The program used was UACL-D1118 :MULTIPLE PLANE COMPLETE RADIAL EQUILIBRIUM.

From the program output the velocity and pressure distributions were plotted versus sweep angle O<sup>o</sup> for various planes as seen on profile (1), Figure (12A). The velocity distribution, for O<sup>o</sup> swirl, Figure (12B), shows a fairly smooth acceleration along the tip contour which by itself would be acceptable. The hub velocity, on the other hand shows a peak at plane 4 and a sharp drop at plane 5. This drop is accompanied by a sharp increase in static pressure at plane 5 as seen in Figure (12C). The increase in static pressure is due mostly to the high curvature change from plane 4 to 5 ( increase in curvature) hence the velocity in this region is lower (decreased).

Although the acceleration along the tip contour is smooth, the diffusion factor, defined as

$$D_{\text{TIP}} = 1 - \frac{\text{Velocity out}}{\text{Velocity max}}$$
 (C-7)

has a value of 0.0232.

This in itself is far from critical but in view of the flow conditions at the hub there is a possibility of flow distortion in the exit portion of the duct.

In the case of 45° swirl at the inlet, with the same profile, the flow conditions are greatly improved. As can be seen from Figure (12D), the velocity along both walls increases smoothly and the hump on the duct hub contour

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

velocity curve disappears resulting in much improved flow conditions.

## The Modified Analysis by United Aircraft Limited

The analysis in this case considers the same flow parameters and geometric conditions as in the Schneider analysis but differs in the duct profile. It was felt that the Schneider profile did not turn the flow early enough upstream but rather turned very late, as shown by the high curvatures at planes 4 and 5.

A comparison of the UACL profile, Profile 2, Figure (12F), and Profile 1, Figure (12A), show earlier turning in Profile 2 resulting in a continuous acceleration throughout the entire length of the duct. The advantage of early turning of the flow is that if any imperfections in the contours occur in a region of high curvature, the flow will feel these effects much more than in a region where curvatures are low. Therefore, with early turning, the flow can use the rest of the duct to stabalize itself, whereas when the flow is turned in the late stages there is no time for stabalization. Again this analysis was done for both  $0^0$  and  $45^0$  swirl angles at the inlet.

48

#### ERROR ANALYSIS

#### Accuracy of Measurements

The multitube tilting manometer used in the present investigation had a reading accuracy of 0.10 inches of water, and the radial position of the probe could be read to an accuracy of 0.01 inch. From wind tunnel calibration tests, using the test probe and a standard pitot static probe calibration curves were obtained for the static pressure and total pressure readings taken with the two probes.

Due to some inevitable fluctuations of the manometer readings, it was sometimes necessary to select an average reading. Secondly the manometer had sometimes slow response to the applied pressures. Care was taken to wait for some time before taking the readings. The static pressure tube was susceptible to greater error as non-alignment with the flow could cause greater error. It was more sensitive to non- alignment than the total pressure tube. It was estimated that the accuracy of the total pressure measurements was  $\pm 0.20$ "H<sub>2</sub>O and that of the static pressure measurements was  $\pm 0.30$ "H<sub>2</sub>O.

The error in the pressure recovery factor is analyzed below by incorporating the Uncertainity Analysis Standard Equation:

 $W_{p} = \left\{ \left( \frac{\langle \mathcal{R} \mathcal{R} \mathcal{W}_{i} \rangle^{2}}{\langle \mathcal{A}_{\mathcal{X}_{i}} \mathcal{W}_{i} \rangle^{2}} + \left( \frac{\langle \mathcal{R} \mathcal{R} \mathcal{W}_{i} \rangle^{2}}{\langle \mathcal{A}_{\mathcal{X}_{i}} \mathcal{W}_{i} \rangle^{2}} \right)^{2} + \cdots - \left( \frac{\langle \mathcal{R} \mathcal{W}_{i} \rangle}{\langle \mathcal{A}_{\mathcal{X}_{i}} \mathcal{W}_{i} \rangle} \right)^{2} \right\}^{\frac{1}{2}} (\mathcal{D} - 1)$ 

49

where R is a given function of the independent

variable x<sub>1</sub>, x<sub>2</sub>, x<sub>3</sub> ----- x<sub>n</sub> w<sub>R</sub> is the uncertainity in the result w<sub>1</sub>, w<sub>2</sub>, w<sub>3</sub> ----- w<sub>n</sub> are the uncertainities in the independent variables.

Equation for the Pressure Recovery Factor:

$$C_{PR} = \frac{P_{S_{P}} - P_{S_{I}}}{P_{Dyn_{I}}} = \frac{P_{S_{P}} - P_{S_{I}}}{P_{T_{I}} - P_{S_{I}}}$$
 (D-2)

Since  $P_{s2}$  was assumed to be equal to the ambient pressure,

$$P_{S2} = 0$$
 gauge

Therefore,

$$C_{PR} = -\frac{P_{S_{1}}}{P_{T_{1}} - P_{S_{1}}}$$
 (D-3)

Then, applying the General Equation for the Uncertainity Analysis,

$$\omega_{CPR} = \left\{ \left( \begin{array}{c} \Delta C_{PR} & \omega_{F_{s_{i}}} \end{array} \right)^{2} + \left( \begin{array}{c} \Delta C_{P2} & \omega_{F_{s_{i}}} \end{array} \right)^{2} \right\}^{2} \left( \begin{array}{c} D - 4 \end{array} \right)$$

Upon differentiation:

$$\frac{d}{d} \frac{C_{PR}}{P_{T_i}} = \frac{d}{dP_{T_i}} \left( -\frac{P_{S_i}}{P_{T_i} - P_{S_i}} \right) = -\frac{P_{T_i}}{(P_{T_i} - P_{S_i})^2} \quad (D-5)$$

$$\frac{d}{d} \frac{C_{PR}}{P_{T_i}} = \frac{d}{dP_{T_i}} \left( -\frac{P_{S_i}}{P_{T_i} - P_{S_i}} \right) = -\frac{P_{S_i}}{(P_{T_i} - P_{S_i})^2} \quad (D-6)$$

As an example, consider Diffuser A at maximum swirl condition:  $P_{-1} = -6.017$ " H<sub>2</sub>O,  $P_{-2} = 0$ , and  $P_{-1} = 2.433$ " H<sub>2</sub>O. Then

$$\frac{C_{PP}}{\Delta P_{S_{1}}} = \frac{-2.433(.707)}{[(2.433)(.707)-(-4.017)(.707)]^{2}} = -\frac{2.433}{50.5}$$

 $W_{P_{S_i}} = \pm .10 \pm .20 = \pm .30''$  $W_{P_{T_i}} = \pm .10 \pm .10 = \pm .20''$ 

The error in the Pressure Recovery Factor is

 $W_{C_{PR}} = \left\{ \left( -\frac{2.433}{50.5} \times .30 \right)^2 + \left( -\frac{4.26}{50.5} \times .20 \right)^2 \right\}^{\frac{1}{2}}$ = 2.2 % From windtunnel calibration tests it was found that the

From windtunnel calibration tests it was found that the accuracy of the yaw probes was approximately  $\pm 2.0^{\circ}$ .

A similar error analysis was carried out for the axial velocity.

 $V_{a} = V \cos \alpha \qquad (D-7)$  $= \left(\frac{2g}{I_{a}}\left(P_{7}-P_{s}\right)\left(\frac{\gamma_{I_{a}}}{I_{a}}-1\right)\right)^{\frac{1}{2}}\cos \alpha$  $= \left(\frac{2g}{I_{a}}\left(P_{7}-P_{s}\right)\left(\frac{\gamma_{I_{a}}}{I_{a}}-1\right)\right)^{\frac{1}{2}}\cos \alpha$ = 70 (P7-P3)= COSX

where  $P_{\rm T\!\!\!\!\!\!\!\!\!\!\!\!\!\!}$  and  $P_{\rm S}$  were measured in inches of

water in a manometer.

Applying the Uncertainity Analysis, one obtains

| WVa | = { ( <u>~ 1/2</u><br>~ <u>R</u> | $(W_{3})^{2} + \left(\frac{2}{2} \frac{1}{p_{T}}\right)^{2}$ | $W_{P_{T}}^{2}^{2} + \left(\frac{\lambda V_{a}}{\lambda \alpha}\right)^{2}$ | $w_{z}^{2}$ | (0-9) |
|-----|----------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------|-------------|-------|
|-----|----------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------|-------------|-------|

where

$$\frac{\sqrt{V_{a}}}{\sqrt{P_{s}}} = -70 \cos \alpha \pm (P_{T} - P_{s})^{-\frac{1}{2}} \qquad (D - 9)$$

$$\frac{\sqrt{V_{a}}}{\sqrt{P_{s}}} = 70 \cos \alpha \pm (P_{T} - P_{s})^{-\frac{1}{2}} \qquad (D - 10)$$

$$\frac{\sqrt{V_{a}}}{\sqrt{P_{T}}} = -70 (P_{T} - P_{s})^{\frac{1}{2}} \sin \alpha \qquad (D - 11)$$

$$\frac{\sqrt{V_{a}}}{\sqrt{2}} = -70 (P_{T} - P_{s})^{\frac{1}{2}} \sin \alpha \qquad (D - 11)$$

Considering again Diffuser A at maximum swirl condition it is found that

$$\frac{\alpha V_a}{\alpha P_s} = -12.8, \quad \frac{\alpha V_a}{\alpha P_s} = 12.8, \quad \frac{\alpha V_a}{\alpha P_s} = -48.0$$

And the Uncertainity Values are

WA = ±.30" Way = ± .20" W2 = ±2°

The error in the Axial Velocity is

 $W_{V_{0}} = \left\{ \left( -12.8 \times .30 \right)^{2} + \left( 12.8 \times .20 \right)^{2} + \left( -\frac{68.0}{57.0} \times 2.0 \right)^{2} \right\}^{\frac{1}{2}}$ 

= 5.2%

#### APPENDIX-E

### MASS-WEIGHTED AVERAGES

The mass weighted average Q is defined as



where Q could be  $\mathcal{P}, \mathcal{P}$  or  $\mathcal{P}$  and m is the mass flow across any section.



or

For incompressible and axisymmetric flow

 $\overline{Q} = \frac{\int_{r_i}^{r_i} VQrdr}{\int_{r_i}^{r_i} Vrdr} \qquad (E-3)$ where V is the velocity
in the axial direction.

(E-2)

From the measured value of 2, 2 and 4, the mass weighted averages were obtained by a step by step numerical integration. A computer program was prepared to carry out this integration.
#### REFERENCES

- (1) Brighton, J.A. Jones, J. B.
- (2) Cockrell, David J. King, A. L.

( 3) Eiffel, G.

(4) Gibson, A.H.

( 5) Hensler, H.J.

Howard, J.H.G.

Fully Developed Flow in Annuli ASME Paper # 64 FE2

Flow Through Diffusers Ruhr - Universität Fochum Lehrstuhlfür Strömungs maschinen

Notes on the Calculation of the Efficiency Coefficients of Air Channels, Paris, 1918

On the Flow of Water Through Pipes and Passages Having Converging or Diverging Boundaries Proc. Royal Society, Series A, Vol. 83, No. A563, 1910, pp. 97-116.

Flow Regimes and Performance of Straight Annular Diffusers Having Equal Inner and Outer Cone Angles Research Report No. 3, Mechanical Engineering Department, University of Waterloo, August, 1967

(6) Johnston, I. H.

( 7) Kline, S.J.

(8) Kreith, Frank Sonju, O.K.

(9) McDonald, A.T., Fox, R. W.

(10) Patterson, G.N.

(11) Peters, H.

The Effect of Inlet Conditions on the Flow in Annular Diffusers Aeronautical Research Council Current Paper No. 178, 1954.

On the Nature of Stall Journal of Basic Engineering, Sept. 1969 Trans. ASME, Series D.

The Decay of a Turbulent Swirl in a Pipe J. Fluid Mech (1965), Vol. 22, Part 2, pp.257-271.

An Experimental Investigation of Incompressible Flow in Conical Diffusers ASME Paper No. 65 FE25.

Modern Diffuser Design Aircraft Engineering, Vol. 10, p.267, Sept. 1938.

Conversion of Energy in Cross-Sectional Divergences Under Different Conditions of Inflow NACA TM 737, 1934

- (12) Schartz, I.R.
- (13) Sorran G.

Klomp, E.

(14) Srinath, T.

(15) Thornton-Trump

(16) United Aircraft

Investigations of an Annular Diffuser-Fan Combination Handling Rotating Flow NACA RM L 9B20 , 1949.

Experimentally Determined Optimum Geometries for Retilinear Diffusers With Rectangular, Conical or Annular Cross-Section, Reprinted from Fluid Mechanics of Internal Flow, Elsevier Publishing Co., Amsterdam, 1967.

An Investigation of the Effects of Swirl On the Flow Regimes and Performance of Annular Diffusers With Equal Inner and Outer Cone Angles M.A.Sc. Thesis, University of Waterloo, 1968.

A.B. An Investigation of the Effects of Unequal Cone Angles and of Swirl in Annular Diffusers M.A.Sc. Thesis, University of Waterloo, 1967.

Design and Calibration of a Variable Swirl Generator for Aerodynamic

Research and Development Tech Note No 253, Oct. 13,1965

(17) Yeh, H.

Boundary Layer Along Annular Walls in Swirl Flow

Trans. ASME, Vol. 80, No.4, May 1958.

DIFFUSER Q L/H= AB.GS FLOW TEMPERATURE = MO"P ROOM TEMPERATURE = M.S" BAROMETRIC PRESSURE = 29.62 "Mg

|        | DIST.                            | SHIRL ANGLE                      | PS                                             | DT                                            |   |
|--------|----------------------------------|----------------------------------|------------------------------------------------|-----------------------------------------------|---|
| ,<br>, | FROM THMER SURF                  |                                  | STATIC PRESSURE<br>INCHES WATER<br>45056 SLOPE | TOTAL PRESSURE<br>INCHES WATER<br>45076 SLOPE | - |
|        | 0.003                            | 1,, 833                          | 4.5730                                         | <u> </u>                                      |   |
|        | €₀28(<br>€₀450<br>€₀610<br>€₀760 | 25167<br>25067<br>25167<br>25500 | 4,817<br>5,067<br>5,300<br>5,467               | 1.5767<br>2.5367<br>2.633<br>2.583            |   |
|        | 0.913<br>1.350                   | 2°233<br>2°333                   | 5,467<br>5,317                                 | $2_{0}317$<br>$1_{0}017$                      |   |
|        | 1.51.8%)<br>1.31.7<br>1.2.4%     | 25367<br>25333<br>0:447          | 55217<br>55(67<br>4467                         | 16283<br>26650<br>5.0                         |   |

INLET CALCULATED RESULTS

|   | PROVIDE FORM CONCLETENCES PROVED IN TOURSAND | an an an ann an an an an an an an an an | กระบบของการจะของสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามาร | namente na sensente e companye da se contra de la companye |   |
|---|----------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---|
|   | DIST.                                        | ABS VELOCITY                            | AXEAL VELOCITY                                                                                                  | TAM VELOCITY                                               |   |
|   | FROM INFERSOR                                |                                         |                                                                                                                 |                                                            | l |
| 1 | 110 HF \$                                    | FT/SPC                                  | FTISHC                                                                                                          | FT/SFC                                                     |   |
|   | n an     |                                         | 1233.242                                                                                                        | 17,952                                                     |   |
|   | No 287                                       | 149,313                                 | 140,3)1                                                                                                         | 1.5738                                                     |   |
|   | 15 A 51                                      | 358-657                                 | 158.646                                                                                                         | 1.6847                                                     | : |
|   | · · · · · · · · · · · · · · · · · · ·        | 1,63, 395                               | 163-084                                                                                                         | 1. 9.8 ·                                                   |   |
|   | 6765                                         | 165,1                                   | 1655 38                                                                                                         | 1.922                                                      |   |
|   | ်နှင်္ချင် (                                 | 2625349                                 | 7626238                                                                                                         | 1.2897                                                     |   |
|   | 16050                                        | 155,5,5                                 | 355-498                                                                                                         | Je 822                                                     |   |
|   |                                              | 1496 356                                | 3489346                                                                                                         | 1.727                                                      |   |
|   | 1.31                                         | 130,134                                 | 139-124                                                                                                         | 1.6211                                                     |   |
|   | 4.44                                         | 127,086                                 | 122-978                                                                                                         | 1,432                                                      |   |

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

#### XPZRIMENDAL DATA 德汉王 子

DIFFUSIE Q , 1/H= 12.65 FLOW TEMPORATURE= 10% ROOM TEMPORATURE= 61.5% BAROMETRIC PRESSURE= 27.62 44

|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ship L ADSLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | er ander en de service de la companya de la companya de la companya de la companya de la companya de la company<br>DS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nangen and and an and an and an an an an an an an an an an an an an   |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| * | FROM INTER STRF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STATIC PRESSUR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | COTAL PRESSUR                                                         |
|   | INCHES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INCHES MATCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INCHES MATER                                                          |
|   | and a state of the second of the second second second second second second second second second second second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Anticology and a straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second straight of the second strai | 450KG SLOPJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 45066 51007                                                           |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |
|   | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A. 5 7 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                       |
|   | 1.5240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Co C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.0 ( 7 <sup>1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.31                                                                  |
|   | 00400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $r > \frac{7}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |
| • | 100392<br>10770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | un C.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                       |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 No.<br>100 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | to an farita.<br>Mananananananananananananananananananan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1024<br>1005                                                          |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |
|   | 1.03.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |
|   | 25290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 Jobb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 a S <b>7</b> A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 3 4 M                                                               |
|   | 1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | An an an an an an an an an an an an an an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,                                                                     |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WAIT CALCUL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ATTED RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • m                                                                   |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |
|   | CARTER STREAMENTAL ADDRESS STREAMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LARS V LECTINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CALIFORNIA STRATEGICAL CONTRACTOR                                     |
|   | FROM IMPLE SUPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |
|   | A REAL PROPERTY OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DE | Townships and the second second second second second second second second second second second second second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | an and a state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of | AND THE MELLING AND AND A THE AND AND AND AND AND AND AND AND AND AND |
|   | . 24 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 4 p c                                                               |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 72-912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 72,901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,873                                                                 |
|   | - 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7 6 55 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 5 7 4 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,221                                                                 |
|   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CECE //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 65,757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | to FAS                                                                |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52,762                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52,76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 of 26                                                               |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |
|   | 2.1010円<br>目上の合わ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.017<br>10.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 77 342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 가 가지 한 사람이 있다.<br>1월 국민 대학 등 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DIFFUSER A L/H 12.65 FLOW TEMPERATURE 110 °F ROOM TEMPERATURE 81.5°F BAROMETRIC PRESSURE 29.62 "146 MASS WEIGHTED SWIRL ANGLE 1.976 ° COLD RESISTANCE OF HOT WIRE= 3.40 OHMS

| DISTANCE<br>FROM INNER SURFACE<br>INCHES                             | סת | VOLTAGE<br>VOLTS                                                     | RMS VOLTAGE<br>MILLIVOLTS                                            |
|----------------------------------------------------------------------|----|----------------------------------------------------------------------|----------------------------------------------------------------------|
| 0.280<br>0.450<br>0.610<br>0.760<br>0.910<br>1.050<br>1.180<br>1.310 |    | 9.400<br>9.550<br>9.600<br>9.650<br>9.650<br>9.650<br>9.550<br>9.450 | 0:250<br>0:160<br>0:130<br>0:105<br>0:085<br>0:095<br>0.136<br>0.183 |

#### RELATIVE TURBULENCE

| FROM 1                                                                                        | DISTANCE<br>INNER SURFACE<br>INCHES                               | PERCENTAGE                                                             | TURBULENCE  |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------|-------------|
| . C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | ).280<br>).450<br>).610<br>).760<br>).910<br>.050<br>.180<br>.310 | 15.814<br>9.813<br>7.893<br>6.312<br>5.110<br>5.711<br>8.341<br>11.456 | F<br>3<br>3 |

60

DIFFUSER A, L/H=12.65 FLOW TEMPERATURE= 100 97 ROOM TEMPERATURE= 0297 BAROMETPIC PRESSURF= 20.6 Mg

| DIST<br>ROM INNER SURF<br>INCHES                                               | SWIRL ANGLE                                                                                                                                                                                         | PS<br>STATIC PRESSUR<br>INCHES WATER<br>450F6 SLOPE                                             | PT<br>TOTAL PRESSURE<br>INCHES WATER<br>45056 SLOPE                                                                                                                                    |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.090<br>0.280<br>0.450<br>0.610<br>0.910<br>1.050<br>1.0180<br>1.310<br>1.440 | 4 c 1 6 7<br>5 c 833<br>5 c 433<br>5 c 435<br>5 c 333<br>5 c 1 6 7<br>5 c 0 0 0<br>4 c 5 2 c<br>4 c 5 2 c<br>4 c 5 2 c | 4.817<br>4.883<br>5.117<br>5.359<br>5.567<br>5.583<br>5.593<br>5.593<br>5.495<br>5.217<br>4.956 | $ \begin{array}{c} 0 \circ 267 \\ 1 \circ 693 \\ 2 \circ 367 \\ 2 \circ 650 \\ 2 \circ 733 \\ 2 \circ 567 \\ 2 \circ 133 \\ 1 \circ 450 \\ 0 \circ 867 \\ 0 \circ 817 \\ \end{array} $ |

INLET CALCULATED RESULTS

| DIST             | ABS VELOCITY                                                                                                                                                                                                                             | AXIAL VELOCITY | TAN VELOCITY |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|
| FROM INNER SURF  | ید<br>ان که در ان br>در ان که در ا |                |              |
| INCHES           | L FTZSTC.                                                                                                                                                                                                                                | FT/SEC         | FT/SEC       |
| 0.00C            | 1326489                                                                                                                                                                                                                                  | 1325166        | 9,243        |
|                  | 14903.7                                                                                                                                                                                                                                  | 148,744        | 10.463       |
| <b>a</b> 6 4 5 1 | 159,19,                                                                                                                                                                                                                                  | 158,802        | 11.16        |
| Pa 63 (          | 164,586                                                                                                                                                                                                                                  | 1645135        | 11.482       |
| C . 76 1         | 167.644                                                                                                                                                                                                                                  | 1.67,235       | 11,696       |
| 1.6920           | 166.122                                                                                                                                                                                                                                  | 165,717        | 31,591       |
| 2.55             | 36 -5767                                                                                                                                                                                                                                 | 1605375        | 110216       |
| 15282            | 3528298                                                                                                                                                                                                                                  | 1.52.0927      | 17,625       |
| 1.330            | 363,530                                                                                                                                                                                                                                  | 143-181        | 100131       |
| 2.76             | *20. AST                                                                                                                                                                                                                                 | 1 20.571       | 0,17,0       |

FXIT RYPEPIHENTAL DATA

DIFFUSIE Q , L/H=23.62 FLOW TEMPERATURE 1000 ROOM TEMPERATURE 0200 BAMOMETRIC PERSUNE 22.6

| FROM INNER SURF<br>Inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2010 1 L 2 2 2 2 L 2 2 2 2 2 2 2 2 2 2 2 2 2 | STATIC POUSSURE<br>LINCHES WATHR<br>AFRIG SLOPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INCLAS VAT                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 0-080<br>1-24<br>2-4<br>2-55<br>0-55<br>0-7<br>1-<br>2-55<br>0-7<br>1-<br>2-55<br>0-7<br>1-<br>2-55<br>0-7<br>1-<br>2-55<br>0-7<br>1-<br>2-55<br>0-7<br>1-<br>2-55<br>0-7<br>1-<br>2-55<br>0-<br>2-24<br>1-<br>2-4<br>1-<br>2-4<br>1-<br>2-4<br>1-<br>2-4<br>1-<br>2-4<br>1-<br>2-4<br>1-<br>2-4<br>1-<br>2-4<br>1-<br>2-4<br>1-<br>2-4<br>1-<br>2-4<br>1-<br>2-4<br>1-<br>2-4<br>1-<br>2-4<br>1-<br>2-4<br>1-<br>2-4<br>1-<br>2-4<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-25<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-<br>2-55<br>1-55<br>1 |                                              | Co 6 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co 7 /<br>Co | 5.0950<br>3.0250<br>1.0350<br>1.0250<br>2.0550<br>5.0550<br>5.0550<br>5.00<br>5.00<br>5.0 |
| 3.c 290<br>5.c 290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              | 0017<br>0017<br>0017<br>0017<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                           |

EUSULEŠ  $\mathbb{C} \times \mathbb{T} \times \mathbb{C}$ CALCULATED

| DIST              | - 1.13 K、M、E.16 美国外配。 | X - L X - L                                                                                                    | 定论性 医下侧侧侧的                               |
|-------------------|-----------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------|
| EDUN INNER SUPE   |                       |                                                                                                                |                                          |
| THOMAS .          | = 7 / 11 r            | 577510                                                                                                         | FT / SHIC                                |
|                   |                       | era menerin inden som indenstrationen inden som en som | an an an an an an an an an an an an an a |
| 224               | 65,677                | 55, 195                                                                                                        | 7,474                                    |
|                   | 60,345                | 62,845 F                                                                                                       | 7,851                                    |
| 16 <u>5</u> 5     | 6.52.955              | 663439                                                                                                         | 7,540                                    |
|                   | 1 61,590              | ちょうよりら 一個                                                                                                      | 62973                                    |
| <sub>0</sub> .857 | 민준은 사람 소 📳            |                                                                                                                | 4,310                                    |
|                   | 47.63×                | 47,827                                                                                                         | Fla 393                                  |
| 12.15             | 1.2.3.2               | \$2.5 ST                                                                                                       | 4.574                                    |
|                   | 7 7                   | 37,440                                                                                                         | 4,27                                     |
|                   | n na sak 🖡            | - <b>5</b> 7 1.1                                                                                               | / 7                                      |

62

DIFFUSER A ,L/H 12.65 FLOW TEMPERATURE //0.0% ROOM TEMPERATURE 22.0% BAROMETRIC PRESSURE 29.60"// MASS WEIGHTED SWIRL ANGLE 3.532"

### COLD RESISTANCE OF HOT WIRE 3.40 OHMS

| DISTANCE<br>FROM INNER SURFACE<br>INCHES                             | DC VOLTAGE<br>VOLTS                                                  | RMS VOLTAGE<br>FULUVOLTS                                             |
|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
| 0.280<br>0.450<br>0.610<br>0.760<br>0.910<br>1.050<br>1.180<br>1.310 | 9.600<br>9.650<br>9.700<br>9.750<br>9.750<br>9.750<br>9.650<br>9.550 | 0.172<br>0.144<br>0.117<br>0.097<br>0.090<br>0.109<br>0.137<br>0.197 |

#### RELATIVE TURBULENCE

| DISTANCE<br>FROM INNER SURFACE<br>INCHES | PERCENTAGE TURBULENCE |
|------------------------------------------|-----------------------|
| 0.280                                    | 10.443                |
| 0.450                                    | 8.657                 |
| 0.610                                    | 6.965                 |
| 0.760                                    | 5.719                 |
| 0.910                                    | 5.306                 |
| 1.050                                    | 6.426                 |
| 1.180                                    | 8.236                 |
| 1.310                                    | 12.082                |

63

DIFFUSER A , L/H=12.65 FLOW TEMPERATURE= 100.097 ROOM TEMPERATURE= 82.097 BAROMETRIC PRESSURE= 89.62 "14

| 1                                        | DIST                                                  | SWIPL AMGLE                                | PS              | рт                                       |
|------------------------------------------|-------------------------------------------------------|--------------------------------------------|-----------------|------------------------------------------|
| FFC                                      | M INNER SURF                                          |                                            | STATIC PRESSURI | TOTAL PRESSURE                           |
| -                                        | INCHES                                                |                                            | INCHES WATER    | INCHES MATER                             |
| 1150 LU                                  |                                                       |                                            | 45 DEG SLOPE    | 45DEG SLOPE                              |
|                                          | allandaran serangan tahun tahun berkerikan serangan ( | and an an an an an an an an an an an an an |                 | n an |
| 19-19-19-19-19-19-19-19-19-19-19-19-19-1 |                                                       | 0 700                                      |                 | 5 N A 7                                  |
| <u> </u>                                 | (10 (14))                                             | 30 ( 2 2                                   | 79100           |                                          |
| l l                                      | 06280                                                 | 9c / 33                                    | シー ショイジャート      | 大きりけん                                    |
| Ę                                        | 0,450                                                 | 10.000                                     | 5,350 [         | 26150                                    |
|                                          | 0.610                                                 | 9, 933                                     | 5.550 -         | 2:467                                    |
|                                          | 0.760                                                 | 10,503                                     | 5,75            | 2.617                                    |
|                                          | 6.910                                                 | 10-666                                     | 5-883           | 2,617                                    |
|                                          | 2.6950                                                | 15.657                                     | 5,800           | 2,367                                    |
|                                          | 1.180                                                 | 11.0357                                    | 5.717           | 20027                                    |
| -                                        | 1.310                                                 | 10.567                                     | 5,533           | 10350                                    |
| -                                        | 1.660                                                 | 10,567                                     | 5.017           | 6.417                                    |

INLET CALCULATED RESULTS

| ·              | The second second second second second second second second second second second second second second second se | and the second strained and the second strained and the second second second second second second second second | The sectors and and the sectors of the sectors of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sect |
|----------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 01ST           | ABS VELOCITY                                                                                                    | AXIAL VELOCITY                                                                                                  | TAN VELOCITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| FPOM INCEPTOUR |                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TNCHES         | FT/970                                                                                                          | P7/500                                                                                                          | FT/SFC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 201.91         | 1.326 694                                                                                                       | 3345443                                                                                                         | 240237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| L.280          | 150,621                                                                                                         | 148.066                                                                                                         | 27.625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Da 450         | 1.59, 360                                                                                                       | 156.657                                                                                                         | 295223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.630          | 164.76                                                                                                          | 161,066                                                                                                         | 3: 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1. 760         | 1686319                                                                                                         | . 165.464                                                                                                       | 36.871                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.910          | 169,651                                                                                                         | 166.774                                                                                                         | 31.116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 260 50         | 166-295                                                                                                         | 3.63,474                                                                                                        | 37,511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7.5182         | 161,827                                                                                                         | 3.59,082                                                                                                        | <b>20068</b> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.310          | 1.52, 664                                                                                                       | 154 74                                                                                                          | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| E YZA          | キウモ みたん 単                                                                                                       | 100 246                                                                                                         | 24 870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

64

#### SXIT SXPERIMENTAL DATA

DIFFUSER Q, L/H= 12.65 FLOW TEMPERATURE= 110.0 % REDM TEMPERATURE= 82.09 BAROMETRIC PRESSURE= 29.62 "Hig

|            | 112                                                                                                            |                                                                                                                  | and a second second second second second second second second second second second second second second second<br>Second second |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ین استین استان استان استان این اور<br>ا |
|------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 197        | M INNER SUPP                                                                                                   |                                                                                                                  | STAT1                                                                                                                                                                                                                             | C PPESSUAR             | E PT AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PPPSSUE                                 |
|            | INCHES                                                                                                         |                                                                                                                  | INC                                                                                                                                                                                                                               | HES RATHE              | INCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S VATE                                  |
|            |                                                                                                                |                                                                                                                  | 45 1                                                                                                                                                                                                                              | 10 SI 020              | 4505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a stabi                                 |
| -000040054 | and a second second second second second second second second second second second second second second second | and a second second second second second second second second second second second second second second second s | Lindlendu Proto                                                                                                                                                                                                                   |                        | CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CO |                                         |
|            |                                                                                                                |                                                                                                                  |                                                                                                                                                                                                                                   |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|            | 0,000                                                                                                          | <b>6</b> 5 (2020)                                                                                                | · · · ·                                                                                                                                                                                                                           | $p_{c} \in T^{\infty}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.6800                                  |
|            | 024                                                                                                            | 405                                                                                                              | ······································                                                                                                                                                                                            | 20275                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16251                                   |
|            | 5.400                                                                                                          | 52.800                                                                                                           |                                                                                                                                                                                                                                   | 0,070                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No 31 C                                 |
|            | ÷≈55⊖ {                                                                                                        | 5,822                                                                                                            |                                                                                                                                                                                                                                   | 6.171                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S. 6494                                 |
| l          | 0.7 · · ·                                                                                                      | 5.000                                                                                                            | • • •                                                                                                                                                                                                                             | 2.5 7                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,350                                   |
|            | 0.850                                                                                                          | 7                                                                                                                |                                                                                                                                                                                                                                   | 2672                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.515                                   |
| E d 3      | 1,000                                                                                                          | 2, <u>5</u> .84                                                                                                  | •                                                                                                                                                                                                                                 | 3. C 7 "               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.4950                                  |
|            | 1.150                                                                                                          | 9, 5, 4, 1                                                                                                       |                                                                                                                                                                                                                                   |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 . 75                                  |
|            | 1.29.                                                                                                          | 13,590                                                                                                           |                                                                                                                                                                                                                                   | 7                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.5                                     |
|            | 3 43-                                                                                                          | 北部に長いる                                                                                                           |                                                                                                                                                                                                                                   | 1.7                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45                                      |
|            | 2.6 4:35                                                                                                       | 1.1.5 D.0                                                                                                        |                                                                                                                                                                                                                                   | 200 B 200              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · • • D:                                |

#### EXIT CALCULATED RESULTS

| 150                         | A MARKEL M     | YEAL YALDAN                             | TER VELCTIM      |
|-----------------------------|----------------|-----------------------------------------|------------------|
| FREM INMER SURF<br>I JUCKES | PTZSUC         | ET/900                                  | FTZSZC           |
|                             |                |                                         |                  |
|                             | 69277          | 645740<br>. 645740                      | 126711<br>13.591 |
| 557                         | 7 552          | 6241235                                 | 3.6- 67          |
| · o · 7                     | E. C. C. C. C. | 67,949                                  | 134826           |
|                             | 646273         | 622982                                  | 12.81.6          |
|                             | 53,700         | 57-539                                  | 11.710           |
| • • • • <b>5</b> • 50       | 52,602         | 51.563.0                                | 1. 5. 7          |
| 1.5201                      | 43,000         | AP 6 15                                 | 5.574 1.         |
|                             | 25 OF 1        | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | <pre></pre>      |

65

COLD RESISTANCE OF HOT WIRE= 3.40 OHMS

DIFFUSER A ,L/H /2.65 FLOW TEMPERATURE //0.0°F ROOM TEMPERATURE 82.0°F BAROMETRIC PRESSURE 29.62"Hg MASS WEIGHTED SWIRL ANGLE 10.267"

| DISTANCE<br>FROM INNER SURFACE<br>INCHES | DC VOLTAGE<br>VOLTS | RMS VOLTAGE<br>MILLIVOLTS |  |
|------------------------------------------|---------------------|---------------------------|--|
| 0.280                                    | 9.500               | 0.183                     |  |
| 0.450                                    | 9.600               | 0.135                     |  |
| 0.610                                    | 9.650               | 0.110                     |  |
| 0.760                                    | 9.700               | 0.098                     |  |
| 0.910                                    | 9.700               | 0.110                     |  |
| 1.050                                    | 9.670               | 0.127                     |  |
| 1.180                                    | 9.650               | 0.165                     |  |
| 1.310                                    | 9.550               | 0.280                     |  |

#### RELATIVE TURBULENCE

| DISTANCE<br>FROM INNER SURFACE<br>INCHES | PERCENTAGE TURBULENCE |
|------------------------------------------|-----------------------|
| 0.280                                    | 11.338                |
| 0.450                                    | 8.197                 |
| 0.610                                    | 6.613                 |
| 0.760                                    | 5.834                 |
| 0.910                                    | 6.548                 |
| 1.050                                    | 7.605                 |
| 1.180                                    | 9.919                 |
| 1.310                                    | 17.172                |

66.

DIFFUSER A, L/H= 12.65 FLOW TEMPERATURE= 110.095 RCOM TEMPERATURE= 82.095 BAROMETRIC PRESSURE= 29.62

| DIST<br>FROM INNER SURF<br>INCHES | SWIPE ANGLE | PS<br>STATIC PRESSURE<br>INCHES WATER<br>450HG SLOPE | TOTAL PRESSURE<br>INCHES WATER<br>450FG SLOPE |
|-----------------------------------|-------------|------------------------------------------------------|-----------------------------------------------|
| C₀090                             | 11,667      | 5。250                                                | 0.0133                                        |
| ⇔₀280                             | 13,900      | 5。350                                                | 1.0533                                        |
| ≎₀450                             | 14,667      | 5。483                                                | 2.0100                                        |
| ∂₀610                             | 14,933      | 5。567                                                | 2.017                                         |
| 00760                             | 1.5,667     | 5, 717                                               | 2, 383                                        |
| 00910                             | 1.6,167     | 5, 833                                               | 2, 367                                        |
| 10050                             | 1.6,667     | 5, 867                                               | 2, 283                                        |
| 10180                             | 1.7,167     | 5, 733                                               | 2, (83                                        |
| 10310                             | 1.7,333     | 5, 567                                               | 1, 627                                        |
| 10440                             | 1.7,333     | 5, 583                                               | 7, 740                                        |

INLET CALCULATED PESULTS

| cur<br>2. 664<br>3. 239 | ET/SEC<br>3/3/3/6<br>145073<br>2525961               | FT/SEC<br><u>6.0224</u><br>45.488<br>47.745                                                                                                                |
|-------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2,664                   | 123-376<br>145573<br>1525961                         | <u>45.488</u><br>45.488<br>47.745                                                                                                                          |
| 2.664                   | : 45, 73<br>- 252, 963                               | 45,488<br>47,745                                                                                                                                           |
| ° 239                   | 1525963                                              | 47.745                                                                                                                                                     |
| 7 200                   |                                                      |                                                                                                                                                            |
| Se ⊒ C O  ∦             | 155,967                                              | 48.684                                                                                                                                                     |
| 52612                   | 159.789                                              | 49.346                                                                                                                                                     |
| 5-631                   | 1596942                                              | 496650                                                                                                                                                     |
| 6-122 🕴                 | 158,576                                              | 49,5498                                                                                                                                                    |
| 2.652                   | 155-293                                              | 48.0473                                                                                                                                                    |
| 5.965                   | 1485882                                              | 46.472                                                                                                                                                     |
|                         | x00121<br>x00521<br>x0052<br>x0052<br>x0055<br>x0055 | x2012     1553769       x631     1595069       x631     1595062       x62     1555293       x662     1655293       x665     1685882       x665     1685852 |

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

#### FXIT FXPERIMENTAL DATA

## DIFFUSES P , L/H=12.65 FLOW TEMPERATURE= 10.095 FDOM TEMPERATURE= 82.095 BARDTETPIC PRESSURE= 39.68 M

| · · · · · · · · · · · · · · · · · · · | IDST<br>SROM INSSE SURF<br>INCHOS                                                                              |                                                                                                          | PS<br>STATIC PRESSUR<br>INCH'S MATER<br>ABORG SLOPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PT<br>OTAL PERSEUR<br>INCHES HADEL<br>AFOLG SLOPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       | 00090<br>00240<br>00400<br>00550<br>00700<br>00700<br>00850<br>10000<br>10150<br>1020<br>1020<br>1020<br>10480 | 0,848<br>9,530<br>9,530<br>9,540<br>9,540<br>1,02<br>1,02<br>1,02<br>1,02<br>1,02<br>1,02<br>1,02<br>1,0 | 0 (7)<br>0 (7)<br>0 (7)<br>0 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 (7)<br>1 | 5 - 7 - 1<br>3 - 25<br>3 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - 25<br>5 - |

### CXIT CALCULATED RESULTS

|                  | 구구장 문 나타나가 🌓 | - いわしん アービング 目的                                 | $(\mathbf{t} \in \{1, \dots, N\})$ is the first $\mathbf{t}$ |
|------------------|--------------|-------------------------------------------------|--------------------------------------------------------------|
| 「長りには、美いい立ち」を切り引 |              |                                                 |                                                              |
| 110:1= 5         | CT/200       | 67/970 B                                        | er / s d C                                                   |
| 6                |              | n nen anna an anna anna ann an anna an ann an a |                                                              |
| e d'é            | 8 4 4 C -    | 27,200.                                         | 1000                                                         |
| 16411            | わら」現在長       | 62, 932                                         | 300 520                                                      |
| 655              | 7 552        | 67.448                                          | 276630                                                       |
|                  | 73.741       | 68.516                                          | 21,07A                                                       |
| 0.07.            | 7 6 5 5 5    | 67,462                                          | 2 682                                                        |
|                  | 65, 277      | A2,703                                          | 10,175                                                       |
| 30 3             | P C S S F    | 21,1                                            | i de la d                                                    |
|                  | Electron El  | 45.5 ° S. 🕴                                     | 5 Z 2 3 3 3                                                  |
| 1.4.2            |              |                                                 | 1 A. C. 24                                                   |

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DIFFUSER A ,L/H 12.65 FLOW TEMPERATURE 110.0°F ROOM TEMPERATURE SR.0°F BAROMETRIC PRESSURE 29.62"Hg MASS WEIGHTED SWIRL ANGLE 15.603 ° COLD RESISTANCE OF HOT WIRE= 3.40 OHMS

| DISTANCE<br>FROM INNER SURFACE<br>INCHES                             | DC VOLTAGE<br>VOLTS                                                           | RMS VOLTAGE<br>MILLIVOLTS                                            |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 0.280<br>0.450<br>0.610<br>0.760<br>0.910<br>1.050<br>1.180<br>1.310 | 9.750<br>9.850<br>9.850<br>9.850<br>9.850<br>9.850<br>9.850<br>9.800<br>9.750 | 0.145<br>0.108<br>0.090<br>0.087<br>0.105<br>0.122<br>0.162<br>0.260 |

#### RELATIVE TURBULENCE

| DISTANCE<br>FROM INNER SURFACE<br>INCHES | PERCENTAGE TURBULENCE |
|------------------------------------------|-----------------------|
| 0,280                                    | 8.549                 |
| 0.450                                    | 6.247                 |
| 0.610                                    | 5.206                 |
| 0.760                                    | 5.032                 |
| 0.910                                    | 6.074                 |
| 1.050                                    | 7.057                 |
| 1.180                                    | 9.460                 |
| 1.310                                    | 15.329                |

69.

DIFFUSER A, L/H=12.65 FLOW TEMPERATURE= 110.0% RODY TEMPERATURE= 82.0% BARGMETRIC PRESSURE= 28.62 "My

| [1]51                                                                                                           | SWIFL ANGLE | 17 S                                                                                                                                                                                                                               |                                                                        |
|-----------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| FROM THINER SURF                                                                                                |             | STATIC PRESSURS                                                                                                                                                                                                                    | FOTAL PRESSUR                                                          |
| TMCHES                                                                                                          |             | INCHES WATER                                                                                                                                                                                                                       | INCHES WATE                                                            |
|                                                                                                                 |             | GEDER SLOPE                                                                                                                                                                                                                        | 45DEG SLOPE                                                            |
| and and the second second second second second second second second second second second second second second s |             | a ana karan wasan manan karan karan bi ya karan karan karan karan karan karan karan karan karan karan karan ka<br>Karan karan  a <u>ann a an an</u> a' far sin an |
|                                                                                                                 |             | Į                                                                                                                                                                                                                                  |                                                                        |
| 0.690                                                                                                           | 1 9. 833    | 5.767                                                                                                                                                                                                                              | 0.033                                                                  |
| Se 280                                                                                                          | 21.0433     | 5,950                                                                                                                                                                                                                              | 1.0600                                                                 |
| 6.450                                                                                                           | 22.367      | 6 • 0°54                                                                                                                                                                                                                           | 20217                                                                  |
| 0.614                                                                                                           | 22,900      | 6.000                                                                                                                                                                                                                              | <b>2。35</b> 0                                                          |
| 0.769                                                                                                           | 24.000      | 6.017                                                                                                                                                                                                                              | 2,433                                                                  |
| 0.010                                                                                                           | 24.667      | 6.067                                                                                                                                                                                                                              | 2.433                                                                  |
| 5 5 5                                                                                                           | 25-833      | 6. 083                                                                                                                                                                                                                             | 2,433                                                                  |
| 1018                                                                                                            | 26-333      | 65152                                                                                                                                                                                                                              | 2.6400                                                                 |
| 1.310                                                                                                           | 26,333      | 5,917                                                                                                                                                                                                                              | 2.117                                                                  |
| 1 643                                                                                                           | 26.933      | < <u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                     | 1,202                                                                  |

INLET CALCULATED RESULTS

| DIST            | ABS VELOCITY | ANIAL VELOCITY | HAR VELIGIY |
|-----------------|--------------|----------------|-------------|
| FROM INNER SUPP |              |                |             |
| TNOUZS          | FTICLC       | ET/QUC         | FT/SFC      |
| 361194          | 14:5140      | 125, 47        | 636266      |
| 4.280           | 159,897      | 1425 67        | 72-182      |
| 1:045           | 167-31       | 149.291        | 75,531      |
| 1.63            | 1686148      | 1505038        | 755910      |
|                 | 369,152      | 15,934         | 76.363      |
| 0.914           | 1693653      | 151,380        | 76,588      |
| 1645            | 2695811      | 151,532        | 76s66F      |
| 761.80          | 1695152      | 1505934        | 76,363      |
| 1.31.           | 3.64, 935    | 3476378        | 746450 -    |
|                 | 1/0 67/      |                | 67.573      |

#### EXPERIMENTAL DATA HXIT

DIFFUSIP A, L/H=12.65 FLOW TEMPERATURE= 110.092 ROOM TEMPERATURE= 82.092 BAROMETRIC PRESSURE=29.62 119

| E CE    | DIST                                                                                                             | - SWIEL APPEL H | PE                                    | 97°                             |
|---------|------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------|---------------------------------|
| 1=p().v | INNER SURF                                                                                                       |                 | STATIC PRESSURE                       | STAL PRESSURE                   |
|         | INCHES                                                                                                           |                 | TNCHUS NATER                          | THOR'S MOTOR                    |
|         |                                                                                                                  |                 | ARDIA SLADA                           | NEDEC SLODY                     |
| THEM    | and the second second second second second second second second second second second second second second second |                 |                                       | Commences and the second second |
|         |                                                                                                                  |                 |                                       |                                 |
|         | <u>8</u>                                                                                                         |                 | 1997 (C                               | 6.1                             |
|         | tio 24%                                                                                                          | 16,500          |                                       | 신 수 영상 및                        |
| Ê.      | 1.54.10                                                                                                          | 1.66 58 0 👔     |                                       | 1 e                             |
|         | ੇ <b>∂</b> ₀ 55≙                                                                                                 | 144,00% 損       |                                       | 102°°                           |
|         | 07 ···                                                                                                           | 15.205          | . 0                                   | 2.54                            |
| ř.      | <b>1.85</b> 0                                                                                                    | 3 6 a 193       | · · · · · · · · · · · · · · · · · · · | 1 . 45                          |
|         | 1.31.3/2                                                                                                         | 16.274          |                                       | 164 3                           |
|         | 2.250                                                                                                            | 170511          |                                       | 102E                            |
|         | 1.29                                                                                                             | 21.5 201        | 2.4 Q                                 |                                 |
| 2       | 2.643                                                                                                            |                 |                                       | <b>二</b> (2) 死 (1)              |

CALCULATED FESHLTS EXI7 -

|            | 0157                                                                                                            | A.结构 M. A. C. C. 正常習慣                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 二品发的人们 医闭口的 计选择的 | TAP VELSCIPY                                                                                                    |
|------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------|
| En Car     | THOMAS SUPPLY                                                                                                   | TT/S.C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                                                                                                 |
| LT KROSPAN | and the second second second second second second second second second second second second second second secon | and a state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the |                  | and the second second second second second second second second second second second second second second secon |
|            | 5 A M                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                 |
|            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | ノビックク化                                                                                                          |
|            | 31)<br>EE                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 2011日本語の1911日<br>1月1日日本語の1911日                                                                                  |
|            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                 |
|            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                 |
| l.         | 2                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | いた 上にもない<br>つ オードウママ                                                                                            |
|            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                 |
|            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                 |
| Ę.         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | おいた それで<br>ため、 ちゅう                                                                                              |

71

DIFFUSER A , L/H 12.45 FLOW TEMPERATURE 1/0.0°F ROOM TEMPERATURE 82.0°F BAROMETRIC PRESSURE 29.62 "14 MASS WEIGHTED SWIRL ANGLE 24.045° COLD RESISTANCE OF HOT WIRE= 3.40 OHMS

| DISTANCE<br>FROM INNER SURFACE<br>INCHES | DC VOLTAGE<br>VOLTS | RMS VOLTAGE<br>MILLIVOLTS |
|------------------------------------------|---------------------|---------------------------|
| 0.280                                    | 9.750               | 0.168                     |
| 0.450                                    | 9.850               | 0.121                     |
| 0.610                                    | 9.850               | 0.105                     |
| 0.760                                    | 9.900               | 0.098                     |
| 0.910                                    | 9.900               | 0.112                     |
| 1.050                                    | 9.900               | 0.125                     |
| 1.180                                    | 9.850               | 0.155                     |
| 1.310                                    | 9.800               | 0.255                     |

#### RELATIVE TURBULENCE.

| DISTANCE<br>FROM INNER SURFACE<br>INCHES | PERCENTAGE TUBBULENCE |
|------------------------------------------|-----------------------|
| 0.280                                    | 9.905                 |
| 0.450                                    | 6.999                 |
| 0.610                                    | 6.074                 |
| 0.760                                    | 5.616                 |
| 0.910                                    | 6.418                 |
| 1.050                                    | 7.163                 |
| 1.180                                    | 8.966                 |
| 1.310                                    | 14.891                |

DIFFUSER B , L/H=6.35 FLOW TEMPERATURE= 110.0% PROM TEMPERATURE= 00.0% 64 BAPCMETRIC PRESSURE= 29.20 600

| DIST<br>FROM INNER SURF<br>INCHES                  | SWIRL ANGLE                              | PS<br>STATIC PRESSURE<br>INCHES WATER<br>45DEG SLOPE | PT<br>TOTAL PRESSUE<br>INCHES WATE<br>45DEG SLOPE  |
|----------------------------------------------------|------------------------------------------|------------------------------------------------------|----------------------------------------------------|
| 0 - 0 9 -<br>0 - 2 8 -<br>0 - 4 5 :<br>0 - 6 1 - 0 | 1.5333<br>1.5767<br>1.6600<br>1.5800     | 3。617<br>3。667<br>3。817<br>3。967                     | 1.300<br>2.283<br>3.217<br>3.450                   |
| 00760<br>00910<br>10050<br>10310<br>10310          | 20033<br>10733<br>10933<br>1067<br>10167 | 40000<br>30967<br>30867<br>30750<br>30617<br>30183   | 30467<br>30217<br>20817<br>20267<br>10655<br>10655 |

INLET CALCULATED RESULTS

| 01ST            | ABS VELOCITY | - AXIAL VELOCITY | TAN VELOCITY |
|-----------------|--------------|------------------|--------------|
| FROM INNER SUPE |              |                  |              |
| TNOUTS          | ET/SUC       | ET/STC           | FT/SEC       |
|                 |              | 126, 127         | <u>noleć</u> |
| <b>2</b> 285    | 143.694?     | 141,935          | 1.0239       |
| 5.45            | 1546230      | 154,324          | 10347        |
| 61              | 158,476      | 158,469          | 1.383        |
| 0.75            | 159 9        | 159.6.3          | 20392        |
| 0,910           | 355,966      | 1550961          | 1.367        |
| 1.05            | 150,443      | 15-435           | 1.313        |
| Lel St          | 1420732      | 142.732          | 1.246        |
| 1.31            | 1225 63 1    | 132.9.5          | 1.361.       |
| 1 ZA            | 375 AS       | 1 1 1 人人人        | 5 - C        |

#### EXIT EXPERIMENTAL DATA

DIFFUSER B, L/H= 6.35 FLOW TEMPERATURE = 10.6% ROOM TEMPERATURE = 80.0% BARGMETRIC PRESSURE = 22.20°14

| 2131                                     | SALL FREELS                                                                                                     |                                                                                                                 |                                              |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| FROM INMER SURF                          |                                                                                                                 | STATIC PPESSURE                                                                                                 | FOTAL PRESSUR                                |
| TNCHES                                   |                                                                                                                 | 1月1日日5 日本工作部                                                                                                    | INCHES WAT (                                 |
|                                          |                                                                                                                 | ASPEG SLOP                                                                                                      | 45076 SLOP                                   |
| n an | and a second state of the second second second second second second second second second second second second s | Real Control of the set of the set of the set of the set of the set of the set of the set of the set of the set | Contraction and a state of the second second |
|                                          |                                                                                                                 |                                                                                                                 |                                              |
| 5.080 L                                  | 5,555                                                                                                           | 3 <b>. 2</b> .00                                                                                                | 3, 550                                       |
| 1°25                                     | 1.540                                                                                                           | 2.53                                                                                                            | 2.701                                        |
| 0.410                                    | 1.500                                                                                                           |                                                                                                                 | 3,258                                        |
| 26570                                    | 2,511                                                                                                           | 007 L                                                                                                           | 3670-                                        |
| 572                                      | 20142                                                                                                           | U.S. 3                                                                                                          | 3.57:1                                       |
| 1.87-                                    | 26000                                                                                                           | 2 <b>3</b> 3 5 5                                                                                                | 2.05%                                        |
| 20030                                    | 3.6 (Art)                                                                                                       | 16397                                                                                                           | 26.01                                        |
| 1.160                                    | 1.0 2000                                                                                                        |                                                                                                                 | 1.6245                                       |
| 20300                                    | 0.5000                                                                                                          | 7. <b>3</b> 2 1 1                                                                                               | - C., 5 (C)                                  |
| \$ 6435                                  | 6,500                                                                                                           | 4.311                                                                                                           | 5 S F. 7                                     |

.

| r   | $\mathbf{v}$ | 7 | T | C | · . | 1 | 1 |   | 1 5 |       | T : | 5 |   | . := | <u> </u> | 1 8 | 1   | T. | <u> </u>  |
|-----|--------------|---|---|---|-----|---|---|---|-----|-------|-----|---|---|------|----------|-----|-----|----|-----------|
|     | κ.           | ٤ | 1 |   |     | 1 | £ | • | 11  | 41    |     |   | 1 |      | <u></u>  | 11  |     |    | <u>``</u> |
| · · |              | • |   |   |     | • |   |   |     | · · · |     | 2 |   |      | · •      |     | ••• |    | • *       |

| 11157           | EZRA VELLOLAY                         | - F X1 AL - VEL 12 27 M | THE MILLOIPS                              |
|-----------------|---------------------------------------|-------------------------|-------------------------------------------|
| FECH INVER SURF |                                       |                         |                                           |
|                 |                                       | - 1 / 5 (               | F1/351                                    |
| 13 T            |                                       |                         | 1. A. |
| 025             | 2. 2748                               | 3-16784                 | <u>, 88</u>                               |
| 641             | 349,639                               | 1099634.                | .957                                      |
| - 57.           | 23,65,381,5                           | 2566375                 |                                           |
| · 72            | 2965280                               | 116,375                 | 1-176                                     |
| ÷ 87 €          | 106-5 5                               | 5 1 6a 5 12             | ., C ≩                                    |
|                 | 823245                                | 名名 <sub>的</sub> 记者不     | · - 77                                    |
| 2016            | 7.5.5 1995                            | 735265                  | .6.12                                     |
| 1,00            | · · · · · · · · · · · · · · · · · · · | 1.2. CA4                | 1.54                                      |
| 2. 1            | 20 25                                 | 20 271                  |                                           |

DIFFUSER & , L/H 6.35 FLOW TEMPERATURE //C.O.F ROOM TEMPERATURE 80.0 F BAROMETRIC PRESSURE 29.20 "My MASS WEIGHTED SWIRL ANGLE 1.552 " COLD RESISTANCE OF HOT WIRE= 3.33 OHMS

| DISTANCE<br>FROM INNER SURFACE<br>INCHES | DC | VOLTAGE<br>VOLTS | RMS VOLTAGE<br>MILLIVOLTS |
|------------------------------------------|----|------------------|---------------------------|
| 0.280                                    |    | 9.750            | 0.145                     |
| 0.450                                    |    | 9.800            | 0.108                     |
| 0.610                                    |    | 9.850            | 0.084                     |
| 0.760                                    |    | 9.820            | 0.094                     |
| 0.910                                    |    | 9.800            | 0.122                     |
| 1.050                                    |    | 9.720            | 0.155                     |
| 1.180                                    |    | 9.650            | 0.250                     |
| 1.310                                    |    | 9.600            | 0.255                     |

#### RELATIVE TURBULENCE

| DISTANCE<br>FROM INNER SURFACE<br>INCHES | PERCENTAGE TURBULENCE |
|------------------------------------------|-----------------------|
| 0.280                                    | 8.549                 |
| 0.450                                    | 6.307                 |
| 0.610                                    | 4.975                 |
| 0.760                                    | 5.468                 |
| 0.910                                    | 7.124                 |
| 1.050                                    | 9.191                 |
| 1.180                                    | 15.029                |
| 1.310                                    | 15.483                |

75

76

DIFFUSER B , L/H= 6.35 FLOW TEMPERATURE = 110.0 % ROOM TEMPERATURE = 20.0 % BAROMETRIC PRESSURE = 29.443 4

| DISI                                               | SWIRL ANGLE | P5              | PT            |
|----------------------------------------------------|-------------|-----------------|---------------|
| FRUM INMER SURF                                    |             | STATIC PRESSUPI | TOTAL PRESSUR |
| INCHES                                             |             | INCHES WATER    | INCHES WATE   |
|                                                    |             | 45DEG SLOPE     | 45056 SLOPF   |
| AND THE REAL OF STREET, STREET, STREET, STREET, ST |             |                 |               |
|                                                    |             | 2.054           | 1 502         |
| <u> </u>                                           | 4:101       | 33734           |               |
| 4°°58°                                             | 4.333       | 3,983           | 20404         |
| 0.450                                              |             | 45300           | 3.000         |
| 0,610                                              | 4。500       | 4,267           | 3,355         |
| 0.76                                               | 5.:33       | 4.433           | 3.500         |
| 0.919                                              | 4, 867      | 4,550           | 3.483         |
| 1,050                                              | 4. 557      | 4,567           | 3.5.200       |
| 1012                                               | 40667       | 4,,433          | 2.583         |
| 1.310                                              | 4.500       | 40217           | 2.017         |
| 3.44                                               | 4.50T       | 3,733           | 0.950         |

INLET CALCULATED RESULTS

|                  | ABS VELSCIEN | AZIAL VILILII                                                                                         | TAN VILUCITY |
|------------------|--------------|-------------------------------------------------------------------------------------------------------|--------------|
| FROM INMER SURF  |              |                                                                                                       | F 5 1 6 7 6  |
|                  |              | ی از این کار ایسان است.<br>از مطالبه می می از این کار این است.<br>از مطالبه می می از این کار این است. |              |
|                  | · 33662876   | 136,454                                                                                               | 141          |
| 0.200            | 2476 735     | - 111111111111111111111111111111111111                                                                | 11,536       |
| 0.5 4 <u>5</u> 5 | 3.553 52     | 1545574                                                                                               | 120167       |
|                  | 761,6598     | 360,303                                                                                               | 12.602       |
|                  | 2.62, 895    | 163.39                                                                                                | 12.861       |
| ( <u>0</u> )     | 1.64, 925    | 1.644.617                                                                                             | 12,942       |
| 1.050            | 162-172      | 161.672                                                                                               | 12,725       |
| 1.01.5           | 2.54, 9.32   | 3 53 - 6 57                                                                                           | 12,095       |
| 1.632            | 3446220      | 243,576                                                                                               | 11.319       |
| 1.64             | 525, 924     | 125.536                                                                                               | S ~ 88 1     |

#### EXIT CXPERIMENTAL DATA

77

DIFFUSER B , L/H= 6.35° FLOW TEMPLEATURE = 110.0% POCM TEMPLEATURE = 70.0% BAROMETRIC PRESSURE = 29.443 "Hg

| 0157                                                                                                           | - 金属的复数 从限的专业                                                                                                   | 125                                                                                                              | : 1                                      |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| CELIM INMER SUPE                                                                                               |                                                                                                                 | STATIC PRESSURE                                                                                                  | TOTAL PRESSUR                            |
| INCHES                                                                                                         |                                                                                                                 | INCHES WATER                                                                                                     | INCHES WATE                              |
|                                                                                                                |                                                                                                                 | AFDZG SLOPH                                                                                                      | 45080 SLOPE                              |
| and a second second second second second second second second second second second second second second second | an the second second second second second second second second second second second second second second second | an an the Constant and the State of State State State State State State State State State State State State Stat | a<br>Antonia (California)<br>A<br>A<br>A |
|                                                                                                                |                                                                                                                 |                                                                                                                  |                                          |
| 0.4.8V                                                                                                         | 3.000                                                                                                           | 96357                                                                                                            | 2,25                                     |
| 0.25                                                                                                           | 365 2                                                                                                           | - <u>- 3</u> 5 -                                                                                                 | 2.5715                                   |
| 10、4美心                                                                                                         | - 35 E (10)                                                                                                     | 0.354                                                                                                            |                                          |
| <i>∴</i> ,570                                                                                                  | 3 a 5 ( %                                                                                                       | 0.35                                                                                                             | 2,350                                    |
| 5.7°                                                                                                           | 3,500                                                                                                           | 1375                                                                                                             | 3,35                                     |
| 06.87:                                                                                                         | 32050                                                                                                           |                                                                                                                  | 2                                        |
| 1 2602.00 L                                                                                                    | 4. 18 9 C                                                                                                       | 76 E E A                                                                                                         | 2,53                                     |
| 1015                                                                                                           | 32522                                                                                                           | 6.3 3 Ex                                                                                                         | 20                                       |
| 1 %a300                                                                                                        | 3,5-0                                                                                                           | W2359                                                                                                            | 13.708                                   |
| 1.430                                                                                                          | R. 5 0 0                                                                                                        | 25                                                                                                               | 5 5 5 5                                  |

# TXIT CALCULATED PESHLTS

| PIST              | E AR SI VELEMENTEME | <ul> <li>MATCHE ALPERATION</li> </ul> | TAN V LOCIEN      |
|-------------------|---------------------|---------------------------------------|-------------------|
| artin Inters Star | 1.7/5.77            | = = = / = : =                         | FT/SHO            |
| - در<br>ا         |                     |                                       |                   |
| 13 <u>2 5</u> 5   | さてきみんさん [           | 2 36435                               | 572 5             |
| - 414             | 1293179             | 22 4966                               | 6.739             |
| e 57.             | 1992-000            | 1732722                               | 6,834             |
| . 61e.            |                     |                                       | 2.5               |
| 1 e 07            |                     | 10163 C 6                             | 6.05              |
|                   | ¢ 8. 27 A           | 9 8 6 1 <b>8</b> 7 8 7 1              | 5 <b></b> 008     |
| 1.5.1.5           | 89.51               | K0, 727                               | $b = b_1 h_2 h_3$ |
|                   | 83, 31, 5           | 27. T.C.                              | 5.057             |
| л <i>с</i> . т. [ | 3 3 6 6             |                                       | 1 000             |

DIFFUSER B . L/H 4.35 FLOW TEMPERATURE 110.0%= ROOM TEMPERATURE 78.0%= BAROMETRIC PRESSURE 29.43 449 MASS WEIGHTED SWIEL ANGLE 4.555 COLD RESISTANCE OF HOT WIRE= 3. 54 OHMS

| DISTANCE<br>FROM INNER SURFACE<br>INCHES                             | DC | VOLTAGE<br>VOLTS                                                              | RMS VOLTAGE<br>MILLIVOLTS                                            |
|----------------------------------------------------------------------|----|-------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 0.280<br>0.450<br>0.610<br>0.760<br>0.910<br>1.050<br>1.180<br>1.310 |    | 9.750<br>9.750<br>9.800<br>9.750<br>9.750<br>9.700<br>9.650<br>9.550<br>9.400 | 0.128<br>0.090<br>0.098<br>0.127<br>0.152<br>0.177<br>0.275<br>0.280 |

### RELATIVE TURBULENCE

| DISTANCE<br>FROM INNER SURFACE<br>INCHES | PERCENTAGE TURBULENCE |
|------------------------------------------|-----------------------|
| 0.280                                    | 7.546                 |
| 0.450                                    | 5.306                 |
| 0.610                                    | 5.723                 |
| 0.760                                    | 7.487                 |
| 0.910                                    | 9.049                 |
| 1.050                                    | 10.641                |
| 1.180                                    | 16.866                |
| 1.310                                    | 17.712                |

DIFFUSER B : L/H= 6.35 FLOW TEMPERATURE = NO 7 PEOM TEMPERATURE = CA.O 7 BAROMSTRIC PRESSURE = SP. 4040 Mg

;

| DIST             | SWIRL ANGLE | PS PS           | μ             |
|------------------|-------------|-----------------|---------------|
| FROM INNER SURF  |             | STATIC PRESSURE | FOTAL PRESSUP |
| INCHES           |             | INCHES WATER    | INCHES MATE   |
|                  |             | 45DFC SLOPE     | AFRIC SIAPE   |
|                  |             |                 |               |
|                  | 0 7 / 7     |                 | 1 500         |
| 20294            | 70/0/       | 25224           |               |
| 5 <b>.</b> 280   | 106833      | 30633           | 30.21.1       |
| ₫ <b>。</b> 450 - | 220367      | 3.683           | . 4.950       |
| 0.610            | 11.500      | 3.7 * ?         | 4, 283        |
| 0.676            | 11.933-     | 3.817           | 4. 350        |
| 0.910            | 12,033      | . 3,883         | - 4. 267      |
| 1,050            | 11.933      | 3.833           | 4°683         |
| 1,180            | 12.233      | 3, 817          | 3.717         |
| 1_310            | 12,500      | 3,733           | -3-017        |
|                  |             | 2 150           | 1.755         |

INLET CALCULATED RESULTS

| 0151 [          | ABS VELUCITY | - VXIME AGENCIEU | TAM VILULIA |
|-----------------|--------------|------------------|-------------|
| FROM INNER SURF |              |                  |             |
| THOUTS 1        | FTISIC       | ET/620           |             |
|                 | 13 5766      | 127:566          | 28,752      |
| 6.28            | 153.445      | 1495651          | 33.73.      |
| 0.450           | 1610816      | 157.856          | 35-579      |
| 6.63            | 164,411      | 1615388          | 36,150      |
| - 76            | 266,295      | 162.226          | 36,564      |
|                 | 3660122      | 1.625057         | 36,526      |
| 1.50            | 2630720      | 159,713          | 35-998      |
| 1.1.5           | 150,721      | 1550812          | 35.118      |
| 1               | 151,182      | 147-4-82         | 33.241      |
| 7.1.4           | 127.403      | 124 252 1        | 28,533      |

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

#### 

DIFFUSER CO., L/H= G.35 FLOW TEMPERATURE= NO.095 ROOM TEMPERATURE= 86.095 BACOMETEIC PRESSURE= 29.6645 44

| • | DIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SHIPL ANGLE                               | periodic provinsi presidente de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de | D 1                                                                                                              | ļ |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---|
| : | FROM INKEP SUPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           | STATIC PRESSURD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OTAL PRESSURE                                                                                                    | ļ |
| - | INCHES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           | INCHES MATTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | INCHES MATER                                                                                                     |   |
| 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           | 450V0 SLOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | APPAR SLOOD                                                                                                      |   |
|   | Landrey and a line of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the | in an | , ad tartanen en worke en ar en en en en er er er er er er er er er er er er er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A STALLER TRAKETING CHILED (STATISTICS)                                                                          |   |
| • |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                  |   |
|   | Co CR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5,502                                     | 3.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,400                                                                                                            |   |
| • | 06.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.5                                       | 6.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.25                                                                                                             |   |
|   | 414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.000                                     | n.375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3-2                                                                                                              |   |
|   | 2:574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ち。ちばる                                     | 3 - 375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.7                                                                                                              |   |
|   | 1072.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.0                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.57                                                                                                             | - |
|   | <5 87%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F. 761                                    | 5.37 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.700                                                                                                            |   |
| • | 1. 美国化学学                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.215                                     | 06370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.4                                                                                                              |   |
|   | 1.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.50                                      | 0,370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.3                                                                                                              |   |
|   | 26330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1:00530                                   | 0.37.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.475                                                                                                            |   |
|   | 1.2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12,500                                    | 370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1. <b>1</b> . <b>1</b> . <b>1</b> .                                                                              |   |
|   | LICENT CONVERSE CONTRACTOR AND THE CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | The second second second states and the second second second second second second second second second second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and any second second second second second second second second second second second second second second second |   |

FXIT CALCULATED PESULTS

| DIST                                                 | LASS VILFC17ME | - AXIAL VELICITY                                                                                               | 「「長外」又自己の自己です。                                                                          |
|------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| TEAM INMAR SULT                                      |                |                                                                                                                |                                                                                         |
| THOMAS R                                             | ETVSTO         | माम्रदात् 🕴                                                                                                    | ET/C CC                                                                                 |
| a a suite ann an an an an ann ann ann an an ann an a |                | and a second second second second second second second second second second second second second second second | Resident and an and an and an and and and an and an an an an an an an an an an an an an |
|                                                      | 54.290         | 276,37                                                                                                         | 20,04                                                                                   |
| 1. <b>.</b> 4. ]                                     | * 10, 047      | ) 4.264                                                                                                        | 34,5801                                                                                 |
| · · · · · · · · · · · · · · · · · · ·                | 727,204        | 3036326                                                                                                        | 37,254                                                                                  |
| e 72 (2)                                             | 第三部に対応権        | 211.326                                                                                                        | 375254                                                                                  |
| .587                                                 | 127,395        | 5 1 1 K 3 2 6                                                                                                  | 37,244                                                                                  |
|                                                      | 222 694        | 1 7 444                                                                                                        | 25, 959                                                                                 |
| · · · · ·                                            | 00,03          | e , 193                                                                                                        | 316344                                                                                  |
|                                                      | 77.477         | 72,415                                                                                                         | $\sum_{i=1}^{n} C_{i} = \sum_{i=1}^{n} C_{i} = \sum_{i=1}^{n} C_{i}$                    |
|                                                      | じん シフム         | 15 人 7                                                                                                         | 7 7 7                                                                                   |

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8<sup>.</sup>0

DIFFUSER D. L/H 6.35 FLOW TEMPERATURE 118.0% ROOM TEMPERATURE 84.0% BAROMETRIC PRESSURE 87.44 "119 MASS WEIGHTED SWIRL ANGLE 11.680 "

#### COLD RESISTANCE OF HOT WIRE= 544 OHMS

| DISTANCE<br>FROM INNER SURFACE<br>INCHES | DC VOLTAGE<br>VOLTS | RMS VOLTAGE<br>MILLIVOLTS |
|------------------------------------------|---------------------|---------------------------|
| 0.280                                    | 9.750               | 0.165                     |
| 0.450                                    | 9.850               | 0.125                     |
| 0.610                                    | 9.870               | 0.098                     |
| 0.760                                    | 9.870               | 0.094                     |
| 0.910                                    | 9.870               | 0.106                     |
| 1.050                                    | 9.850               | 0.135                     |
| 1.180                                    | 9.820               | 0.170                     |
| 1.310                                    | 9.750               | 0.260                     |

#### RELATIVE TURBULENCE

| DISTANCE<br>FROM INNER SURFACE<br>INCHES | PERCENTAGE TURBULENCE |
|------------------------------------------|-----------------------|
| 0.280                                    | 9.728                 |
| 0.450                                    | 7.231                 |
| 0.610                                    | 5.648                 |
| 0.760                                    | 5.417                 |
| 0.910                                    | 6.109                 |
| 1.050                                    | 7.809                 |
| 1.180                                    | 9.889                 |
| 1.310                                    | 15.329                |

81

DIFFUSER 2 , L/H= 6.35 FLOW TEMPERATURE= 119.0 %

ROCM TEMPERATURE = 54.090 BARDMETRIC PRESSURE = 29.444 449

|          |               |      |         | CTATY CT | SPECCIUE                   | 101 / 1                                  | 211222333      |
|----------|---------------|------|---------|----------|----------------------------|------------------------------------------|----------------|
|          | NOUR SUNCE    |      |         |          |                            | 월 1217년<br>8월 - 1246년                    | モビビンス ひたい しんてい |
| 1        | NUHES         |      | ļ.      | J NUNC.  |                            |                                          | C CLODE        |
|          |               |      |         | 40,000   | SUUP:<br>Arrestatementeren | 1                                        | O DETRO        |
|          |               |      |         |          |                            |                                          |                |
|          | 0.000         | 5 7  | 047     |          | ን ግርሌ                      |                                          | 3. 28.3        |
|          | 10192         | 1.70 | 001     |          | 10124<br>027               | Ē                                        | 2 222          |
|          | - 100 ZAU - P | 1.20 | 232     | -        | 00,001                     |                                          | 261.22         |
| £ -      | 0.450         | 160  | 233     |          | 86917                      |                                          | 30867          |
| р.<br>17 | C.610         | 1.6c | 5尊尊 📗 👘 |          | 3.917 ·                    |                                          | 4-583          |
|          | 0.0765        | 27.  | 133     |          | 3.,950                     |                                          | 4.0133         |
|          | 0,910         | 170  | 733     | 2        | 3.900                      |                                          | 4.133          |
|          | 1,050         | 170  | 933     | -        | 85835                      |                                          | 46033          |
|          | 1.130         | 180  | 833     |          | 3.933                      |                                          | 3.833          |
|          | 1.310         | 2.95 | 333     | -        | 3-733                      |                                          | .3.283         |
|          | 1.440         | 19.  | 500     |          | 2, 250                     | li li li li li li li li li li li li li l | 2.217          |

INLET CALCULATED RESULTS

| ! | DIST                   | ARS. MELPCITY        | AXIAL VELOCITY                                                        | TAN VELOCITY     |
|---|------------------------|----------------------|-----------------------------------------------------------------------|------------------|
|   | THOM INDER SURF        | 5 1 1500             | FT/590                                                                | FT/SFC           |
|   | C . C .                | 13.0,545             | romenanternamenternen ander an en | 43.582           |
|   | 0.0290                 | 1,556,052            | 2465156<br>1535035                                                    | 535764<br>545260 |
|   | 61.                    | 164,586              | 155-143                                                               | 54,947           |
|   | 1.0761                 | 1.64。925<br>1.64。925 | 155-463                                                               | 55556<br>555655  |
|   | 15752                  | 163,720              | 154.327                                                               | 54.658           |
|   |                        | 1620161              | 152,857                                                               | 54,5237          |
|   | $\frac{1}{1 - L_{ij}}$ | 397,258              | 120 410                                                               | 25 876           |

82

#### ·EXIT EXPERIMENTAL DATA

DIFFUSER S : (/H= 6.25 FLOW TEMPHRATUPE= 119.0 %

ROOM TEMPERATURE = 04.0% BARDMETPIC PRESSURE = 22.444

| DIST 0                                   | SWITL AMGLE  | 45                                           | 11            |
|------------------------------------------|--------------|----------------------------------------------|---------------|
| FECH INDUR SUFF                          |              | STATIC PERSIA                                | COTAL PRESSUR |
| INCHES                                   | ·            | INCHES WATER                                 | INCHES FATE   |
|                                          |              | ASTER SLOPE                                  | 450 G SIGPA   |
|                                          |              | ne ar an an an an an an an an an an an an an |               |
| 2. 8.a. Ĉ.2.?                            |              | 0.425                                        | 1.<br>1.0050  |
| 2025                                     | 10000        | top (-2)                                     | 1.285         |
| 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | 1 2 20 20    | C 5 4 2 2                                    | 2:45          |
| <b>Co57</b> 0                            | 1.00 500     | 5 5 4 2 m                                    | 3.4           |
| 6721                                     |              | 126 6 Z                                      | 2.75          |
| 1.587¢                                   | 196524       | 62674                                        | 3,65          |
| 1.5.1.1                                  | 13.500       | So 4200                                      | 2.575         |
| 263.60                                   | 1651         | 1.542                                        | 201.22        |
| 1.3                                      | X 95 5 ) ^ 🕴 | ) <b>. 42</b> °                              | - 5.8 2 d     |
| 1.42                                     | 23.57 】      | 3. 42                                        | 2 _ OT (      |

SXLT CALCULATED RESULTS

| DIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TAS V LOLITY                                  | - CX14L MALOCITY                                                                                               | - ていん べんしのひょうか 🚦                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| <br>FRIA INSTRUSIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               |                                                                                                                |                                               |
| and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second | ann mar an ann an ann ann ann ann ann ann ann | מיישניים גינגייני געריים אייניים אייניין אייניין אייניין אייניין אייניין אייניין אייניין אייניין איינייין איינ | ייארייניאלאייאשיי שנערעינענערעייישע אנדערעייי |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               | - 作物のなけの 一部 権                                                                                                  | e Andre B                                     |
| f 25.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 875671 E                                      | e. <sup>2</sup> 3ad 🕴                                                                                          | 34,0083                                       |
| 5 - 6 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C 22 5 5 5 1                                  | € 16 K 12                                                                                                      | 39,218                                        |
| <br>. 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.1.2、アカス                                     | 1-60200                                                                                                        | 4.50 350                                      |
| <br>16.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11 40 82 7                                    | 1 1 5 5 7 12                                                                                                   | 67.34                                         |
| -5.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 172394                                        | き けってちた                                                                                                        | 443516                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 326 24                                      | 45. A                                                                                                          | 41.317                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 012 S25                                       | 555 RD                                                                                                         | 3161                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               |                                                                                                                | 256 826                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 / Z - 2554 - 1                              | 2 X 1 C - C - 🛔                                                                                                | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1         |

DIFFUSER 5 , L/H 4.35 FLOW TEMPERATURE 7/9.5 % ROOM TEMPERATURE 84.0 % BAROMETRIC PRESSURE 28.4.4 % MASS WEIGHTED SWIRL ANGLE 77.869 °

COLD RESISTANCE OF HOT WIRE= J. J. OHMS

| DISTANCE<br>FROM INNER SURFACE<br>INCHES                             | DC | VOLTAGE<br>VOLTS                                                     | RMS VOLTAGE<br>MILLIVOLTS                                                                   |
|----------------------------------------------------------------------|----|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 0.280<br>0.450<br>0.610<br>0.760<br>0.910<br>1.050<br>1.180<br>1.310 |    | 9.850<br>9.950<br>9.970<br>9.970<br>9.950<br>9.920<br>9.900<br>9.850 | $\begin{array}{c} 0.146\\ 0.110\\ 0.094\\ 0.100\\ 0.117\\ 0.142\\ 0.175\\ 0.250\end{array}$ |

#### RELATIVE TURBULENCE

| DISTANCE<br>FROM INNER SURFACE<br>INCHES | PERCENTAGE TURBULENCE |
|------------------------------------------|-----------------------|
| 0.280                                    | 8.445                 |
| 0.450                                    | 6.246                 |
| 0.610                                    | 5.318                 |
| 0.760                                    | 5.657                 |
| 0.910                                    | 6.643                 |
| 1.050                                    | 8.107                 |
| 1.180                                    | 10.029                |
| 1.310                                    | 14.461                |

84

DIFFUSER B , L/H=6.35 FLOW TEMPERATURE= 119.59 ROOM TEMPERATURE= 820 % BARDMETRIC PRESSURE= 89.44 Mg

|   | DIST<br>FROM INMER SURF<br>INCHES                                         | SWIFL ANGLE                                    | PS<br>STATIC PRESSURS<br>INCHSS WATER | PT<br>TOTAL PRESSUPE<br>INCHES WATER |  |
|---|---------------------------------------------------------------------------|------------------------------------------------|---------------------------------------|--------------------------------------|--|
|   | alantar tetala - soo noon tetalah kanadaran matumaten Talan menanda 97 te | <u></u>                                        | AGONG CLODE                           | <u>AEDOGISLOPE</u>                   |  |
| • | や。090<br>た。280<br>む。450<br>ら。630                                          | 206333<br>226333<br>226700<br>236700<br>246667 | 45233<br>46400<br>46427<br>45337      | 00800<br>30200<br>30933<br>40167     |  |
|   | <u> </u>                                                                  | 256667<br>260067<br>260657                     | 4.0233<br>4.0253<br>4.0267            | 4 c 283 (<br>4 c 31 7<br>4 c 350     |  |
|   | 1c180<br>1c320<br>1c440                                                   | 270067<br>270733<br>29.667                     | 40183<br>40158<br>3.433               | 4.300<br>3.917<br>3.493              |  |

INLET CALCULATED RESULTS

| DIST             | ABS VELCCITY | AXIAL VELOCITY | TAN VELOCITY |
|------------------|--------------|----------------|--------------|
| FREM INNER SUPE  |              |                |              |
| THEHES           | FT/CLC       | FT/SAC         |              |
|                  | 13.5545      | 114,539        | 62-632       |
| 1.6280           | 26 6419      | 14.575         | 76,965       |
| 2.45             | 1.635148     | 1475532        | 8 673        |
| 8 . <b>6</b> 1 ( | 169-492      | 148,711        | 81.318       |
| 0.76             | 170,478      | 149-576        | 81.6791      |
| C. 010           | 17.6319      | 2690436        | 81.0715      |
| 第13日 5年          | 17-5315      | 149-972        | 81,5953      |
| 20391            | 160,482      | 1435702        | 91.313       |
| £3325            | 1646266      | 14453 38       | 785891       |
| 3,44             | 75. 673      | 132,313        | 70,350       |

## EXIT EXPERIMENTAL DATA

DIFFUSER B , L/H=G.85 FLOW TUMPERATURE= MO.87 % POCK TEMPERATURE= GZO % BAFOMETPIC PRESSURE= DO 44 %

| UTST U           | SWITE ANGLY                            | Pb                                       |                                                                |
|------------------|----------------------------------------|------------------------------------------|----------------------------------------------------------------|
| FROM INNER SURF  |                                        | STATIC PRESSURE                          | POTAL PEESSUE                                                  |
| INCHES           |                                        | INCHES WATCH                             | INCHI'S WATE                                                   |
|                  |                                        | 45010 SLCP                               | 45050 SLOP                                                     |
|                  | n an ann ann ann an ann an ann ann ann | an an an an an an an an an an an an an a | , ALEXANDER CONTRACTOR AND AND AND AND AND AND AND AND AND AND |
|                  |                                        |                                          |                                                                |
| Gef 33.          | 1.60 1.11                              | 10 4-21                                  |                                                                |
| - ~ <b>.2</b> 52 | 1.6.1.200                              | 0a 4 2 S                                 | 20157                                                          |
| 0.41             | 15,000                                 | 5.5422                                   | 2.454                                                          |
| 0.57%            | 1 56 Orth 1                            | Qs 42                                    | 3,455                                                          |
|                  | 265238                                 | 154.5                                    | 3.4 %                                                          |
| 0.875            | 276020                                 | 25420                                    | 3.45(                                                          |
| 2.5 (2.5)        | 2.9. stad                              | No 42.8                                  | Bat 50                                                         |
| 1,160            | 2 % 24 2                               | 20420                                    | 2.0 8                                                          |
| 26200            | 22.Joy                                 | 25.42.9                                  | 20422                                                          |
| 3.63             | 78 5 T                                 | 4.24                                     | 8. 34                                                          |

EXIT CALCULATED RESULTS

CARTONNAL CO NIST 615 VELCOMY AXEAL VELOCITY TAN, MELCEITY THNER SURF 17 (C MICH-S =7/5 C 1778-0 FT/S/C ergegelgenstjøserse datio 1 -----E Ta 517 197 · c / - - - $\Delta T_{a}^{(1)} \Delta h$ CR, 581 88.5425 1. 4 V 57 252257 -i -3630K 53,790 2.257357 00,065 572 57 a 27 A 3 - 1 <u>- 5</u> 97  $\odot 7$ 1942473 54,628 ¢ 7 10,20% 51.6722 ) : 3 0 1.1. 267  $\Phi(7), (7) \in \mathbb{R}$ 45.872 ちらんていた 1. . 4.1 -1-7 66 6 3 8 67. 65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DIFFUSER B , L/H 6-35 PLOW TEMPERATURE 119.5% ROOM TEMPERATURE 37.6 % BAROMETRIC PRESSURE 29.4/14/4 MASS WEIGHTED SWIRL ANGLE 25.357 COLD RESISTANCE OF HOT WIRE= 3.42 OHMS

| DISTANCE<br>FROM INNER SURFACE<br>INCHES | DC VOLTAGE<br>VOLTS | RMS VOLTAGE<br>MILLIVOLTS |
|------------------------------------------|---------------------|---------------------------|
| 0.280                                    | 9.900               | 0.148                     |
| 0.450                                    | 9.970               | 0.108                     |
| 0.610                                    | 10.000              | 0.096                     |
| 0.760                                    | 10.000              | 0.098                     |
| 0.910                                    | 9.970               | 0.105                     |
| 1.050                                    | 9.950               | 0.125                     |
| 1.180                                    | 9.950               | 0.148                     |
| 1.310                                    | 9.900               | 0.235                     |

#### RELATIVE TURBULENCE

| DISCANCE<br>FROM INNER SURFACE<br>INCHES | PERCENTAGE TURBULENCE |
|------------------------------------------|-----------------------|
| 0.280                                    | 8.481                 |
| 0.450                                    | 6.110                 |
| 0.610                                    | 5.401                 |
| 0.760                                    | 5.514                 |
| 0.910                                    | 5.940                 |
| 1.050                                    | 7.097                 |
| 1.180                                    | 8.403                 |
| 1.310                                    | 13.467                |

DIFFUSER C , L/H= 3.13 FLOW TEMPERATURE = 100.0 % ROOM TEMPERATURE = 100.0 % BARDMETRIC PRESSURE = 29.60 %

|   | DIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SWIRL ANGLE                                      | PS                                       | Та             |  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------|----------------|--|
|   | FROM INNER SURF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | STATIC PRESSURE                          | FOTAL PRESSUPE |  |
| • | INCHES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  | INCHES WATER                             | INCHES WATER   |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | 45DEG SLOPE                              | 45DEG SLADE    |  |
| • | into to have a local tento and antipassion and the case of the local state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the seco | Televistican delition designation de la complete | an an an an an an an an an an an an an a |                |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                          |                |  |
|   | 0.099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.733                                            | 2,533                                    | 2.457          |  |
|   | 0.280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | So 9 1                                           | 2.633                                    | 3.783          |  |
|   | 0.450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,833                                            | 2:767                                    | · 4°367        |  |
|   | 0.610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 05667                                            | 3,000.1                                  | 4.683          |  |
|   | 3.760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.833                                            | 35133                                    | 4,683          |  |
|   | 0.910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0° 833                                           | . 3:267                                  | 4,450          |  |
|   | 1.6050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 07.833                                           | 3,117                                    | 46.250         |  |
|   | 10100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Un 633                                           | 3.817                                    | 3.517          |  |
|   | 1.310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.400                                            | 2, 920                                   | 2,850          |  |
|   | 1.5440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,333                                            | 2,533                                    | 1,950          |  |

INLET CALCULATED RESULTS

| 1 | Lange of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second |              |                |              |  |  |  |  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|--------------|--|--|--|--|
|   | DIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ABS VELOCITY | AXIAL VELOCITY | TAN VELOCITY |  |  |  |  |
|   | FROM INNER SURF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                |              |  |  |  |  |
|   | TNCHES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FT/SPC       | FT/SEC         | ETICOC       |  |  |  |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | 1.2.1.1.2.5    | 10756        |  |  |  |  |
| • | 1.027M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 147.394      | 1.47,392       | 0.857        |  |  |  |  |
|   | 0.645                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 155-423      | -155.420       | S. 953       |  |  |  |  |
|   | 6.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 161,292      | 161-290        | 1,938        |  |  |  |  |
|   | 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 162.682      | 3.62.563.      |              |  |  |  |  |
|   | ( and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.60,599     | 16 595         | Vo934        |  |  |  |  |
|   | 1.54 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,557 782    | 155-779        | P.916        |  |  |  |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 140.703      | 348,741        | 1.865        |  |  |  |  |
|   | 1.310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1396525      | 139,532        | Cortin       |  |  |  |  |
|   | N = 4.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 123.2 6      | 3 2 3 3 4      | 776          |  |  |  |  |

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

### EXIT EXPOSITIONATAL DATA

DIFFUSED C : L/4=3.13 FLOW TEMPERATURE= 100.0 % ROOM TEMPERATURE= 70.0% BARDMETRIC PRESSURE=29.08 "143

|     | 0151                                                                                                                       | SHAL AMGLE                                         | PS             | li<br>1. ( ) ( )<br>1. ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( |
|-----|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------|--------------------------------------------------------------|
| 1   | FROM INMER SUPP                                                                                                            |                                                    | STATIC PRESSUR | FOTAL FRESSUSE                                               |
|     | HICHES                                                                                                                     |                                                    | INCHES WATER   | INCHES MATER                                                 |
|     | ji<br>19<br>19 da serang da serang serang serang serang serang serang serang serang serang serang serang serang serang ser | es bri uziwan azaren eterzatetzet uz za sariatzete | A SHID CLOPE   | 17 MARCHARD                                                  |
| 1   |                                                                                                                            |                                                    |                |                                                              |
|     |                                                                                                                            |                                                    |                |                                                              |
|     | 1.o ^ 90                                                                                                                   |                                                    | <b>そったち</b> り  | 4.500                                                        |
| 1   | No 244                                                                                                                     | 5 5 E 2 2                                          | 2:650          | 4-58.20                                                      |
|     | 06470 B                                                                                                                    | ディシール                                              | <i>∿</i> ₀ 65. | 5.5 27 0                                                     |
|     | ි. 53එ                                                                                                                     | 0.511                                              | 0,650          | 5,251                                                        |
| Ę   | 6.734                                                                                                                      |                                                    | 650            | 4,655                                                        |
|     | 0.880                                                                                                                      |                                                    | Ra 6 5)        | 2. きんを作り                                                     |
| 100 | 2.3 (20)                                                                                                                   | 1. A A A A A A A A A A A A A A A A A A A           | 2.650          | 2.4 17                                                       |
| [:  | 2.52.5                                                                                                                     | c i                                                | 2065C          |                                                              |
|     | 1.330                                                                                                                      |                                                    | A. 652         |                                                              |
|     | 1 43                                                                                                                       |                                                    | 651            | 7                                                            |

GXIT CALCULATED FRONTS

|                      | 1.57     | 15 MELDER M                              | LOTIN VOLGETEN     | TAL VELCEN                                                                                                     |
|----------------------|----------|------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------|
| TP GM 150            | 12.508-  |                                          |                    | n alle and an an an an an an an an an an an an an                                                              |
| CANEN LITERATURE AND |          | : - / ^ - /                              | <u> </u>           | eile.(                                                                                                         |
|                      | 1e 19    |                                          |                    | u na kana kana kana kana kana kana kana                                                                        |
|                      | 16 D 6 1 | きまちょうなら                                  | 12356844 B         | . oʻʻ                                                                                                          |
| Ľ.                   | 42       | 3.4 . 77 3                               | 141,743            | . <b>2</b> * *                                                                                                 |
|                      | 1. NO 1  | 2436942                                  | 1 1 1 AT 6 2 4 5 1 | the second second second second second second second second second second second second second second second s |
|                      | 57 E     | 132,073                                  | 2.30 . 562         | <u>ہ</u>                                                                                                       |
| 5                    | - SRI    | 119,969                                  | 1.19,952           | 14 <sup>1</sup> O                                                                                              |
|                      | G (21)   | ● 「○ 「○ 「○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ | 94. 726 B          | 'n                                                                                                             |
| F                    | e Ar     | 02.21.5 <b>↓</b>                         | 925215 📲           | , .                                                                                                            |
| ,                    | 62       | 74.74.4                                  | 74-746             | ;                                                                                                              |
|                      |          | 1 7 1 1 1 1 1                            | 이 아파 아파 불 문 불      | •                                                                                                              |

89
DIFFUSER C , L/H 3./3 FLOW TEMPERATURE /60.0 %F ROOM TEMPERATURE /0.0 %F BAROMETRIC PRESSURE 29.68 %H, MASS WEIGHTED SWIRL ANGLE /0.785

### COLD RESISTANCE OF HOT WIRE= 3.33 OHMS

| DISTANCE<br>FROM INNER SURFACE<br>INCHES                             | DC VOLTAGE<br>VOLTS                                                           | RMS VOLTAGE<br>MILLIVOLTS                                            |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 0.280<br>0.450<br>0.610<br>0.760<br>0.910<br>1.050<br>1.180<br>1.310 | 9.800<br>9.850<br>9.850<br>9.850<br>9.800<br>9.800<br>9.700<br>9.600<br>9.500 | 0.128<br>0.091<br>0.087<br>0.110<br>0.132<br>0.167<br>0.255<br>0.260 |

### RELATIVE TURBULENCE

| DISTANCE<br>FROM INNER SURFACE<br>INCHES | PERCENTAGE TURBULENCE |
|------------------------------------------|-----------------------|
| 0.280                                    | 7.474                 |
| 0.450                                    | 5.264                 |
| 0.610                                    | 5.032                 |
| 0.760                                    | 6.363                 |
| 0.910                                    | 7.708                 |
| 1.050                                    | 9.942                 |
| 1.180                                    | 15.483                |
| 1.310                                    | 16.109                |

### INLET PAPERIMENTAL DATA

DIFFUSER C , L/H= 3.13 FLOW TEMPERATURE= 106.0 % POOM TEMPERATURE= 73.0 % BAROMETRIC PRESSURE= 29.57 44

| DIST<br>FROM INNER SUPF | SHILL ANGLE                                   | STATIC PRESSURA             | TOTAL PRESSURE |
|-------------------------|-----------------------------------------------|-----------------------------|----------------|
| INUTES                  | ן<br>קיין אין איין איין איין איין איין איין א | INCHES WATER<br>45DEG SLOPE | 450FG SLOPE    |
|                         |                                               |                             |                |
|                         | 2,500                                         | · 2, 450                    | 2.600          |
| No 6 3%                 | 20(25) H                                      |                             | 40101          |
| Sta 61.1                | 3.667                                         | 2.5651                      | 4,917          |
| 0.760                   | 3.033                                         | 2.867                       | 4.933          |
| 1,0910                  | 3.667                                         | 2.017                       | 40767          |
| 1.050                   | 3,833                                         | 20855                       | 4:417          |
| Lo L SV                 | 3.933                                         | 2.750                       | 3,333          |
| 1.0310                  | 3.923                                         | 2.650                       | .3.033         |
| 1,444                   | 2.500                                         | 2,633                       | 2,205          |

INLET CALCULATED RESULTS

| DIST            | ABS VELOCITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AXIAL VELOCITY                                                                                                                                                                                                                                                                                        | THE VELOCITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPCM INNEY SURF |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TILL STORE      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ET/GVC                                                                                                                                                                                                                                                                                                | ET/SEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                 | 13766                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.4                                                                                                                                                                                                                                                                                                   | 1,924                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| . 25            | 7516023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15(572)                                                                                                                                                                                                                                                                                               | 9,220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| て。450           | 1576758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 157:464                                                                                                                                                                                                                                                                                               | 9a632                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.611           | 161.302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 161,0+2                                                                                                                                                                                                                                                                                               | 9,849                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 20761           | 1625516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 162-213                                                                                                                                                                                                                                                                                               | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.6910          | 161213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 164/12                                                                                                                                                                                                                                                                                                | 95849                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.057           | 256,965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 156-572                                                                                                                                                                                                                                                                                               | 9,578                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 10131           | 24963                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 149,122                                                                                                                                                                                                                                                                                               | °,116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 10310           | 1326719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.39,461                                                                                                                                                                                                                                                                                              | 8547日十                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3. 1.4          | 025 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 127 687                                                                                                                                                                                                                                                                                               | 7,811                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                 | DIST<br>FROM INNED SURF<br>THOMME<br>2252<br>Co453<br>Co611<br>Co611<br>Co611<br>Co614<br>Lo70<br>Co614<br>Lo75<br>Ro53<br>Co514<br>Lo75<br>Ro53<br>Co514<br>Lo75<br>Ro53<br>Co514<br>Lo75<br>Ro53<br>Co514<br>Lo75<br>Ro53<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co514<br>Co51 | DIST     ABS VELOCITY       EPCM INNER SURF     ETT/SEC       TOCHES     ETT/SEC       12:0705     13:0766       12:0705     15:0726       12:0715     15:0727       10:01:202     16:1:202       10:01:202     16:2:516       10:051     16:1:3:3       10:1:31     13:2:719       10:44     157:025 | DIST       ABS VELOCITY       AXIAL VELOCITY         EPCM INNER SURF       ET/SEC       ET/SEC       ET/SEC         ECOME       13.022       13.022         COME       157.767       157.727         COME       157.758       157.727         COME       161.022       161.022         COME       161.202       161.012         COME       161.202       161.012         COME       161.203       162.012         COME       161.202       161.012         COME       161.203       162.012         COME <t< th=""><th>DIST       ABS VELOCITY       AXIAL VELOCITY       DUR VELOCITY         EPCM INNED SURF       ET/SEC       ET/SEC       ET/SEC         EPCM INNED SURF       ETS</th></t<> | DIST       ABS VELOCITY       AXIAL VELOCITY       DUR VELOCITY         EPCM INNED SURF       ET/SEC       ET/SEC       ET/SEC         EPCM INNED SURF       ETS |

### EXIT EXPERIMENTAL DATA

DIFFUSER C , L/H=3.13 FLOW TEMPERATURE= 106.0% FGOM TEMPERATURE= 78.0% BAROMETRIC PERSSURE= 29.574/

| PIST<br>FROM INNER SURF<br>INCHES                                                                        | SWIEL ANCL                                                                                            | PS<br>STATIC PPTSSUP<br>INCHES MATER<br>ASOUG SLOPM                | PT<br>TOTAL PRESSURG<br>INCHES WATER<br>45DEG SLOPE                                                      |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 20090<br>Ro250<br>Co420<br>Co590<br>Co730<br>Co832<br>Lo832<br>Lo832<br>Lo832<br>Lo832<br>Lo832<br>Lo832 | Co<br>20500<br>20500<br>30000<br>30000<br>30000<br>30200<br>30200<br>30200<br>30200<br>30200<br>30200 | Соб<br>Соб<br>Соб<br>Соб<br>Соб<br>Соб<br>Соб<br>Соб<br>Соб<br>Соб | 1 c 500<br>3 c 500<br>4 c 450<br>4 c 450<br>4 c 450<br>4 c 60<br>3 c 800<br>2 c 400<br>1 c 60<br>4 c 451 |

# NXIT CALCHUATED PESULTS

| D)ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LARS VELOCIANE                           | ANTAL VILCONN                                                                                                   | TAN YELCOM                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FROM INNER SURT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                                                                                                                 |                                                                                                                                                                                                                                   |
| THEFT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ervere 🖡                                 | 5. T / S + 0                                                                                                    | 1775-C                                                                                                                                                                                                                            |
| (A) Second Second and a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s<br>Second second s<br>Second second se<br>Second second sec | n an an an an an ann an an an an an an a | and the second second second second second second second second second second second second second second secon | and an and a second second second second second second second second second second second second second second<br>Second second |
| 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1235444                                  | 2234247                                                                                                         | 65991                                                                                                                                                                                                                             |
| 1042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13 6754                                  | 113.6562                                                                                                        | 7.,                                                                                                                                                                                                                               |
| 590 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 37, 000 L                              | 1364973                                                                                                         | 7:657                                                                                                                                                                                                                             |
| € <del>7</del> 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.37-1.86                                | 186,073                                                                                                         | 75653                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1376 62 1                                | 1323687                                                                                                         | 7.6.0                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.20                                     | 121-27                                                                                                          | 6.946                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.1.0                                    | 2 3693                                                                                                          | 5.6627                                                                                                                                                                                                                            |
| 2621                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 736 1 4                                  | 73,42                                                                                                           | 1. 1. C.                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.007                                   | rej roj                                                                                                         | \$\\$ <b>\$</b>                                                                                                                                                                                                                   |

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92.

DIFFUSER C . L/H 3./3 FLOW TEMPERATURE /06.0 % HOOM TEMPERATURE /20.0 % BAROMETRIC PRESSURE 29.57 "Mo MASS WEIGHTED SWIRL ANGLE 5.532 ° COLD RESISTANCE OF HOT WIRE= 3.3-7 OHMS

۰,

| DISTANCE<br>FROM INNER SURFACE<br>INCHES                             | DC VOLTAGE<br>VOLTS                                                           | RMS VOLTAGE<br>MILLIVOLTS                                            |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 0.280<br>0.450<br>0.610<br>0.760<br>0.910<br>1.050<br>1.180<br>1.310 | 9.650<br>9.700<br>9.750<br>9.750<br>9.720<br>9.720<br>9.700<br>9.650<br>9.600 | 0.168<br>0.115<br>0.086<br>0.092<br>0.117<br>0.140<br>0.172<br>0.198 |

### RELATIVE TURBULENCE

| DISTANCE<br>FROM INNER SURFACE<br>INCHES | PERCENTAGE TURBULENCE |
|------------------------------------------|-----------------------|
| 0.280                                    | 10.100                |
| 0.450                                    | 6,846                 |
| 0.610                                    | 5.070                 |
| 0.760                                    | 5.424                 |
| 0.910                                    | 6.938                 |
| 1.050                                    | 8.334                 |
| 1.180                                    | 10.340                |
| 1.310                                    | 12.022                |

93 .

### INLET EXPERIMENTAL DATA

# DIFFUSER C, L/H=3./3 FLOW TEMPERATURE= 104.0% ROOM TEMPERATURE= 74.0% BAPOMETRIC PRESSURE= 29.447 46

| DIST B            | - SWIEL ANGLE | <u>P5</u>                                                                                                       | P1                                             |
|-------------------|---------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| FPCM INMEP SURF   |               | STATIC PRESSURE                                                                                                 | TOTAL PRESSUR                                  |
| INCHES            |               | INCHES WATER                                                                                                    | INCHES WATE                                    |
|                   |               | 45DEG SLOPE                                                                                                     | 45DFG SLOPE                                    |
|                   |               | ana any amin'ny fanina amin'ny fanina manana amin'ny fanina amin'ny fanina amin'ny fanina amin'ny fanina amin'n | n namanan mininggi te pri bersaran manari<br>M |
|                   |               | •                                                                                                               |                                                |
| D. 6 9 0          | 6,333         | 2,617                                                                                                           | 2,333                                          |
| 0.280             | 7.000         | 2.657                                                                                                           | 3.867.                                         |
| 0.450             | 7.667         | 2.750                                                                                                           | 4.500                                          |
| 0.610             | 7.667         | 2,833                                                                                                           | 4,783                                          |
| 0.769             | R. 500        | 2,023                                                                                                           | 4,0°                                           |
| 0.01 <sup>4</sup> | 8             | 3.65為                                                                                                           | 4.817                                          |
| 1,055             | 7.833         | 2.983                                                                                                           | 4-633                                          |
| 1,180             | 8.67          | 2,933                                                                                                           | 4.3.0                                          |
|                   | 8,167         | 2,833                                                                                                           | 3,567                                          |
| 1.440             | s. oon        | 2.800                                                                                                           | 2-633                                          |

# INLET CALCULATED RESULTS

| DIST            | ABS VALOCITY         | 4,XI/L VILUCITY    | PAN' VELUCITY    |
|-----------------|----------------------|--------------------|------------------|
| FROM JEWER SURF | ET/STO               | nu VSEC            | FT/SCC           |
| <pre>*eU¥</pre> | 1296404              | 247,295            | 24 c 7 4         |
| (°45)<br>(°45)  | 356,681<br>365,597   | 1555156<br>1595024 | 21,809<br>22,352 |
| 1.5760<br>05910 | 162-859              | 161,274            | 22.669<br>22.718 |
| 1.015           | 160% 587<br>156% 587 | 1595024<br>1546974 | 228352           |
| 1,000           | 247,210              | 145.777            | 2.400            |

94

# EXIT EXPERIMENTAL DATA

DIFFUSER C : L/H= 3.43 FLOW TEMPERATURE= 104.000 ROOM TEMPERATURE= 24.000 BARDMOTRIC PRESSURE= 29.447 443

|   | DIST            | SWIFL ANGLE       | 29                  | pT               |
|---|-----------------|-------------------|---------------------|------------------|
|   | FROM INMER SURF |                   | STATIC PRESSUR      | POTAL PRESSUR    |
|   | IMCHES          |                   | INCHES WATER        | INCHUS MATEL     |
|   |                 |                   | 45 BEA \$1.701      | 480.0 01000      |
|   |                 |                   |                     |                  |
| • |                 | н н.<br>          |                     |                  |
|   | :. <u>೧</u> ೧೫  | <b>F</b> a (1) ** | 067°°               | 25050            |
|   | 0.526           | 5.000             | 100 7 10 m          | B. 350           |
|   | C₀420           | 5 e 5 D O 🕴       | 16 e 7 orig         | 4.5136           |
|   | 6.58            | 6.000             | 5.7 P               | 407              |
|   | No 734          | 6,5/0             | 25 <b>7</b> 14      | 4 <sub>0</sub> C |
|   | <b>0.88</b> 0   | 7. 344            | ~ <del>7</del> 7 10 | 46 Q ( )         |
|   | 「大方の空心」         | 752.50            | C. 7                | 4.6.2000         |
|   | 102.6           | G <sub>e</sub>    | e                   | 2 . 55           |
|   | 2.6320          | 2.25 3 3 2        | Les Test            | 1.0              |
|   | 1643            | 136531            | 7                   |                  |

EXIT CALCULATED FESULTS

|        | :)13T          | APS VOLVEITN | ANTAL VELOCETY     | THM VELECTRY |
|--------|----------------|--------------|--------------------|--------------|
|        | CHAR<br>TACHAR | 577517       | TT/SIC             | 57/576       |
|        |                |              |                    |              |
| l i    | 1626 J         |              | 이 제품은 원장 안         | 27,341       |
| 1864   |                | 2273480      | 27734954 B         | 20,765       |
| ł.     | 1.5 号尺。<br>    | 135.222      | 3375494            | 31,571       |
| }      | u              |              |                    |              |
| E.     | 26901          | 3745465      | 2385696            | 37.0252      |
| ě.     | 15020          |              | 126-523            | 3. 370       |
|        | 187.60         | 523-172      | E 75 110           | 255056.      |
| ê<br>F | 262 20         | 75387 1      | 72,774             | とアックえる       |
| 2.4    | 3 , 2 &        | 2 × 5 × 7    | 2 2 . <del>.</del> | 4 12 1 10    |

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DIFFUSER C , L/H 3.13 FLOW TEMPERATURE 104.0% BOOM TEMPERATURE 74.0% BABOMETRIC PRESSURE 29.47"Hg MASS WEIGHTED SWIRL ANGLE 7.497"

COLD RESISTANCE OF HOT WIRE= 3.34 OHMS

| DISTANCE<br>FROM INNER SURFACE<br>INCHES                             | DC VOLTAGE<br>VOLTS                                                  | RMS VOLTAGE<br>MILLIVOLTS                                                                    |
|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| 0.280<br>0.450<br>0.610<br>0.760<br>0.910<br>1.050<br>1.180<br>1.310 | 9.600<br>9.700<br>9.750<br>9.770<br>9.780<br>9.750<br>9.700<br>9.650 | $\begin{array}{c} 0.175\\ 0.135\\ 0.105\\ 0.090\\ 0.105\\ 0.125\\ 0.162\\ 0.245 \end{array}$ |

### RELATIVE TURBULENCE

| DISTANCE<br>FROM INNER SURFACE<br>INCHES                             | PERCENTAGE TURBULENCE                                                 |
|----------------------------------------------------------------------|-----------------------------------------------------------------------|
| 0.280<br>0.450<br>0.610<br>0.760<br>0.910<br>1.050<br>1.180<br>1.310 | $ \begin{array}{r}     10.625 \\                                    $ |

# INLET - EXPERIMENTAL DATA

DIFFUSER C , L/H= 3.13 FLOW TEMPERATURE = 104.0% POOM TEMPERATURE = 24.0% BAROMETEIC PRESSURE = 29.465 14

| UIST<br>FROM INNER SURF<br>INCHES                                                                          | SWICL ANGLE                                                                                      | PS<br>STATIC PRESSURG<br>INCHES WATER<br>GEDEG SLAPE                                                                       | PT<br>TOTAL PRESSURE<br>INCHES WATER<br>45DEG SLOPE                           |  |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|
| Co 090<br>Co 280<br>Co 450<br>Co 450<br>Co 760<br>Co 760<br>Co 910<br>Lo 050<br>Lo 180<br>Lo 310<br>Lo 440 | 11c 167 $12c 576$ $12c 67$ $13c 733$ $14c 507$ $15c 233$ $15c 733$ $16c 167$ $16c 367$ $17c 679$ | 3 • 1 50<br>3 • 2 3 3<br>3 • 2 8 3<br>3 • 2 8 3<br>3 • 3 50<br>3 • 4 3 2<br>3 • 5 0<br>3 • 4 6 7<br>3 • 3 8 3<br>3 • 1 5 0 | 20100 $30783$ $40450$ $40650$ $40733$ $40700$ $40617$ $40400$ $30967$ $20983$ |  |

INLET CALCULATED RESULTS

| DIST.           | WES VELUCITY | ANIAL VOLUCITY | TAM VILCCITY |
|-----------------|--------------|----------------|--------------|
| EPCM INNER SURF | FT/STC       | FT/SFC         | FT/STC       |
|                 |              | 3.27.52.52     |              |
| 6.23:           | 154-132      | 147,395        | 455069       |
| 6.450           | 1 263,83.6   | 354,744        | 47.316       |
| 6.600           | 1 1646586    | 157.393        | 48,126       |
| 2.76            | 165-775      | 158,530        | 48-474       |
| 0.930           | 1650 949     | 158.695        | 48,525       |
| 1,050           | 165.785      | 158,539        | 49.477       |
| 1619            | 162 213      | 1565179        | 41.725       |
| 1.21            | 157,759      | 15%,863        | 46.331       |
|                 | 1.1. 7       | 727,912        | 4.2,128      |

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

### EX17 EXPERIMENTAL DATA

DIFFUSER C , L/H= 3.13 FLOW TEMPERATURE= 104.0 °F FORM TEMPERATURE= 74.0 °F BARCHETRIC PRESSURE= 20.46 °/

|           | PIST           | - Svilkt Angla                                                                                                 | PS                                           | 67                                                                                                              |
|-----------|----------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| E E E D K | INDER SURF.    |                                                                                                                | STATIC PERSSUE!                              | FOTAL PRESSUS                                                                                                   |
|           | INCHES         | · ·                                                                                                            | INCHES WATER                                 | HUCHES WAT                                                                                                      |
|           | -              | and a standard sector of the standard sector standard sector standards and sectors and sectors and sectors are | . 450 G SLOPE                                | ASDIG SLAP                                                                                                      |
|           |                | مري المريك المريك ( Construction ) مريد ( مريد المريد معاد معاد معاد معاد معاد معاد معاد معا                   | an san an  a Dan Kanan di Sinang Kanang 
|           |                | 0 5 7                                                                                                          | ···· ··· ··· ··· ··· ··· ··· ··· ··· ·       | արը տորը-չչ                                                                                                     |
|           |                | 96 Bu                                                                                                          |                                              |                                                                                                                 |
|           | . 1.e.265      | 9° 9° 1                                                                                                        | ° 0 7 7 °                                    | <b>3.2</b> 00                                                                                                   |
|           | 2 6 4 2 4      | 2                                                                                                              | 6772                                         | 4.5                                                                                                             |
|           | L - 580        | 1 7.500                                                                                                        | 1                                            | 4.545                                                                                                           |
|           | Co 731         | 1/6 500                                                                                                        | 6774                                         | 405.1                                                                                                           |
|           | J. 29/2        | 120 200                                                                                                        | · ~ 0770                                     | 4.6 6 ()                                                                                                        |
|           | N - 6 22 - 6 🖡 | 1月、今かの                                                                                                         | 15770                                        | 404                                                                                                             |
|           | 1.02.65        | 150 0000                                                                                                       | \$ 77 S                                      | 3.2.0                                                                                                           |
|           | 1.6320         | 19,550                                                                                                         | 2.775                                        | 1.65                                                                                                            |
|           |                | 27 5                                                                                                           | · · · · · · · · · · · · · · · · · · ·        | <u> </u>                                                                                                        |

EXIT CALCULATED RESULTS

| 51.57                                    | ABS N. LOCATM                                                                                                   | - AXIAL VELOCITY | TAN VELOCITY                                                                                                                                                                                                                       |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FROM DEFER SURF                          |                                                                                                                 |                  |                                                                                                                                                                                                                                    |
| There is                                 | 5779 C                                                                                                          | 5778770          | 57/510                                                                                                                                                                                                                             |
| an an an an an an an an an an an an an a | and a state of the second second second second second second second second second second second second second s |                  | nderstredenselsen Gebender och er att för att sock och sock att sock och sock att sock att sock att sock att s<br>Sock att sock |
| · 26                                     | 2 1 F. CX 2                                                                                                     | 3 7 5 73         | 42:492                                                                                                                                                                                                                             |
| 1 (s 4 2 )                               | ) <u>2</u> 7., 18 9                                                                                             | - 美国祭会243        | 46.584                                                                                                                                                                                                                             |
| 6521                                     | 3 7 7 8 94 8                                                                                                    | 3.2357.05        | 426737                                                                                                                                                                                                                             |
| c 7 2                                    | 1345 045                                                                                                        | 125.46.          | 49-127                                                                                                                                                                                                                             |
| ان ان ان ان ان ان ان ان ان ان ان ان ان ا | 3 34 J S 4 J                                                                                                    | 実ご用いるら           | 49.627                                                                                                                                                                                                                             |
| 10.01                                    | 322323                                                                                                          | 127.53           | 24-492                                                                                                                                                                                                                             |
| 1.5 X (st.                               | 11 12 17 3                                                                                                      | 2175912          | 42,428                                                                                                                                                                                                                             |
|                                          | 4 6 5 2                                                                                                         | 26,222           | 5 9 7 9 7 9 Y .                                                                                                                                                                                                                    |
| 1.27                                     | - # 1 C - #                                                                                                     | 20.0042          | 57 641                                                                                                                                                                                                                             |

DIFFUSER C, L/H 3./3 FLOW TEMPERATURE 10-4.0 % ROOM TEMPERATURE 70.0 % BAROMETRIC PRESSURE 29.45 "Hg MASS WEIGHTED SWIRL ANGLE 14.564" COLD RESISTANCE OF HOT WIRE= 3.34 OHMS

| DISTANCE<br>FROM INNER SURFACE<br>INCHES                             | · DC VOLTAGE<br>VOLTS                                                         | RMS VOLTAGE<br>MILLIVOLTS                                            |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 0.280<br>0.450<br>0.610<br>0.760<br>0.910<br>1.050<br>1.180<br>1.310 | 9.670<br>9.750<br>9.800<br>9.800<br>9.800<br>9.800<br>9.800<br>9.800<br>9.750 | 0.185<br>0.130<br>0.102<br>0.092<br>0.100<br>0.115<br>0.140<br>0.170 |

### RELATIVE TURBULENCE

| DISTANCE<br>FROM INNER SURFACE<br>INCHES | PERCENTAGE TURBULENCE |
|------------------------------------------|-----------------------|
| 0.280                                    | 11.078                |
| 0.450                                    | 7.664                 |
| 0.610                                    | 5.956                 |
| 0.760                                    | 5.372                 |
| 0.910                                    | 5.839                 |
| 1.050                                    | 6.715                 |
| 1.180                                    | 8.175                 |
| 1.310                                    | 10.023                |

### INLET EXPERIMENTAL DATA

DIFFUSER C , L/H= 3.13 FLOW TEMPERATURE= 103.0 % ROCH TEMPERATURE= 72.0 % BAROMETRIC PRESSURE=219.37 °Mg

| DIST                                   | SWIPL ARGLA                                                                                                                                                                                                                         | 12                                                                                                                  | PT                                                                                                                                                                             |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FRCM INNEP SURF                        |                                                                                                                                                                                                                                     | STATIC PRESSURE                                                                                                     | PATAL PRESSURE                                                                                                                                                                 |
| INCHES                                 |                                                                                                                                                                                                                                     | INCHES WATER                                                                                                        | INCHES WATER                                                                                                                                                                   |
|                                        |                                                                                                                                                                                                                                     | 45DEG SLOPE                                                                                                         | 45DEG SLOPE                                                                                                                                                                    |
| ĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨ | anterio de la companya de la companya de la companya de la companya de la companya de la companya de la company<br>La companya de la comp | Lang Berner All All To Sing Carl Tang Barra a san All All Barra All All Barra All All All All All All All All A<br> | in a suit a ser a suit a faith an Albain an Albain ann an Albain an Albain an Albain<br>Albain an Albain an Albain an Albain an Albain an Albain an Albain an Albain<br>Albain |
|                                        |                                                                                                                                                                                                                                     |                                                                                                                     | 7                                                                                                                                                                              |
| 6,290                                  | 18,733                                                                                                                                                                                                                              | 3 . 81.7                                                                                                            | 1.0917                                                                                                                                                                         |
| 0.280                                  | 210267                                                                                                                                                                                                                              | 3.950                                                                                                               | 3.917                                                                                                                                                                          |
| C. 450                                 | 21, 93.0                                                                                                                                                                                                                            | 3,950                                                                                                               | 40677                                                                                                                                                                          |
| 0.610                                  | 22,823                                                                                                                                                                                                                              | · 3。85台:                                                                                                            | 4.817                                                                                                                                                                          |
| 0.760                                  | 23,833                                                                                                                                                                                                                              | 0 3.886                                                                                                             | 4.883                                                                                                                                                                          |
| 0.910                                  | 24.500                                                                                                                                                                                                                              | 0 3.817                                                                                                             | 4.951                                                                                                                                                                          |
| 1.150                                  | 25,333                                                                                                                                                                                                                              | 3.633                                                                                                               | 4.057                                                                                                                                                                          |
| 1.1.80                                 | 25.667                                                                                                                                                                                                                              | 3.857 .                                                                                                             | 4.883                                                                                                                                                                          |
| 1.310                                  | 26,540                                                                                                                                                                                                                              | 3.700                                                                                                               | .4,617                                                                                                                                                                         |
| 3.447                                  | 27.333                                                                                                                                                                                                                              | 3,333                                                                                                               | - 3,733                                                                                                                                                                        |

INLET

CALCULATED RESULTS

| •             | DIST.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ARS VELOCITY                       | AXIAL VELOCITY                                                                              | CAP VELOCITY               |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------|----------------------------|
| • • • • • • • | FROM INFOR SURF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ETISEC                             | FT/STC                                                                                      | FT/SFC                     |
|               | 10-28分)。<br>10-28分)。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 159034<br>1630212                  | 1235 (78)<br>1448935                                                                        | 6255547<br>745952          |
|               | 4 5-<br>1, 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $17 \times 319$<br>$177 \times 31$ | $\frac{1515298}{1525179}$                                                                   | 78,213<br>78,668           |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 171.6468                           | 1522519<br>1535-554<br>152-342                                                              | 7887741<br>798123<br>70877 |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    | 1008-242<br>1525-906<br>1400-474                                                            | 790-14                     |
| •             | n in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | 1515510                            | 1, 77, 793 – 177<br>N. B. T. L. M. M. S. M. M. M. S. M. |                            |

# DIEFNSEF C, L/H= 3.13 FLOW TEMPERATURE= 103.0 % ROOM TEMPERATURE= 73.0 % BAFOMETRIC PRESSURE= 29.37 %

|   | DISI            | SHIT L ANGLE                           | recented of the state of the second second second second second second second second second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | []]]                                                                                                            |
|---|-----------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|   | FROM INNER SUPP | ······································ | STATIC PRESSURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FOR ZE PRESSURE                                                                                                 |
|   | INCHES          | ·                                      | INCHES WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | INCHES WATER                                                                                                    |
|   |                 |                                        | 45 AVG SLAPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4FC10 SLOPE                                                                                                     |
|   |                 |                                        | ernen fan de skrieder en de skrieder fan de skrieder de skrieder de skrieder de skrieder de skrieder de skried<br>Neder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | an an an an an an an an an an an an an a                                                                        |
|   | రించింది        | 366 349                                | 0. 920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>0.75</b> 8                                                                                                   |
|   | 0.024.0         | 2. 56 5 9 9                            | 1. , S. 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2071                                                                                                            |
|   | 126 420         | 5 9 3.76 30 3                          | © 6 8 2 °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.650                                                                                                           |
|   | 0.593           | 186500                                 | 0.82 <u>0</u> 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.55                                                                                                            |
|   | 0.730           | 9 Ge (9-43)                            | £,82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.75                                                                                                            |
| • | 0.880           | 205530                                 | 0.825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4,,91.0                                                                                                         |
|   | 1.6729          | 22.651%                                | No. 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4-9-6                                                                                                           |
|   | 20261           | . 23.050                               | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.04                                                                                                            |
|   | 20300           | 276 203                                | 2582                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 2,800                                                                                                         |
|   | 3.43            |                                        | THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT O | CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A |
|   |                 | · · · · · · · · · · · · · · · · · · ·  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
|   |                 | · · · ·                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |

UXIT CALCULATED PESULTS

| <br>DIST -                | ASS V.LOCITY                       | AXIAL V.LOCITY                      | TAD VELCCITY      |
|---------------------------|------------------------------------|-------------------------------------|-------------------|
| FRCA HRISE SUCE<br>Inches | FT/510                             | 5775-10                             | pre/car           |
|                           | 1 1 0 1 1 2 4<br>1 1 0 0 1 1 0 1 1 | 5125 14<br>944 - 144                | 97333<br>553416   |
| 0.5 4 20                  | 1295 27                            | 2. 6. 5 miles                       | 62,6448           |
| <br>073                   | 127.333                            | 110,0 Q                             | <u> </u>          |
|                           |                                    |                                     | 716642            |
| 1020<br>1031              |                                    | 62.2.43.1<br>1.64. <sup>2</sup> .54 | 016486<br>5661081 |
| 1 - 4 2 A                 | 07 7to 🖡                           | 516,352                             | 10,1 5            |

DIFFUSER C , L/H 3-/3 FLOW TEMPERATURE /03.0°F ROOM TEMPERATURE 75.0°F BAROMETRIC PRESSURE 29.37 "Add MASS WEIGHTED SWIRL ANGLE 23.808°

COLD RESISTANCE OF HOT WIRE= 3.34 OHMS

| DISTANCE<br>FROM INNER SUBFACE<br>INCHES                             | DC VOLTAGE<br>VOLTS                                                  | RMS VOLTAGE<br>MILLIVOLTS                                                     |
|----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 0.280<br>0.450<br>0.610<br>0.760<br>0.910<br>1.050<br>1.180<br>1.310 | 9.700<br>9.820<br>9.850<br>9.850<br>9.820<br>9.820<br>9.800<br>9.770 | 0.195<br>0.127<br>0.100<br>0.097<br>0.107<br>0.117<br>0.140<br>0.140<br>0.170 |

### RELATIVE TURBULENCE

| DISTANCE<br>FROM INNER SURFACE<br>INCHES | PERCENTAGE TUBBULENCE |
|------------------------------------------|-----------------------|
| 0.280                                    | 11.608                |
| 0.450                                    | 7.388                 |
| 0.610                                    | 5.784                 |
| 0.760                                    | 5.611                 |
| 0.910                                    | 6.225                 |
| 1.050                                    | 6.806                 |
| 1.180                                    | 8.175                 |
| 1.310                                    | 9.984                 |

102

### INLET EXPERIMENTAL DATA

DIFFUSER D, L/H=A.GO FLOW TEMPERATURE= 106.0 % ROOM TEMPEPATURE= 70.0 % BAREMETRIC PRESSURE= 20.06 %

| DIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SWIFL PNGLE                                           | PS<br>CELETE DOCOCUE                           | PT<br>DDFCCUDC                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| PROM INNER SURF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | STATIC PRESSUPE                                | A CHAL PRESSURE                                                                                                  |
| INCHES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       | INCHES WATER                                   | INCHES WATER                                                                                                     |
| - Services and the of the service of | h saaraa maanaa ka  ZEST (S. S.  and the second second second second second second second second second second second second second second second |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                |                                                                                                                  |
| 0.095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N. 500 L                                              | 1-567                                          | 3.700                                                                                                            |
| 42.280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,500                                                 | 1.517                                          | 5.083                                                                                                            |
| 0.450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.167                                                 | 1.683                                          | · 5.717                                                                                                          |
| 0.61.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.067                                                 | 1.833                                          | 5-933                                                                                                            |
| 0.760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.033                                                 | 1.3967                                         | 5.850                                                                                                            |
| C.910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.267                                                 | · 20017                                        | 5.617                                                                                                            |
| 1 1.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ಿ. ೮                                                  | 1,950                                          | 5.183                                                                                                            |
| 1.180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ಂಗಿ                                                   | <b>1.8</b> 00                                  | 4.567                                                                                                            |
| 1.0310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                                                   | * 1.73.7                                       | 3.810                                                                                                            |
| 1.6445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14 A                                                  | 1.700                                          | 2,995                                                                                                            |

INLET CALCULATED RESULTS

| 0151     | ABS VELCCITY | AXIAL VELOCIAN        | YAN VELOCITY                                                                                                                                                                                                                        |
|----------|--------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TNCHES   | FT/SEC       | FT/SHO                | FT/SEC                                                                                                                                                                                                                              |
|          | 12362940     | 1. 1. 2 · / · / · / · | n de la servicia de la servicia de la servicia de la servicia de la servicia de la servicia de la servicia de l<br>La servicia de la serv |
| 2228.    | 240,403      | 3495493               | 1.00                                                                                                                                                                                                                                |
| 3545V I  | 3582294      | 158,294               | ಿಕಳು                                                                                                                                                                                                                                |
| 1.5515   | 162.167      | 162-161               | Cott                                                                                                                                                                                                                                |
| 076      | 3 62 693     | 1625693               | °.₀()                                                                                                                                                                                                                               |
| 56925    | 7670777      | 1625777               | ಾಂಗ                                                                                                                                                                                                                                 |
|          | 155-412      | 155,412               | - c V                                                                                                                                                                                                                               |
| 1.5.5.9. | 146-821      | 1465830               | °0 (                                                                                                                                                                                                                                |
| 20312    | 3 2 46 6 7 3 | 1364678               | **o1) * *                                                                                                                                                                                                                           |
| - 4 4 ·  | 125 4R. F    | 1 1 2 5 X R 1         |                                                                                                                                                                                                                                     |

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

### EXIT FXPERIHENTAL DATA

DIFFUSER D, L/H=1.60 FLOW TEMPERATURE=106.0% ROOM TEMPERATURE= 74.0% RAPOMETRIC PRESSURF=20.06 %

| DIST<br>FROM INNEC SURF<br>INCHES                          | SMIRL ANGL                                              | PS<br>STATIC PSESSURE<br>INCHES MATCR<br>ABDID SLOPE     | PT<br>POTAL PRESSUR<br>INCHES MATER<br>ARAGE SLADE    |
|------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------|
| <br>0,000<br>1,02,95<br>2,04,35<br>8,05,90                 | 50530<br>(053)<br>(053)<br>(053)                        | 1,5204<br>1,5204<br>1,5204<br>1,5204                     | 3。800<br>4。400<br>5:55<br>6、75                        |
| 0074<br>00890<br>10030<br>10230<br>10230<br>10230<br>10431 | 000<br>00500<br>000<br>00500<br>00500<br>00500<br>00500 | 1.5230<br>1.5230<br>1.5230<br>1.5230<br>1.5230<br>1.5230 | 6 • 7 9<br>6 • 3<br>5 • 45<br>4 • 3<br>2 • 5<br>1 • 6 |

TXIT CALCULATED PESULTS

| C F7/900<br>557 - 552<br>753 - 76<br>753 - 55<br>753 - 55<br>753 - 55<br>753 - 55<br>753 - 55 |                                           |
|-----------------------------------------------------------------------------------------------|-------------------------------------------|
| NA     NA       713     1775047       710     1516776       73     566576       73     566575 | 18 194<br>182<br>1831<br>1831<br>1833     |
| 7 11<br>1 20<br>1 7 1 1 51 2 7 6<br>1 7 1 1 645 1 65<br>1 7 1 1 642 1 65                      | 102<br>15310<br>1645                      |
| 1920 15167 76<br>171 1645 165<br>171 1646 35                                                  | 18719<br>1845)                            |
| 173 1645 165<br>173 1646 165                                                                  | 3.432                                     |
| 271 2648-65                                                                                   |                                           |
|                                                                                               | 16422                                     |
| 3 A 3 50 3 54                                                                                 | 1,5291                                    |
| -R.9                                                                                          | 1.53                                      |
| 463 3365432                                                                                   | 1,0:0:                                    |
| 091 1:1:0926                                                                                  | 10577                                     |
| 44 A C T . A Y T                                                                              | 0.21                                      |
| 2                                                                                             | 460 336,432<br>231 311,5826<br>316 65,683 |

DIFFUSER D, L/H 1.60 FLOW TEMPERATURE 106.0°F ROOM TEMPERATURE 22.0°F BAROMETRIC PRESSURE 27.06°1/6 MASS WEIGHTED SWIRL ANGLE 0.151° COLD RESISTANCE OF HOT WIRE= 3.37 OHMS

| DISTANCE<br>FROM INNER SURFACE<br>INCHES | DC VOLTAGE<br>VOLTS | RMS VOLTAGE<br>MILLIVOLTS |
|------------------------------------------|---------------------|---------------------------|
| 0.280                                    | 9.750               | 0.152                     |
| 0.450                                    | 9.800               | 0.112                     |
| 0.610                                    | 9.870               | 0.087                     |
| 0.760                                    | 9.870               | 0.090                     |
| 0.910                                    | 9.820               | 0.115                     |
| 1.050                                    | 9.750               | 0.147                     |
| 1.180                                    | 9.700               | 0.175                     |
| 1.310                                    | 9.620               | 0.255                     |

### RELATIVE TURBULENCE

| DISTANCE<br>FROM INNER SUBFACE<br>INCHES | PERCENTAGE TURBULENCE |
|------------------------------------------|-----------------------|
| 0.280                                    | 8.961                 |
| 0.450                                    | 6.540                 |
| 0.610                                    | 5.014                 |
| 0.760                                    | 5.187                 |
| 0.910                                    | 6.690                 |
| 1.050                                    | 8.667                 |
| 1.180                                    | 10.418                |
| 1.310                                    | 15.421                |

## INLET EXPERIMENTAL DATA

# DIFFUSER D, L/H= 460 FLOW TEMPERATURE= 106.5 °F ROOM TEMPERATURE= 750 °F BAROMETRIC PRESSURE= 20.10 "Mg

| DIST            | SWIEL ANGLE | PS                                                                                                              | Pï                                                                                                                                                                                                                                       |
|-----------------|-------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FROM INMER SURF |             | STATIC PRESSURE                                                                                                 | FOT AL PPESSU                                                                                                                                                                                                                            |
| INCHES          |             | INCHES HATER                                                                                                    | INCHES WAT                                                                                                                                                                                                                               |
|                 |             | 45 DEG SLOPE                                                                                                    | 45DEG SLOP                                                                                                                                                                                                                               |
|                 |             | alan dala katala pakan katala katala katala katala katala katala katala katala katala katala katala katala kata | a de la companya de<br>Nome<br>Nome de la companya de la companya de la companya de la companya de la companya de la companya de la companya d |
| €a 0 90         | 3.167       | 1.5467                                                                                                          | 3,817                                                                                                                                                                                                                                    |
| 0.0280          | 3.000       | 3.0567                                                                                                          | 5.267                                                                                                                                                                                                                                    |
| t. 45t          | 3.000       | 1.667                                                                                                           | 5.833                                                                                                                                                                                                                                    |
| 0.610           | 3,167       | 1.800                                                                                                           | 6.133                                                                                                                                                                                                                                    |
| 0.760           | 3,533       | 1.967                                                                                                           | 60140                                                                                                                                                                                                                                    |
| 0.910           | 3,667       | 25067                                                                                                           | 5,967                                                                                                                                                                                                                                    |
| 1.050           | 3.500       | 23151                                                                                                           | 5.617                                                                                                                                                                                                                                    |
| 1.01.8          | 3.667       | 10933                                                                                                           | 50067                                                                                                                                                                                                                                    |
| 1.31            | 3.400       | <b>1.8</b> 06                                                                                                   | . 4. 333                                                                                                                                                                                                                                 |
| 1.044           | 3 833       | 2.,757                                                                                                          | 3,350                                                                                                                                                                                                                                    |

INLET CALCULATED RESULTS

|         |                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Construction of the second second second second second second second second second second second second second |
|---------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 1.1.1   | 0131                                                                                                            | ASS VELOCIFY                                                                                                    | AXI = VHLOCITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FIAN VELOCITY                                                                                                  |
| Į i     | FROM HENLE SURF                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                |
| l.      | INCHES                                                                                                          | ET/SEC                                                                                                          | FT/SHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F7/S90                                                                                                         |
| in<br>F | and and a state of the state of the state of the state of the state of the state of the state of the state of t | Construction and the second second second second second second second second second second second second second | nan series and the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the | S - C - C - C                                                                                                  |
|         | 2.028                                                                                                           | 152-320                                                                                                         | 351,779                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.175                                                                                                         |
|         | 6 4 5 V                                                                                                         | 159,36)                                                                                                         | 2.59,603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.654                                                                                                         |
| Ĕ.      | 45614                                                                                                           | 163,895                                                                                                         | 163-529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.00958                                                                                                        |
| Ì-      | · · · 76.                                                                                                       | 165.683                                                                                                         | 1.655312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.1.6.77                                                                                                       |
|         |                                                                                                                 | 164,935                                                                                                         | 2.646566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110727                                                                                                         |
|         | 1.24 5.2                                                                                                        | 161.324                                                                                                         | 1616764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 165772                                                                                                         |
| li li   |                                                                                                                 | Y 536 95 A                                                                                                      | 2535612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.5293                                                                                                        |
|         | 1.3                                                                                                             | 244.207                                                                                                         | 143.784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9,635                                                                                                          |
|         | $\pi = T_{\rm e} T_{\rm e}$                                                                                     | 19:006                                                                                                          | 13 6693                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8,757                                                                                                          |

106

### EXPERIMENTAL DATA EXIT

# DIFFUSER O LINEAGO FLOW THIPERATURE = 106.5 90 ROOM TEMPERATURE = 75.0 % BAREMETRIC PRESSURE = 29.10 %

|                                          |                    | SRIEL AMELS | таланы жалар жалар стринар стринар стринар жалар стринар стринар стринар стринар стринар стринар стринар стран<br>распология стринар стринар стринар стринар стринар стринар стринар стринар стринар стринар стринар стринар стрин<br>стринар стринар |                |
|------------------------------------------|--------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|                                          | GRUM INNER SUBE    |             | STATIC PRESSURE                                                                                                                                                                                                                                                                                                                                       | TOTAL PRESSURF |
|                                          | INCHES             | · .         | INCHES MATCE                                                                                                                                                                                                                                                                                                                                          | INCHES MATTER  |
|                                          |                    |             | AEDAG SLEPS                                                                                                                                                                                                                                                                                                                                           | 45DMG SLOPM    |
|                                          |                    |             |                                                                                                                                                                                                                                                                                                                                                       |                |
|                                          |                    |             |                                                                                                                                                                                                                                                                                                                                                       |                |
|                                          | <u></u>            | <u> </u>    | 1,3 1                                                                                                                                                                                                                                                                                                                                                 | 3,850          |
|                                          | 25250              | 2.6500      | 1.03                                                                                                                                                                                                                                                                                                                                                  | 5631           |
|                                          | ©s430              | 2020A       | 1-374                                                                                                                                                                                                                                                                                                                                                 | 6.25.          |
|                                          | J. 53%             | 26年3月       | 1.3                                                                                                                                                                                                                                                                                                                                                   | 6.65           |
|                                          | 6.074:             | 253 10      | 1.53 1                                                                                                                                                                                                                                                                                                                                                | 66510          |
|                                          | <b>⊜</b> ₀890      | 26500       | 2.63 0                                                                                                                                                                                                                                                                                                                                                | 5,95           |
|                                          | 1.JABO             | 3. 3. COM   | 1.30                                                                                                                                                                                                                                                                                                                                                  | 5 ~ 25         |
|                                          | 10172              | 1.652.0     | 103                                                                                                                                                                                                                                                                                                                                                   | . 4.25.        |
|                                          | 1.314              | 2,300       | 2.5 3 2.                                                                                                                                                                                                                                                                                                                                              | 2.25           |
| ж. — — — — — — — — — — — — — — — — — — — | 1.543 <sup>2</sup> | B. 30 1     | 1.3.2                                                                                                                                                                                                                                                                                                                                                 | 1.5.1          |

CXIT ( CALCULATED RESULTS

è.

| DIST                       | 2.8.5 MEL JULTY                      | ANTAL VALOCETY                                                    | TAR VILOCITY      |
|----------------------------|--------------------------------------|-------------------------------------------------------------------|-------------------|
| L.C.M.C.<br>EPCHALLER ZUAL | F7/5/C                               | ET/\$40                                                           | tau Viela C       |
|                            | 26 102 102                           | nanarrow werden and an and an an an an an an an an an an an an an | 2.5.7             |
| - 43<br>- 50               | 150,803                              | 759562F<br>769562F                                                | 95205             |
| <br><u> </u>               |                                      | 3 ( 2 3 1 7 3<br>3 ( 2 3 2 4 ()                                   | 9:35              |
| 1943<br>1943               | 2542,685<br>2485,925                 | 1568-6-23<br>1488-679                                             | 06 21<br>86574    |
| 1677)<br>1633)             | 1775 186<br>1907 - 196<br>1907 - 196 | 2365850<br>710-456                                                | 758021<br>Av 21.2 |
| 5 <u>6</u> 4               | (17) (17) (1                         | C7. 2 (                                                           |                   |

107

DIFFUSER O, L/H 1.60 FLOW TEMPERATURE 104.09 ROOM TEMPERATURE 79.09 BAROMETRIC PRESSURE 29.42"Hg MASS WEIGHTED SWIRL ANGLE 3.392" COLD RESISTANCE OF HOT WIRE= 3.37 OHMS

| DISTANCE<br>FROM INNER SURFACE<br>INCHES | DC VOLTAGE<br>VOLTS | RMS VOLTAGE<br>MILLIVOLTS |
|------------------------------------------|---------------------|---------------------------|
| 0.280                                    | 9.800               | 0.152                     |
| 0.450                                    | 9.850               | 0.105                     |
| 0.610                                    | 9.900               | 0.092                     |
| 0.760                                    | 9.900               | 0.094                     |
| 0.910                                    | 9.900               | 0.102                     |
| 1.050                                    | 9.880               | 0.117                     |
| 1.180                                    | 9.850               | 0.132                     |
| 1.310                                    | 9.850               | 0.175                     |

### RELATIVE TURBULENCE

| DISTANCE<br>FROM INNER SURFACE<br>INCHES                                                                                           | PERCENTAGE TURBULENCE                                                 |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| <ul> <li>0.280</li> <li>0.450</li> <li>0.610</li> <li>0.760</li> <li>0.910</li> <li>1.050</li> <li>1.180</li> <li>1.310</li> </ul> | 8.876<br>6.074<br>5.272<br>5.387<br>5.845<br>6.730<br>7.635<br>10.123 |

DIFFUSER D, L/H=1.60 FLOW TEMPERATURE= 100.0 % ROOM TEMPERATURE= 76.0 % BARDMETRIC PRESSURE= 29.12 %

|   | DIS;                                                                                                                       | SWINL ANGLE                                   | versennen en som en som en som en som en som en som en som en som en som en som en som en som en som en som en<br>PS |                |
|---|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------|
| • | FROM TIMMER SURP                                                                                                           |                                               | STATIC PRESSURF                                                                                                      | TOTAL PRESSURE |
|   | INCHES                                                                                                                     |                                               | INCHES WATER                                                                                                         | INCHES WATER   |
|   | a<br>La server a constanta da la constitución de la decaración de la constitución de la constitución de la constitución de | tering state to an internation day deal to be |                                                                                                                      | 45DEG SLOPE    |
| : |                                                                                                                            |                                               |                                                                                                                      |                |
|   | 0-090                                                                                                                      | 7.506                                         | 1.5467                                                                                                               | 3,583          |
|   | <b>0.28</b> 0                                                                                                              | 7,833                                         | 1.07.00                                                                                                              | 5.183          |
|   | 06450                                                                                                                      | <b>7</b> c 567                                | 1.817                                                                                                                | 5.733          |
|   | <u>0=610</u>                                                                                                               | 7 <u>, 833</u>                                | <u>1.923 ·</u>                                                                                                       | 6.17           |
|   | <b>€</b> ₀760                                                                                                              | 8.367                                         | 2.8€56                                                                                                               | 6,033          |
|   | 06910                                                                                                                      | 8,500                                         | 2 - 1.5 ()                                                                                                           | 5.967          |
|   | 3.6050                                                                                                                     | 8,504                                         | 2:167                                                                                                                | 5,767          |
|   | 16130                                                                                                                      | 8,667                                         | 2,067                                                                                                                | <b>5.</b> 350  |
|   | l.310                                                                                                                      | 8 <sub>0</sub> 833                            | Lo 950                                                                                                               | 4。6代①          |
|   | 1-410                                                                                                                      | C, Attack                                     | 1,893                                                                                                                | 3,567          |

INLET . CALCULATED RESULTS

| DISY 4                     | ABS VELOCITY | AXIXE VELCCITM | TAN VELOCITY |
|----------------------------|--------------|----------------|--------------|
| FROM INNER SUCE<br>Incluss | ET/SIC       | FT/SHO         | FT/SFC       |
|                            | 13 5766      | 129-155        | 2 6469       |
|                            | 152,664      | 15 ,784        | 23,885       |
| 2045C E                    | 159389       | 2575921        | 255016       |
| 6610                       | 163-968      | 161.5948       | 255653       |
| Ne 765                     | 165,438      | . 263,440      | 25.883       |
|                            | 165,785      | 163-744        | 25,938       |
| 1a75                       | 763,916      | 161,887        | 25.644       |
| 10.3                       | 1556476      | 256,524        | 240794       |
| 1.31                       | 148,925      | 3475191        | 235200       |
| 1. 560                     | 125. 944 k   | 1 RA 17 7 8    | 27, 254      |

-----

### SXIT - EXPERIMENTAL DATA

DIFFUSER D, L/H=1.60 FLOW-TEMPEDATURE= 100.0 % POCM TEMPEDATURE= 76.0 % BARCMETFIC PRESSURE= 20.0 %

| DIST<br>FROM THNER SURF<br>INCHES                                    | SW19L ANGLU                                        | PS<br>STATIC PRESSUR<br>INCHES WATER<br>45 DEG SLOPE     | OT<br>ICTAL PRESSURE<br>INCHES MATER<br>AFOLG SLOPE |
|----------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|
| 0,0260<br>0,0260<br>0,0430<br>0,0590                                 | 0+0<br>0+0<br>0+500<br>2+600                       | 20430<br>20489<br>20489<br>2049<br>2049                  | 3°100<br>4°500<br>5°510<br>5°510                    |
| 00740<br>00890<br>20030<br>20170<br>20170<br>20170<br>20310<br>20230 | 20100<br>30000<br>30500<br>40200<br>50000<br>50000 | 1.5400<br>1.5400<br>1.5400<br>1.6400<br>1.6400<br>1.6400 | 6 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -             |

N 5.

EXIT CALCULATED FUSHLTS

|               | ivist                                                                                                          | ADS N. LOCITY | AXIAL VELOCIEN | TAN VELOCITY                             |
|---------------|----------------------------------------------------------------------------------------------------------------|---------------|----------------|------------------------------------------|
| - 2           | TUCHUS INCHUS                                                                                                  | FT/FC         | st/s r         | LT V S S C                               |
|               | and a second second second second second second second second second second second second second second second |               |                | an an an an an an an an an an an an an a |
|               | 20 22                                                                                                          | 2.6 2.5 2.4 5 | 14.565         | 24,776                                   |
|               |                                                                                                                | 7.52, 353     | 2552-015 B     | 15,479                                   |
|               | 105 Store                                                                                                      | 2576758       | · 3565094      | 16,602                                   |
|               | 1074                                                                                                           | 7595294       | 3575426        | 美ち、長んれ                                   |
|               | 20,23                                                                                                          | 156,14        | 155.294        | 36,323                                   |
|               | 26530                                                                                                          | 1,57,741      | 4 51 y 6 - 6   | 土ちよらんで                                   |
| [             | <u>)</u>                                                                                                       |               |                | 1.4.17.0                                 |
| l             | 2,631                                                                                                          | 110,634       | 1.000          | 5 1. 462                                 |
| ي من محمد الم | 3.57.2                                                                                                         | OR. COR       | 10 J           | $\sigma_{1} \in \sigma_{2}$              |

COLD RESISTANCE OF HOT WIRE= 3.37 OHMS

DIFFUSER D. L/H 1.60 FLOW TEMPERATURE 106.5% ROOM TEMPERATURE 75.0% BAROMETRIC PRESSURE 29.10"Mg MASS WEIGHTED SWIRL ANGLE 2.250°

| DISTANCE<br>FROM INNER SURFACE<br>INCHES | DC VOLTAGE<br>VOLTS | RMS VOLTAGE<br>MILLIVOLTS |
|------------------------------------------|---------------------|---------------------------|
| 0.280                                    | 9.750               | 0.165                     |
| 0.450                                    | 9.820               | 0.132                     |
| 0.610                                    | 9.850               | 0.100                     |
| 0.760                                    | 9.900               | 0.083                     |
| 0.910                                    | 9.870               | 0.095                     |
| 1.050                                    | 9.850               | 0.130                     |
| 1.180                                    | 9.750               | 0.172                     |
| 1.310                                    | 9.700               | 0.195                     |

### RELATIVE TURBULENCE

| DISTANCE<br>FROM INNER SURFACE<br>INCHES | PERCENTAGE TURBULENCE |
|------------------------------------------|-----------------------|
| 0.280                                    | 9.723                 |
| 0.450                                    | 7.679                 |
| 0.610                                    | 5.734                 |
| 0.760                                    | 4.756                 |
| 0.910                                    | 5.475                 |
| 1.050                                    | 7.520                 |
| 1.180                                    | 10.140                |
| 1.310                                    | 11.608                |

# INLET EXPERIMENTAL DATA

DIFFUSER D, LIH= 600 FLOW TEMPERATURE= 109.0 % PDOM TEMPERATURE= 100.0 % BAPOMETRIC PRESSURE= 29.00 %

|                                                                                                                 | SWIFL AND LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15                                                                                                                                                                                                                                         |                                                                                       |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| FROM THNEP SUPF                                                                                                 | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec | STATIC PRESSUR                                                                                                                                                                                                                             | UTAL PRESSURE                                                                         |
| INCHES                                                                                                          | • E .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | INCHES WATER                                                                                                                                                                                                                               | INCHES WATER                                                                          |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45DEG SLOPE                                                                                                                                                                                                                                | 45DEG SLOPE                                                                           |
| Construction and the second second second second second second second second second second second second second | an na markana ang mang para na sang pang pang pang pang pang pang pang p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>ne ne serve de la construite dans la construite de la construite de la construite de la construite de la cons</u> t<br>La construite de la constru | (* 1. A MERCINA WARD DANNER DANNER DE AMERIKAN DE DE DE DE DE DE DE DE DE DE DE DE DE |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                            |                                                                                       |
| 0.090                                                                                                           | 3.2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.050                                                                                                                                                                                                                                      | 3.133                                                                                 |
| 1.280                                                                                                           | 12,833                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 <b>c</b> 100                                                                                                                                                                                                                             | 4,917                                                                                 |
| 0.450                                                                                                           | 12.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,217                                                                                                                                                                                                                                      | 5,583                                                                                 |
| 0.610                                                                                                           | 13.333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 2.2.83                                                                                                                                                                                                                                   | 5.817                                                                                 |
| 0.760                                                                                                           | 24.333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.400                                                                                                                                                                                                                                      | 5,863                                                                                 |
| 0.910                                                                                                           | 34-540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,533                                                                                                                                                                                                                                      | 5,933                                                                                 |
| 1.055                                                                                                           | 15.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,583                                                                                                                                                                                                                                      | 5.847                                                                                 |
| 103.80                                                                                                          | 15.333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.527                                                                                                                                                                                                                                      | 5.633                                                                                 |
| 1,310                                                                                                           | 1.5.967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,383                                                                                                                                                                                                                                      | .5.652                                                                                |
| 1.44                                                                                                            | 16.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,183                                                                                                                                                                                                                                      | 4.0067                                                                                |

INLET CALCULATED PESULTS

|             |                           | LAUS VELOCITY      | AXIAL VELUCITY                       | TAN VELUCITY              |
|-------------|---------------------------|--------------------|--------------------------------------|---------------------------|
| • • • • • • | FROM INMER SUPP<br>IMCHES | FT/STC             | FT/SFC                               | FT/SPC                    |
|             |                           | 1320+76<br>154,143 | : 270 : 2 .<br>347, 734<br>355 - 832 | 37000<br>430784<br>44 143 |
|             | · c 451                   | 167.672            | <u> </u>                             | 47.342                    |
|             |                           | 169,152            | 162,338                              | 4 8.5 C 93<br>4 8.5 4 9   |
|             | 15190<br>15314            | 1665122<br>1555646 | 159,279                              | 476127<br>456164          |
|             | 1.61                      | 145,475            | 130,493 (                            |                           |

# SXIT - UXPERIMENTAL DATA

DIFFUSER D , L/H=1.60 FLOW TIMPSELTURE = 109.0%

ROOM TEMPERATURE - 76.0%

| I'I S I                                                                                                        | SLIPL AUGLE | איז איז איז איז איז איז איז איז איז איז | DT              |
|----------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------|-----------------|
| FEOM IMMER SURF                                                                                                |             | STATIC PRISSUR                          | TOTAL PRESSURE  |
| INCHES                                                                                                         |             | INCHES WOTER                            | INCHES WATER    |
| Construction of the second second second second second second second second second second second second second |             | ASDEG SLOP                              | 45016 SLOPE     |
|                                                                                                                |             |                                         |                 |
| 5 <b>,</b> 192                                                                                                 | 2:500       | 25550                                   | 36000           |
| 10262                                                                                                          | 36640       | 1555                                    | 4072            |
| tic 430                                                                                                        | 5k 5 B D    | 1:550                                   | 5-904           |
| dia 590                                                                                                        | 6.5 Q ( )   | 1.550                                   | 66351           |
| 60740                                                                                                          | 65700       | 1.550                                   | 6,6 457         |
|                                                                                                                | 7.901       | 3.250                                   | 6.54.00         |
| 1.6730                                                                                                         | 86.60       | <u>美</u> 田 5 5 5 1                      | 65200           |
| 10270-                                                                                                         | 96 50 1     | 1 12 17 21 1                            | 5652            |
| 1.0310                                                                                                         |             | 生。药药了                                   | <b>Po 4</b> 355 |
| 1.5436                                                                                                         | 12,000      | 生った感じ                                   | 1675.           |

•

HALT CALCULATED RESULTS

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ARS VILOCIEN         | AXIAE VELOCITY                          | TON VELOCITY                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| FROM DIMUR SHRE<br>11 CHIS -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 57/5°C               | en en ve e                              | ETIS, C                                                                                                         |
| and the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the se |                      |                                         |                                                                                                                 |
| 0.026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 145%475              | 3,42,5,2,95                             | 3 ~ 25 /                                                                                                        |
| 20 A 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 분위a 8 감유           | 2,555,355                               | 236-26                                                                                                          |
| ), 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 363,557              | 230,070                                 | 14. O                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16% 555 55           | 11月1日日の1月日                              | 242224                                                                                                          |
| 10 R C 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1646-73              | えんしゃん 25                                | 340717                                                                                                          |
| $\lambda \circ \gamma^{-1} \gamma^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.61,6.004           | 長生命。が形況                                 | 225685                                                                                                          |
| 1 e 1 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 754CE 5              | きちょうなお                                  | P 2, 527                                                                                                        |
| 2537                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1. 2. 6. 6. 6. 6. 6. | 2014/36                                 | 26.925                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N 50 7 7             | 1 · · · · · · · · · · · · · · · · · · · | the second second second second second second second second second second second second second second second se |

113

### COLD RESISTANCE OF HOT WIRE= 3.370HMS

DIFFUSER O, L/H 1.60 FLOW TEMPERATURE /0.8.0 F ROOM TEMPERATURE 76.0 F BAROMETRIC PRESSURE 29.12 H/g MASS WEIGHTED SWIRL ANGLE 14.274

| DISTANCE<br>FROM INNER SURFACE<br>INCHES                             | DC VOLTAGE<br>VOLTS                                                           | RMS VOLTAGE<br>MILLIVOLTS                                            |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 0.280<br>0.450<br>0.610<br>0.760<br>0.910<br>1.050<br>1.180<br>1.310 | 9.800<br>9.870<br>9.870<br>9.870<br>9.870<br>9.870<br>9.850<br>9.800<br>9.770 | 0.157<br>0.115<br>0.094<br>0.098<br>0.100<br>0.142<br>0.180<br>0.260 |

### RELATIVE TURBULENCE

| DISTANCE<br>FROM INMER SURFACE<br>INCHES | PERCENTAGE TURBULENCE |
|------------------------------------------|-----------------------|
| - 0.280                                  | 9.168                 |
| 0.450                                    | 6.627                 |
| 0.610                                    | 5.417                 |
| 0.760                                    | 5.640                 |
| 0.910                                    | 5.763                 |
| 1.050                                    | 8.214                 |
| 1.180                                    | 10.511                |
| 1.310                                    | 15.270                |

# INLET EXPERIMENTAL DATA

DIFFUSER Q, L/H=1.60 FLOW TEMPERATURE=104.095 ROOM TEMPERATURE= 79.0% BAROMETRIC PRESSURE= 29.442449

| ED ON                                                   | TINED SIDE  | SWIEL ANGLE | PS<br>STATIC PRESSUR                     | PI<br>TATAL PRESSURS |
|---------------------------------------------------------|-------------|-------------|------------------------------------------|----------------------|
| ER UM                                                   | THERE SOLVE |             | TUCHES MATER                             | INCHES WATER         |
|                                                         | 1.000       |             | 45DEG SLOPE                              | 45DEG SLOPE          |
| nderstørster for de de de de de de de de de de de de de |             |             | a na |                      |
|                                                         | 2,090       | 19,567      | 2,633                                    | 2.783                |
|                                                         | 0.280       | 21,167      | 2,783                                    | 4.783                |
|                                                         | 0.450       | 21.567      | 2,317                                    | 5.367                |
|                                                         | 0.610       | 22.630      | 2,767                                    | 5,533                |
|                                                         | 1769        | 23.523      | 2.,733                                   | 5.633                |
|                                                         | 6,910       | 24.,233     | 2:733                                    | 5.656                |
|                                                         | 1.0050      | 246500      | 2,783                                    | 5.650                |
|                                                         | 1.180       | 25.167      | 29833                                    | 5.620                |
|                                                         | 1.315       | 255 955     | 2.5650                                   | 5.267                |
|                                                         | 3 466       | 26,233      | 2,293                                    | 4. 450               |

| FROM INTER SURF | FT/SC         | FT/SEC   | FT/SEC  |
|-----------------|---------------|----------|---------|
|                 | 2225 / 25 / 2 |          |         |
|                 | 162,059       | 143-57   | 7:5758  |
| 4,5'.           | 166.468       | 1496318  | 73,593  |
| 1.61            | 2.67% 66 4    | 1506373  | 740111  |
| 3.76            | 1680309       | 150,569  | 740415  |
|                 | 368/481       | 151.0323 | 74,481  |
| 1.0.30          | 1693988       | 35%5573  | 74,7: 3 |
| 1.107           | 1686 982      | 151,573  | 74.7.3  |
| 1.31            | 163.73        | 546-862  | 72,381  |
| 1.64            | a server l    | 135.626  | 66.750  |

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DIFFUSER D, L/H=1.60 FLOW TEMPLEATURE= /04.0% PDOM TEMPERATURE= 79.0% BAPONETETC PRESSURE= 29.442 44

| DIST<br>FROM INNER SHRE<br>INCHES                 | SWTPL-ANGL                                                           | PS<br>STATIC PRESSUR<br>INCHES WATER<br>Arde Stede           | PT<br>FOTAL PRISSUR<br>INCHES WATER<br>AEDVO SLODI       | Carter State State State                         |
|---------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|
| 00090<br>00260<br>00430<br>00590                  | 7, 700<br>5, 80 1<br>12, 5,00<br>12, 5,00<br>12, 5,00                |                                                              | 2000<br>40350<br>50550<br>60000                          | والمعرفين والمعرفين والمتعالية والمتعرف والمعرفة |
| 00740<br>00390<br>10130<br>10170<br>20310<br>1043 | 24,50<br>26,50<br>26,50<br>26,50<br>27,50<br>29,50<br>27,50<br>27,50 | 1.66<br>1.66<br>1.66<br>1.66<br>1.66<br>1.66<br>1.66<br>1.66 | 55301<br>65200<br>65200<br>55750<br>2556<br>2556<br>2570 |                                                  |

HXIT CAL

CALCHLATED RESERTS

| CIST                                     | VBS VELCCITY                                    | VALVENALOCIA                                                                             | LEV ALLCCILM                             |
|------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------|
| FROM INMER SURF<br>THEATE                | FTISSO                                          | ET /Sec                                                                                  | FT/SHC                                   |
| na na na na na na na na na na na na na n | nu parte en en en en en en en en en en en en en | azerzinan eszedataratore en le reneri terzinete esteretetetetetetetetetetetetetetetetete | anna an an an an an an an an an an an an |
| 626                                      | 243, 3941                                       | 122.000                                                                                  | 520 - 29                                 |
| 4 3 C                                    | N 555 5 9 7                                     | 140.767                                                                                  | R7, 123                                  |
| 0.59                                     | 16 6410                                         | 2.495.2.59                                                                               | - 5938 J                                 |
| - 740 E                                  | 262.673                                         | 15 - 232                                                                                 | 595786                                   |
| , o a -                                  | 1620526                                         | 35.2.5                                                                                   | 29,57                                    |
|                                          | 169,0004                                        | 15 2710                                                                                  | 5.2% 27.8                                |
| 3517                                     | * <u>5 7 5 7 5 8 </u>                           | 576,778                                                                                  | 57:526                                   |
| 2.27                                     | 1916 54                                         |                                                                                          | 42,424                                   |
|                                          | 2 1 1 . S.  | 276, 22 2                                                                                | 42.122                                   |

DIFFUSER D , L/H /.CO FLOW TEMPERATURE /09.0% ROOM TEMPERATURE 76.0% BAROMETRIC PRESSURE 29.14 "H, MASS WEIGHTED SWIRL ANGLE 23.463" COLD RESISTANCE OF HOT WIRE= 3.37 OHMS

| DISTANCE<br>FROM INNER SURFACE<br>INCHES                             | DC VOLTAGE<br>VOLTS                                                           | RMS VOLTAGE<br>MILLIVOLTS                                                                           |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 0.280<br>0.450<br>0.610<br>0.760<br>0.910<br>1.050<br>1.180<br>1.310 | 9.800<br>9.850<br>9.900<br>9.900<br>9.870<br>9.870<br>9.820<br>9.820<br>9.800 | $\begin{array}{c} 0.157 \\ 0.100 \\ 0.090 \\ 0.100 \\ 0.112 \\ 0.142 \\ 0.172 \\ 0.250 \end{array}$ |

### RELATIVE TURBULENCE

| DISTANCE<br>FROM INNER SURFACE<br>INCHES | PERCENTAGE TURBULENCE |
|------------------------------------------|-----------------------|
| 0.280                                    | 9.168                 |
| 0.450                                    | 5.784                 |
| 0.610                                    | 5.158                 |
| 0.760                                    | 5.731                 |
| 0.910                                    | 6.454                 |
| 1.050                                    | 8.183                 |
| 1.180                                    | 10.006                |
| 1.310                                    | 14.599                |

| • | MASS | WEIGHTED | VALUES |
|---|------|----------|--------|
|   |      |          | . •    |

| SWIRL                  |                                                                                                  | DIFFUS                                           | ER A                                 | DIFFUS                                           | ER B                                  |
|------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------|--------------------------------------------------|---------------------------------------|
| CONDITIC               | ON                                                                                               | INLET                                            | EXIT                                 | INLET                                            | EXIT                                  |
| Minimum<br>Swirl<br>O  |                                                                                                  | 1.976<br>-3.691<br>152.340<br>152.241<br>5.329   | 0.132<br>59.585<br>59.584<br>0.087   | 1.582<br>- 2.729<br>146.428<br>146.367<br>4.109  | 1.354<br>95.482<br>95.445<br>2.454    |
| Δ                      | D<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P | 5.071<br>-3.783<br>154.638<br>154.018<br>13.756  | 2.824<br>56.808<br>56.731<br>2.485   | 4.585<br>-3.086<br>153.894<br>153.398<br>12.336  | 3.442<br>98.023<br>97.846<br>5.873    |
|                        |                                                                                                  | 10.267<br>-3.981<br>158.412<br>155.853<br>28.313 | 7.078<br>60.189<br>59.719<br>7.143   | 11.680<br>-2.663<br>156.529<br>153.263<br>31.741 | 6.552<br>101.893<br>101.212<br>10.828 |
| ×                      |                                                                                                  | 15.603<br>-4.009<br>158.694<br>152.742<br>42.829 | 11.368<br>62.783<br>61.541<br>12.128 | 17.269<br>-2.757<br>157.629<br>150.434<br>46.877 | 12.854<br>98.028<br>95.564<br>20.991  |
| Maximum<br>Swirl<br>È. | DPS Va                                                                                           | 24.065<br>-4.253<br>164.146<br>149.694<br>67.061 | 16.754<br>61.191<br>58.584<br>17.531 | 25.357<br>-3.044<br>164.267<br>148.207<br>70.547 | 18.145<br>100.559<br>95.493<br>30.956 |

# TABLE IV CONTINUED

MASS WEIGHTED VALUES

| SWIRL                 |                    | DIFF                                             | USER C                                 | DIFFUS                                           | SER D                                  |
|-----------------------|--------------------|--------------------------------------------------|----------------------------------------|--------------------------------------------------|----------------------------------------|
| CONDITION             |                    | INLET                                            | EXIT                                   | INLET                                            | EXIT                                   |
| Minimum<br>Swirl<br>O | Des Va<br>Va<br>Vt | 0.795<br>-2.107<br>150.530<br>150.513<br>2.078   | 0.243<br>118.449<br>118.447<br>0.578   | 0.151<br>-1.306<br>150.903<br>150.901<br>0.393   | 0.398<br>143.366<br>143.361<br>0.943   |
| Δ                     |                    | 3.532<br>-1.960<br>151.333<br>151.039<br>9.362   | 2.697<br>116.815<br>116.673<br>5.581   | 3.392<br>-1.329<br>154.719<br>154.446<br>9.154   | 2.261<br>145.100<br>144.984<br>5.613   |
| +                     |                    | 7.697<br>-2.040<br>153.380<br>151.985<br>20.602  | 7.193<br>118.802<br>117.872<br>14.254  | 8.280<br>-1.411<br>153.180<br>149.832<br>31.892  | 2.475<br>141.985<br>141.799<br>5.859   |
| X                     | Des vat            | 14.564<br>-2.390<br>158.738<br>153.540<br>40.023 | 12.592<br>119.044<br>116.170<br>25.263 | 14.274<br>-1.698<br>160.589<br>155.565<br>39.673 | 7.048<br>149.876<br>148.633<br>18.214  |
| Maximum<br>Swirl      |                    | 23.808<br>-2.685<br>166.082<br>151.742<br>67.166 | 20.790<br>123.370<br>115.132<br>43.574 | 23.463<br>-1.965<br>163.254<br>149.595<br>65.130 | 14.717<br>148.448<br>143.291<br>37.685 |

TABLE V

DIVERGENT-DIVERGENT ANNULAR DIFFUSER EXPERIMENTALLY MEASURED  $C_{PR}$ ,  $\overline{\psi}$ ,  $\eta$  VALUES

| SWIRL<br>CONDITION | L/h               | 1.60     | 3.13     | 6.35     | 12.65    |
|--------------------|-------------------|----------|----------|----------|----------|
|                    |                   | DIFFUSER | DIFFUSER | DIFFUSER | DIFFUSER |
|                    |                   | D        | C        | B        | Å        |
| Minimum<br>Swirl   | Ψ                 | 0.151    | 0.793    | 1.582    | 1.976    |
| 0                  | CPR               | 0.266    | 0.435    | 0.599    | 0.752    |
|                    | 2                 | 0.739    | 0.783    | 0.799    | 0.846    |
|                    | $\overline{\Psi}$ | 3.349    | 3.531    | 4.582    | 5.077    |
|                    | C <sub>PR</sub>   | 0.258    | 0.403    | 0.613    | 0.749    |
|                    | n                 | 0.717    | 0.725    | 0.817    | 0.843    |
|                    | Ţ                 | 8.280    | 7.697    | 11.688   | 10.867   |
|                    | CPR               | 0.269    | 0.410    | 0.512    | 0.751    |
|                    | 2                 | 0.747    | 0.738    | 0.683    | 0.845    |
|                    | Ψ                 | 14.274   | 14.564   | 17.269   | 15.603   |
| . 🗙                | $c_{PR}$          | 0.308    | 0.449    | 0.524    | 0.750    |
|                    | 2                 | 0.856    | 0.808    | 0.698    | 0.844    |
| Maximum<br>Swirl   | $\overline{\Phi}$ | 23.463   | 23.808   | 25.357   | 24.065   |
| ∧<br>              | $C_{\mathrm{PR}}$ | 0.346    | 0.464    | 0.534    | 0.754    |
|                    | n                 | 0.963    | 0.834    | 0.709    | 0.848    |



FIGURE | DIFFUSER CLASSIFICATION



. FIGURE 2 SCHEMATIC DIAGRAM OF THE TEST FACILITIES



FIGURE 3 APPARATUS LAYOUT







FIGURE 5 DIFFUSER TEST SECTION



FIGURE 6 YAWPROBE AT DIFFUSER EXIT



FIGURE 7 SETTLING CHAMBER



FIGURE 8 SWIRL VANE UNIT


FIGURE 9 DIFFUSER GEOMETRY





FIGURE O MEASUREMENT STATIONS

COMPARISON OF MEAN VELOCITY DISTRIBUTION WITH RESULTS OF BRIGHTON & JONES











FIGURE 12E SUCE Ps .  $\langle G \rangle$ -----ANG13 Ì SWEEP 1 14.600 -G 1 ÷ 1.: ..... TIP 14:500 HUB 1.... 14400 SCHMENDER USING TRIETA 21.22 12 . . . . zį, 14,300 -1-٩. 14,200 90 -Ze. 113 60 10 30  $\mathbb{C}^{\circ}$ 105 10 : :.. ·; "-.....

SWEEP ANGLE 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.











#### FIGURE 13 A

INLET SWIRL ANGLE PROFILES

### DIFFUSERA



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

## FIGURE 13 B INLET SWIRL ANGLE PROFILES DIFFUSER B



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

#### FIGURE 13 C.

### INLET SWIRL ANGLE PROFILES

#### DIFFUSER C



INLET SWIRL ANGLE PROFILES

#### DIFFUSER D



#### FIGURE 14A.

## INLET TANGENTIAL VELOCITY PROFILES

#### DIFFUSER A



## FIGURE 14 B

## INLET TANGENTIAL VELOCITY PROFILES

## DIFFUSERB



### FIGURE 14C.

## INLET TANGENTIAL VELOCITY PROFILES

#### DIFFUSERC



## FIGURE 14D.

INLET TANGENTIAL VELOCITY PROFILES

### DIFFUSERD



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

# FIGURE 15 A INLET DYNAMIC PRESSURE PROFILES



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

## FIGURE 15 B

## INLET DYNAMIC PRESSURE PROFILES





Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

### FIGURE 15C

#### INLET DYNAMIC PRESSURE PROFILES

## DIFFUSERC



### FIGURE 15D

#### INLET DYNAMIC PRESSURE PROFILES

#### DIFFUSERD



## FIGURE 16A

# INLET ABSOLUTE VELOCITY PROFILES

## DIFFUSER A



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

## FIGURE IEB

## INLET ABSOLUTE VELOCITY PROFILES

## DIFFUSERB





## FIGURE 16 D. INLET ABSOLUTE VELOCITY PROFILES DIFFUSER D



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

## FIGURE 17A.

INLET AXIAL VELOCITY PROFILES

#### DIFFUSERA



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

## FIGURE 17B INLET AXIAL VELOCITY PROFILES DIFFUSERB



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

## FIGURE 17C INLET AXIAL VELOCITY PROFILES DIFFUSERC



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

## FIGURE 17 D INLET AXIAL VELOCITY PROFILES DIFFUSER D



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

## FIGURE 18A

## INLET STATIC PRESSURE PROFILES

## DIFFUSERA



#### FIGURE 18B

#### INLET STATIC PRESSURE PROFILES

#### DIFFUSERB



### FIGURE 18C

## INLET STATIC PRESSURE PROFILES

## DIFFUSERC


### FIGURE 18D

### INLET STATIC PRESSURE PROFILES

### DIFFUSERD



### FIGURE 19A.

### EXIT SWIRL ANGLE PROFILES

### DIFFUSERA



### FIGURE 19B.

EXIT SWIRL ANGLE PROFILES

## DIFFUSERB







a. 20 0. 40 0. 50 (R-RINS) / (ROIS-RINS)

ต. ออ

1.00

 $\Box$ 

ip.co 1

5,00

D:D

-ti. aa

# EXIT SWIRL ANGLE PROFILES

## DIFFUSERD



# FIGURE 20A

# EXIT TANGENTIAL VELOCITY PROFILES

# DIFFUSERA





EXIT TANGENTIAL VELOCITY PROFILES

FIGURE 20B

## FIGURE 20C

# EXIT TANGENTIAL VELOCITY PROFILES

### DIFFUSERC



### FIGURE 20D

# EXIT TANGENTIAL VELOCITY PROFILES

# DIFFUSERD







FIGURE 21B

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

# FIGURE 21C EXIT DYNAMIC PRESSURE PROFILES DIFFUSER C



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



### FIGURE 22A

# EXIT ABSOLUTE VELOCITY PROFILES

# DIFFUSERA



### FIGURE 22 B

# EXIT ABSOLUTE VELOCITY PROFILES





# FIGURE 22C EXIT ABSOLUTE VELOCITY PROFILES DIFFUSER C



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

### FIGURE 23A

EXIT AXIAL VELOCITY PROFILES

# DIFFUSERA



# FIGURE 23 B

### EXIT AXIAL VELOCITY PROFILES

### DIFFUSERB





1.82

### FIGURE 23D

### EXIT AXIAL VELOCITY PROFILES

## DIFFUSER D





Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.





Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

# FIGURE 25A

INLET TURBULENCE DIFFUSERA



### INLET TURBULENCE

# DIFFUSERB





### INLET TURBULENCE

### DIFFUSER D



#### FIGURE 26

 $C_{PR}$  VERSUS L/h CONSTANT  $\bigcirc$  (SWIRL ANGLE)



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

. 192





### FIGURE 28



### COMPARISON OF PRESENT RESULTS TO RESULTS OF SOVRAN & KLOMP

TYPES OF DIFFUSERS

| SYMBOL   | θ,                                                            | Θ;                                                 | r <sub>h</sub> /r <sub>t</sub>                               |
|----------|---------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------|
| 0 ex0300 | 30.0°<br>20.0<br>15.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0 | 29.5<br>20.0<br>15.0<br>15.0<br>10.0<br>5.0<br>0.0 | 0.70<br>0.60<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.55 |

194





### FIGURE 31




## VITA AUCTORIS

Born in Frankfurt am Main, West Germany on May 17.
Completed High School at Vincent Massey Collegiate
Institute, Windsor, Ontario in June.

1969 Received the Degree of Bachelor of Applied Science in Mechanical Engineering from the University of Windsor, Windsor, Ontario.

1971 Currently a candidate for the Degree of Master of Applied Science in Mechanical Engineering at the University of Windsor.

199

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.