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Abstract 

The potential of cotton gin waste, a considerable challenge to the gin owners, has not been fully investigated as a 

renewable energy source via anaerobic digestion. The weathered cotton gin trash and inoculum for triplicate 

biomethane potential assays were obtained from a local cotton gin mill and a municipal wastewater treatment 

plant, respectively. The moisture, total solids, volatile solids, and C, H, N, S, hemicellulose + cellulose, and 

lignin contents of gin waste were determined in triplicates. The biomethane potential of untreated and pretreated 

(hot water and 6% NaOH (wet CGT weight basis) gin waste was determined at different inoculum to substrate 

ratios. The highest cumulative biomethane yield of 111.8 mL gvs
-1 was observed in inoculum to substrate ratio of 

2.3, and it was statistically similar to the values; 101.8, 104.7, 100.5, and 108.9 gvs
-1, observed in 0.8, 1.2, 1.5, 

and 1.9, respectively. The biomethane yield at the inoculum to substrate ratio of 0.4 was significantly lower than 

all higher ratios. The T80-90 for biomethane production was 26-30 for the ISRs of 1.2, 1.5, and 2.3. The T80-90 for 

inoculum to substrate ratios of 0.4, 0.8, and 1.9 were 26-31, 27-32, and 27-31 d, respectively. The modified 

Gompertz equation fitted very well (R2 = 0.98-0.99) to the anaerobic digestion at all inoculum to substrate ratios 

and pretreatments as the observed and predicted biomethane values were similar. The model predicted a lag 

phase of 8-10 days for control and treatments compared to the observed of 10-15 days. The highest 

biodegradability of 24.8±2.6% was observed at inoculum to substrate ratio of 2.3, which was statistically similar 

to the values observed in ratios of 0.8, 1.2, 1.5, and 1.9, respectively. Among pretreatments, the highest 

biodegradability of 33.0±2.4 was observed in 6% NaOH pretreatment, and it was statistically similar to hot water 

treatment and non-pretreated or control. These research findings advance the knowledge in the anaerobic 

degradation of cotton gin trash, thus helping to maximize biomethane recovery from this agro-industrial waste. 

Keywords: anaerobic digestion, inoculum to substrate ratio, biomethane potential assays, kinetic modeling, 

pretreatment 

1. Introduction 

Cotton is one of the world's most important cultivated crops owing to its high-quality natural fiber. According to 

a recent statistical report, around 26.7 million metric tons of cotton were produced globally during the 2019-20 

growing season, and the United States was the major exporter (Cotton Incorporated, 2020). Texas is a major 

cotton-producing state in the US; other US states producing cotton are Georgia, Arkansas, and Mississippi 

(Figures 1 and 2). The upland cotton (Gossypium hirsutum) is dominant throughout Texas. Pima cotton (G. 

barbadense), which is well adapted to the desert, is grown in far western Texas. 
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However, the urgency to lower fossil fuel consumption had the scientists investigating agro-industrial wastes 

such as CGT as potential renewable energy sources (Zabaniotou et al., 2010). Consequently, CGT has been 

investigated as a bioenergy source through ethanol production, gasification, and anaerobic degradation 

(Hamawand et al., 2016). The high chemical oxygen demand (COD) and volatile solid (VS) contents in CGT can 

be recovered as biomethane through anaerobic degradation (Hamawand et al., 2016; Wilde et al., 2010). 

Anaerobic degradation is widely adopted to convert organic matter into biomethane (USEPA, 2019; Guo et al., 

2015). According to the United States Environmental Protection Agency (USEPA), as of October 2019, 287 

anaerobic digesters were operating at the animal farms across the nation (USEPA, 2019). They were adopted by 

the farmers to curb methane emissions from animal farms (manures) as directed by EPA under the regulation of 

the National Pollutant Discharge Elimination System (USEPA, 2019). Biomethane potential (BMP) assays are 

used to determine a given substrate's suitability for anaerobic digestion. Anaerobic digestion relies upon the 

intricate balance of various bacterial groups which carry out the four distinct phases of hydrolysis (substrate 

break down to simple organic and amino acids), acidogenesis (conversion of simple organic and amino acids to 

volatile fatty acids, H2 and CO2), acetogenesis (volatile fatty acids are converted to CH3COOH) and finally 

methanogenesis (Meegoda et al., 2018). The microbial degradation is impacted by inoculum, substrate, 

experimental and operational conditions (Raposo et al., 2011). Some of the most important factors impacting the 

process; hence biomethane yield are inoculum to substrate ratio or ISR and substrate composition 

(Ntiamoah-Ohemeng & Datta, 2019; Raposo et al., 2011). 

There are some studies (Cheng & Zhong, 2014; Adl et al., 2012; Isci & Demirer, 2007; Funk et al., 2005) that 

focused on the BMP and/or ISR of cotton wastes in mono-digestion or co-digestion with manures. Adl et al. 

(2012) determined the effects of pretreatment, inoculum source, and feed to inoculum ratio (F/I) on the BMP of 

cotton stalks. Cheng and Zhong (2014) investigated the effects of the F/I, pretreatment, and co-digestion (with 

swine manure) on the BMP of cotton stalks. Additionally, the authors fitted the modified Gompertz equation to 

the cumulative experimental data and reported a high correlation between experimental and predicted values. 

Funk et al. (2005) co-digested CGT with swine manure (the mixing ratios from 1:1-10:1) in a two-stage 

bioreactor. Isci and Demirer (2007) reported that the addition of basal media yields higher biomethane during the 

anaerobic digestion of cotton oil cake, seed hull, and stalks. 

Once the particle size and crystallinity of the biomass are reduced via mechanical milling, several pretreatment 

methods are available to remove the lignin fraction of the biomass, as summarized by Hassan et al. (2018). Two 

of these methods are hot water and alkaline treatments, which remove soluble and whole lignin and 

hemicellulose fractions, respectively (Hassan et al., 2018). The effect of these pretreatments on BMP of CGT 

still has not been investigated. 

The biomethane potential assays were conducted at different inoculum to substrate ratios utilizing untreated and 

pretreated (hot water and alkali) cotton gin trash as feedstock. The digester performance at each treatment was 

evaluated by simulating the process with mainstream mathematical models and comparing them with theoretical 

values. 

2. Method 

2.1 Substrate and Inoculum 

The aged CGT (from more than 3 months cotton ginning, Figure 3) was collected from Varisco-Court Gin Co. 

(5354 Steel Store Rd, Bryan, TX, 77807). The samples were collected from weathered, transition, and core 

layers and mixed to obtain a uniform gin waste. It was passed through Willy mill, sieved (2 mm) to obtain small 

particles, and stored at 4 °C in the refrigerator.  
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TMY	=	 22400	×	 a

2
	+	 b

8
	– 

c

4
	– 

3d

8
	– 

e

4

12a	+	b	+	16c	+	14d	+	32e
                             (1) 

Where, a = 390.0, b = 450.0, c = 290.8, d = 21.2, e = 0.6. 

2.4 Biodegradability 

The biodegradability (BD) of a substrate is its fraction that is converted to biomethane during anaerobic 

digestion. The BD of CGT was determined using cumulative biomethane yield (EBY) from the experimental and 

theoretical biomethane (EMY and TBY) as described by Raposo et al. (2011). 

BD (%)	=	 EBY

TBY
	×	100                                  (2) 

2.5 Biomethane Production Kinetics 

The anaerobic degradation process or bacterial growth in the bioreactors can be described by fitting the modified 

Gompertz equation developed by Lay et al. (1996, 1997) as described below: 

P t 	=	P0	×	exp -exp
Rm·e

P0
λ	– t 	+	1                           (3) 

Where, P(t) = The cumulated methane (mL gvs
-1, minus the blank) at digestion time t (days); P0 = Maximum 

cumulative methane production (mL gvs
-1); Rm = Maximum daily rate of biomethane production (mL gvs

-1 d-1); λ 
= lag phase (days), minimum time to produce biomethane; e = Mathematical constant 2.718. 

2.6 Data Analysis 

The experimental data were processed in Microsoft Excel 2010 (Microsoft, USA). The biomethane volume was 

converted to dry gas volume at STP by multiplying with a dry biomethane factor of 0.838 as described by 

Richards et al. (1991). The blank value was subtracted from the treatment values. All of the data were analyzed 

using the general linear model (GLM) and analysis of variance procedure of Statistical Analysis System (SAS® 

9.2, SAS Institute Inc., Cary, NC, USA), and statistically significant treatment means were separated using the 

least significant difference (LSD) test at 5% probability. 

3. Results and Discussion 

3.1 Cotton Gin Trash Composition 

Carbohydrates (hemicellulose + cellulose) were 56%, while lignin or acid-insoluble fraction was found to be 

32.7% (Table 1).  

 

Table 1. Cotton gin trash and inoculum characterization 

Parameter (%) Inoculum CGT 

Moisture  97.2±0.3 12.3±0.4 

TS 2.8±0.3 87.7±0.4 

VS 1.5±0 78.9±0.8 

Ash 1.5±0.4 8.8±0.6 

N  - 1.3±0 

C - 47.3±1.2 

H - 4.5±0 

S - 0.2±0 

O - 46.6±1.5 

C/N - 36.3±0.9 

Cellulose + Hemi-cellulose - 56.0 

Lignin - 32.7 

Note. All values, except moisture, TS, VS, and ash are mean±SD from triplicate percentages of total sample dry 

weight basis (w/w). 

 

Agblevor et al. (2006) reported 11.2, 37.1, and 21.7 to 27% ash, total carbohydrates, and acid-insoluble fractions 

in CGT collected from gin mills in the US. The CGT was collected from a pile that had been stored in the open 

in a local gin mill for 3 months. 
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3.5 Biodegradability 

Without the addition of inoculum, CGT is hardly degradable, and only 1.8±0.1% of the added biomass was 

recovered as biomethane (Table 2). 

In the pretreatment experiment, the BDs of 33.0±2.4, 31.7±2.3, and 31.4±0.1 were statistically similar in 6% 

alkali, the hot water treatments, and control, respectively. 

Lignin is one of the most recalcitrant components of the plant-based agro-wastes and is not easily degraded 

during anaerobic digestion (Li et al., 2018). The lignin content of organic manures and energy crops, and animal 

manures is negatively correlated to their BMP (Kafle & Chen, 2016; Triolo et al., 2011). The CGT in this study 

had a lignin content of 32.7%, which on solubilization by alkali might have lead to higher BD (although not 

significant) in 6% NaOH treatment (Hassan et al., 2014). Shi et al. (2009) reported that a combination of fungal 

and alkali pretreatments in cotton stalks yielded higher biomethane by removing/softening recalcitrant biomass 

ingredients eg, xylan.  

4. Conclusion 

Our study reveals that for proper digestion of CGT the ISR should be more than 0.4. The pretreatments do not 

enhance biomethane yield and the modified Gompertz equation fits well with the anaerobic digestion of CGT. 

The gin trash biodegrades better with an increase in volatile solid loading rate from 1 to 7.9%. The T80-90 for 

CGT at the ISRs of 1.2, 1.5, and 2.3 was 26-30 days, whereas T80-90 at ISRs of 0.4, 0.8, and 1.9 were 26-31, 

27-32, and 27-31, respectively. The 6% NaOH treatment significantly increased the biodegradability of cotton 

gin waste. These findings further enhance understanding of the underlying factors in the anaerobic digestion of 

CGT and will facilitate to maximize biomethane recovery from this agro-industrial waste. 
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