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We study the effect of interactions on 2D fermionic symmetry-protected topological (SPT) phases
using the recently proposed braiding statistics approach. We focus on a simple class of examples:
superconductors with a Z2 Ising symmetry. Although these systems are classified by Z in the
noninteracting limit, our results suggest that the classification collapses to Z8 in the presence of
interactions – consistent with previous work that analyzed the stability of the edge. Specifically, we
show that there are at least 8 different types of Ising superconductors that cannot be adiabatically
connected to one another, even in the presence of strong interactions. In addition, we prove that
each of the 7 nontrivial superconductors have protected edge modes.

Introduction.— Recently it has become apparent that
generalizations of topological insulators[1–6] known as
“symmetry-protected topological (SPT) phases”[7–15]
can be realized in large classes of interacting boson and
fermion systems. Loosely speaking, SPT phases are char-
acterized by two properties. First, they support robust
gapless boundary modes which are protected by certain
symmetries. Second, SPT phases can be adiabatically
connected to a “trivial state”(i.e., an atomic insulator
or product state) if the relevant symmetries are bro-
ken. While significant progress has been made in un-
derstanding SPT phases in 1D systems, [8, 9, 12–16] less
is known about the higher dimensional case. Several ap-
proaches have been developed to understand these higher
dimensional systems. One approach, which applies to
bosonic SPT phases in general spatial dimension, is the
cohomology classification scheme of Ref. [11, 17]. An-
other approach, which applies to bosonic or fermionic 2D
SPT phases with chiral boson edge modes, is to study
the edge theories of these systems using the K-matrix
formalism[18–20].

In this paper, we discuss a third approach which was
introduced in Ref. 21 and applies to 2D SPT phases
with unitary symmetry groups. The key idea behind this
method is to study SPT phases by “gauging” their sym-
metries – i.e. coupling them to an appropriate gauge
field, thereby transforming their global symmetries into
gauge symmetries. One can then probe the structure
of the original SPT phases by constructing the excita-
tions of the gauged systems and computing their quasi-
particle braiding statistics. This approach has several
nice features. First, it provides a simple way to distin-
guish different SPT phases: if two gauged systems have
different quasiparticle statistics then it is clear that the
corresponding “ungauged” systems cannot be adiabati-
cally connected without breaking the symmetry. Second,
it gives insight into the stability of the edge: as shown
in Ref. 21, the quasiparticle braiding statistics of the

gauged system can be used to prove the existence of pro-
tected edge modes.

While Ref. 21 focused on bosonic SPT phases, here
we explore the fermionic case – a problem of particular
interest because the classification of interacting fermionic
SPT phases is not understood beyond 1D (although an
interesting attempt was made in Ref. 22). We focus on
a simple class of examples: 2D superconductors with a
Z2 Ising symmetry. It was previously conjectured[23–
25] that while these systems are classified by an inte-
ger invariant Z in the noninteracting limit, the classifica-
tion collapses to Z8 when interactions are included. This
claim was supported by an analysis of edge instabilities.
Here we obtain further evidence supporting this conjec-
ture. First, we show that there are at least 8 different
types of Ising superconductors that cannot be adiabati-
cally connected to one another, even in the presence of
strong interactions. Second, we prove that each of the 7
nontrivial superconductors have protected edge modes.

Pseudospin notation.— We begin with some notation.
Consider a general fermion system with an on-site, uni-
tary Z2 symmetry S. Without loss of generality, we can
assume that the Hamiltonian is built out of fermion op-
erators that have a definite parity under S. [26] We will
label the operators that are even under S with a pseu-
dospin index ↑ and operators that are odd under S with
an index ↓. In this notation, the system is composed out
of two species of fermions, c↑ and c↓, where

Sc↑S
−1 = c↑; Sc↓S

−1 = −c↓ (1)

In addition to the above Z2 symmetry, locality dictates
that the system must also conserve fermion parity Pf ,
defined by

Pfc↑P
−1
f = −c↑; Pfc↓P

−1
f = −c↓ (2)

Putting these two constraints together, we can see that
the pseudospin-↑ and ↓ fermions are separately conserved
modulo 2.
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The noninteracting limit.— We next review the clas-
sification of noninteracting fermion SPT phases with Z2

Ising symmetry. The key observation is that quadratic
pseudospin mixing terms, e.g. c†↑c↓, are prohibited by
the Z2 symmetry. Therefore the c↑ and c↓ fermions are
completely decoupled in the non-interacting limit. Ap-
plying the known integer classification of 2D topological
superconductors[27, 28], it follows that the different free
fermion phases are classified by a pair of integers (ν↑, ν↓).
Here, (ν↑, ν↓) ∈ Z2 corresponds to a phase where the
pseudospin-↑ and pseudospin-↓ fermions form two decou-
pled topological superconductors with ν↑ and ν↓ chiral
Majorana edge modes, respectively. (The sign of ν↑, ν↓

indicates the chirality of the edge mode – left or right
moving).

In this paper, we only consider a subset of the above
phases – namely those satisfying ν↑ = −ν↓. The reason
for this restriction is that our definition for SPT phases
requires that they be adiabatically connected to a triv-
ial band insulator if the symmetry is broken, and only
phases with ν↑ = −ν↓ obey this condition. Hence, ac-
cording to our definition, the noninteracting SPT phases
are classified by a single integer ν = ν↑ = −ν↓.

The effect of interactions.— While the Z2 symmetry
requires that the pseudospin ↑ and ↓ fermions decou-
ple from one another in the non-interacting limit, in-
terspecies coupling is allowed once we add interactions
into the system. (For example, the four fermion term

c†i↑c
†
j↑cj↓ci↓ is Z2 symmetric, but mixes the two species).

Thus, we might expect that the Z classification will col-
lapse once we include interactions: i.e. it may be possible
to adiabatically connect phases with different values of ν.
The question we will now investigate is: how many dis-
tinct phases survive in the presence of interactions?

For concreteness, we focus our analysis on a free
fermion Hamiltonian with nearest neighbor(NN) hopping
and pairing terms:

Hν =

ν∑
λ=1

∑
σ

∑
〈ij〉

tijσc
†
iσ;λcjσ;λ + h.c.

+

ν∑
λ=1

∑
σ

∑
〈ij〉

tijσ∆ijσc
†
iσ;λc

†
jσ;λ + h.c. (3)

Here i runs over lattice sites, while λ = 1, ..., ν describes
different orbital states on each lattice site. We choose the
the pairing term ∆ij;↑(↓) so as to describe a p+ip (p−ip)
superconductor, with an edge containing a single right
(left) moving chiral Majorana mode. Our task is to deter-
mine which Hν describe distinct phases, and which can
be adiabatically connected to one another. Our strategy
for answering this question is to couple the pseudospin
↑ and ↓ fermions to two independent Z2 gauge fields,
(Z↑2 × Z

↓
2 ) and then study the braiding statistics of the

Z2 flux excitations in the gauged model. We will show
that some values of ν exhibit different braiding statistics

and therefore must represent distinct phases.

The gauged model that we will analyze can be formally
written as

Hgauge =

ν∑
λ=1

∑
σ

∑
〈ij〉

tijσc
†
iσ;λτ

z
ijσcjσ;λ + h.c.

+

ν∑
λ=1

∑
σ

∑
〈ij〉

∆ijσc
†
iσ;λτ

z
ijσc

†
jσ;λ + h.c.−Hflux

σ (4)

where τzijσ is the Z2 gauge field strength associ-

ated with pseudospin σ fermions and where Hflux
σ =∑

〈ijkl〉 τ
z
ijστ

z
jkστ

z
klστ

z
liσ is a flux energy term that gives an

energy cost to flux excitations of the gauge fields. (Hflux
σ

is the analogue of the B2 term in Maxwell electromag-
netic dynamics). The Hamiltonian Hgauge is defined in a
Hilbert space consisting of gauge invariant states – that
is, all states satisfying the constraint

∏
j∈NN(i) τ

x
ijσ =

(−)
∑
λ niσ;λ . This constraint can be thought of as a Z2

analogue of Gauss’ law, ∇ ·E = ρ.

The next step is to compare the quasiparticle braiding
statistics of the gauged system Eq. (4) for different values
of ν. To this end, it is useful to first think about a simpler
system with only one pseudospin component and ν chiral
edge modes. The quasiparticle braiding statistics of such
a chiral superconductor were worked out by Kitaev in
Ref. 29. That calculation showed that the quasiparticle
braiding statistics of the superconductor depends on the
number of chiral edge modes ν, modulo 16. For example,
if ν is even, the Z2 gauge fluxes (i.e. superconducting vor-
tices) are Abelian anyons with an exchange phase factor
e
π
8 iν . If ν is odd, the Z2-fluxes are non-Abelian anyons

with an exchange phase (−)
(ν2−1)

8 e
π
8 iν when the two non-

Abelian anyons are in the vacuum fusion channel.

Now, let us consider the full system, which consists of a
pseudospin ↑ component with ν right moving edge modes
and a pseudospin ↓ component with ν left moving edge
modes. Naively, one might guess that the braiding statis-
tics of this system also depends on ν modulo 16, since it
is made up of two independent chiral superconductors.
However, this guess is incorrect: the braiding statistics
of the “doubled” system only depends on ν modulo 8.
To see this, we need to show that the braiding statis-
tics for ν = 0, 1, ..., 7 are all different while the ν = 0
case is equivalent to the ν = 8 case. One way to es-
tablish the first statement is to compute the exchange
phases of all the different types of Z↓2 (or Z↑2 ) flux exci-

tations. Here, a Z↓2 flux is defined to be any quasiparti-
cle excitation that acquires a phase of −1 when braided
around a pseudospin-↓ fermion and acquires no phase
when braided around a pseudospin-↑ fermion. Using the
results of Ref. 29, it is easy to see that for even ν there
are 4 types of Z↓2 fluxes with exchange statistics ±eπ8 iν ,

while for odd ν there are 2 types of Z↓2 fluxes with ex-
change statistics ±e−π8 iν . (In the latter case, we assume
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the fluxes are in the vacuum fusion channel). In particu-
lar, we see that the exchange statistics of the Z2 fluxes are
different for each of the eight possibilities ν = 0, 1, ..., 7.

On the other hand, to see that ν = 0 and ν = 8 have
the same braiding statistics, we need to construct an
explicit isomorphism between the quasiparticles in the
two systems. To this end, we consult Ref. 29 and note
that for both ν = 0, 8 the gauge theory Eq.(4) has four
quasiparticles 1, eσ,mσ, εσ for each pseudospin direction,
σ =↑, ↓. Including all possible composites of pseudospin
↑ and ↓ excitations, there are 4 · 4 = 16 quasiparticles

all together. We can think of the εσ as the constituent
fermions while eσ and mσ are different types of Zσ2 gauge
fluxes which differ from one another by the addition of
a fermion: eσ = mσ · εσ. Using the results of Ref. 29,
we can see that for both ν = 0, 8, the three particles
εσ, eσ,mσ acquire a phase of −1 when braided around
each other. The only difference is that eσ and mσ are
bosons for the case ν = 0 while they are fermions for
the case ν = 8. With these properties in mind, one can
easily see that the following map gives an isomorphism
between the quasiparticles in the two systems:

ν = 0 1 e↑ m↑ e↓ m↓ e↑e↓ m↑m↓ ε↑ε↓ e↑m↓ m↑e↓ ε↑ ε↓ e↑ε↓ ε↑e↓ m↑ε↓ ε↑m↓

ν = 8 1 e↑ε↓ m↑ε↓ ε↑e↓ ε↑m↓ m↑m↓ e↑e↓ ε↑ε↓ m↑e↓ e↑m↓ ε↑ ε↓ e↑ e↓ m↑ m↓

Here, the table is organized so that the first ten quasipar-
ticles are all bosons while the other six are all fermions.
We can see that the correspondence not only preserves
braiding statistics and fusion rules, but also preserves
the Z↑2 × Z↓2 gauge structure, mapping the ↓ fermions
(ε↓) of one system onto the corresponding fermions in

the other system, and likewise mapping the Z↓2 fluxes

(e↓,m↓, ε↑e↓, ε↑m↓) of one system onto the Z↓2 fluxes of
the other system (and similarly for ↑).

Two conclusions follow from the above analysis. First,
we conclude that the Hamiltonians Hν with ν =
0, 1, · · · , 7 cannot be adiabatically connected to one an-
other without breaking the Z2 symmetry. Indeed, if there
existed a gapped path connecting these Hamiltonians,
then there would have to be a corresponding path con-
necting the gauged systems Hgauge – an impossibility,
since we have seen that they have different quasiparticle
braiding statistics. The second conclusion is that it is
at least plausible that H0 and H8 can be adiabatically
connected to one another in the presence of interactions,
since the corresponding Z↑2 ×Z

↓
2 gauge theories share the

same statistics and gauge structure.

The instability of ν = 8 edge.— In this section, we give
additional evidence that the ν = 8 system is a trivial
SPT phase: we show that the ν = 8 edge can be gapped
out by appropriate interactions, without breaking the Z2

symmetry (explicitly or spontaneously). We note that a
similar result was obtained previously in Refs. 23–25.

Our approach is based on bosonization. We note
that the edge of the ν = 8 free fermion Hamiltonian
Eq.(3) contains 8 pseudospin-↑ Majorana modes and 8
pseudospin-↓ Majorana modes moving in opposite direc-
tions. Pairing up the Majorana modes to form com-
plex fermions, we can equivalently describe the edge us-
ing 4 pseudospin-↑ and 4 pseudospin-↓ complex fermions.
We then bosonize these fermions, using 4 boson modes
Φ1, ..,Φ4 for the pseudospin-↑ fermions, and 4 boson

modes Φ5, ...,Φ8 for the pseudospin-↓ fermions. The edge
is then described by the chiral boson Lagrangian

Ledge =
1

4π
(KIJ∂xΦI∂xΦJ − VIJ∂xΦI∂xΦJ) (5)

where K = diag(1, 1, 1, 1,−1,−1,−1,−1), and VIJ is
the velocity matrix. Here we use a normalization con-
vention where the fermion creation operators are of the
form eiΦk , k = 1, ..., 8. In this language, the symmetry
transformation is given by S−1ΦS = Φ + πK−1χ where
χT = (0, 0, 0, 0, 1, 1, 1, 1).

We now construct interaction terms that gap out the
edge without breaking the Z2 symmetry (either explicitly
or spontaneously). We consider backscattering terms of
the form U(Λ) = U(x) cos(ΛTKΦ − α(x)). In order for
U(Λ) to be invariant under S, we require that

ΛTχ ≡ 0 (mod 2) (6)

In order to gap out the edge, we need to add 4 backscat-
tering terms

∑
i U(Λi): each term can gap out a pair of

counter-propagating edge modes. Such terms can gap
out the edge as long as the {Λi} vectors satisfy [30]

ΛTi KΛj = 0 (7)

for all i, j. This “null-vector” condition guarantees that
we can make a suitable change of variables mapping Ledge
onto a system of 4 decoupled Luttinger liquids with 4
backscattering terms. It is then easy to see that the
backscattering terms will gap out the corresponding Lut-
tinger liquids (at least for large U [31]).

We now claim that the following {Λi} will do the job:

ΛT1 = (1,−1, 0, 0, 1,−1, 0, 0);

ΛT2 = (1, 0,−1, 0, 1, 0,−1, 0);

ΛT3 = (1, 0, 0,−1, 1, 0, 0,−1);

ΛT4 = (1, 0, 1, 0, 0,−1, 0,−1). (8)
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FIG. 1. (a) We consider a thought experiment in which we

create two Z↓
2 fluxes in the bulk and then move them along a

path β to points a, b at the edge. (b) We argue that the two
fluxes can be annihilated at the boundary by applying local
operators Ua, Ub. (c) We define Wβ to be an operator which
describes a process in which the fluxes are created in the bulk,
brought to the edge, and then annihilated. (d) To obtain a
contradiction, we consider two paths β, γ that intersect one
another, and we investigate the commutation algebra of the
corresponding operators Wβ ,Wγ .

Indeed, it is easy to check that these {Λi} obey the null
vector criterion (7), as well as the symmetry condition
(6). To complete the argument, we need to check that
the perturbation corresponding to {Λi} does not sponta-
neously break the Z2 symmetry. However, as explained
in Ref. [18], we can rule out the possibility of sponta-

neous symmetry breaking if the

(
8

4

)
4× 4 minors of the

8×4 matrix with columns Λ1, ...,Λ4 have no common fac-
tor. This property of Λ1, ...,Λ4 can be verified by direct
calculation.

Protected edge states for ν 6= 0 mod 8 .— On the other
hand, we now show that the edge of Hν is protected if
ν 6= 0 mod 8. To state our result more precisely, let us
consider a disk geometry and a Hamiltonian of the form
H = Hbulk + Hedge, where Hbulk = Hν , and Hedge is
an arbitrary interacting Hamiltonian acting on fermions
near the edge. In this setup, what we will show is that
the ground state |0〉 cannot be both Z2 symmetric and
“short-range entangled.” [32] We believe that this result
rules out the possibility of a Z2 symmetric, gapped edge,
and in this sense proves that the gapless edge excitations
are protected.

As in Ref. [21], our argument is a proof by contradic-
tion: we assume that |0〉 is short-range entangled and Z2

symmetric and we show that these assumptions lead to a
contradiction. The first step is to couple the pseudospin-↑
and pseudospin-↓ fermions to two independent Z2 gauge
fields as in (4). We then imagine creating a pair of Z↓2
(or Z↑2 ) fluxes in the bulk. After creating the Z↓2 fluxes,
we separate them and move them along some path β to
points a, b at the boundary (Fig. 1a). Formally, this pro-
cess can be implemented by applying a unitary (string-
like) operator Wβ to |0〉.

Next, we claim that the Z↓2 fluxes can be annihilated
at the boundary if we apply appropriate local operators.
That is, there exist local operators Ua, Ub, acting near
points a, b such that UaUbWβ |0〉 = |0〉 (Fig. 1b). Es-
tablishing this claim is the hardest step in the argument,
and here we merely outline its proof.[33] The basic point

is that when we bring the Z↓2 fluxes to the boundary,

we effectively create two Z↓2 domain walls at a and b.

Given that the ground state is Z↓2 symmetric, these do-
main walls are local excitations: they only affect expecta-
tion values in the neighborhood of a and b. It then follows
that these domain walls can be annihilated by local op-
erators since local excitations of a short-range entangled
state can always be annihilated locally.

In the third step, we consider a creation and annihi-
lation process in which two Z↓2 fluxes are created in the
bulk, moved to the boundary and then annihilated. Let
Wβ be a unitary operator describing this process (Fig.
1c). (Formally, Wβ = UaUbWβ). Now, consider a sec-
ond path γ with the geometry shown in Fig. 1d and
define Wγ in the same way. By construction, we have
Wβ |0〉 = Wγ |0〉 = |0〉. Hence

WβWγ |0〉 = WγWβ |0〉 = |0〉 (9)

In the final step, we show that (9) leads to a contradic-
tion if ν 6= 0 (mod 8). It is useful to consider separately
the case where ν is even and ν is odd. First, suppose ν is
even. In this case, the Z↓2 fluxes are abelian anyons and
it follows from a general analysis of abelian quasiparticle
statistics (see e.g. Refs. 21 and 34) that

WβWγ |0〉 = e2iθWγWβ |0〉 (10)

where eiθ is the exchange phase of the Z↓2 fluxes. Ac-
cording to the braiding statistics calculation outlined
above, the four types of Z↓2 fluxes have exchange statis-
tics θ = ±πν8 . Hence if ν 6= 0 (mod 8) then e2iθ 6= 1 for
any of the four types of fluxes and equations (9), (10) are
in contradiction.

Now suppose ν is odd. In this case, the Z↓2 fluxes are
non-abelian anyons, so the above braiding statistics anal-
ysis is more complicated. However, we can avoid these
complications using an alternative argument. We note
that if ν is odd then each Z↓2 flux carries an unpaired
Majorana mode. Thus, the state Wβ |0〉 has unpaired Ma-
jorana modes localized near points a and b. But then it
is clearly impossible for UaUbWβ |0〉 = |0〉 since unpaired
Majorana modes cannot be destroyed by any local opera-
tion. Once again, we encounter a contradiction, implying
that our assumption is false and |0〉 cannot be both Z2

symmetric and short-range entangled.
Conclusion.— In this paper we have studied SPT

phases in interacting fermion systems using a braiding
statistics approach. As a simple example, we considered
superconductors with a Z2 (Ising) symmetry. Although
in the noninteracting case these Ising superconductors
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are classified by an integer invariant ν ∈ Z, we give evi-
dence that the classification collapses to Z8 in the pres-
ence of interactions. We also give a general argument
proving that the edge excitations are protected when
ν 6= 0 (mod 8) and unprotected when ν = 0 (mod 8).
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