Effect of Intravascular Ultrasound-Guided vs. Angiography-Guided Everolimus-Eluting Stent Implantation: the IVUS-XPL Randomized Clinical Trial

Myeong-Ki Hong, MD. PhD on behalf of the IVUS-XPL trial investigators

Severance Cardiovascular Hospital and Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea

Background

Clinical usefulness of IVUS

IVUS usage during PCI

Improved clinical outcomes

 There are no adequately powered randomized clinical trials to prove the clinical usefulness of IVUS for second-generation DESs.

Hypothesis

 The clinical outcomes of IVUS-guided secondgeneration DES implantation would be superior to those of angiography-guided DES implantation in a subset of patients with long coronary lesions.

Study Design

- A prospective, randomized, multi-center trial
- At 20 centers in Korea
- Enrollment period: Oct 2010 and July 2014
- Key inclusion criteria
 - Age 20 years or older
 - Patients with typical chest pain or evidence of myocardial ischemia
 - Non-emergent conditions
 - Stent length ≥ 28 mm based on angiographic estimation
 - Significant coronary artery stenosis (>50% based on visual estimate) considered for coronary revascularization with stent implantation

- Key exclusion criteria
 - Acute ST-segment elevation or MI within 48 hours
 - Age >80 years
 - Cardiogenic shock
 - Left ventricular ejection fraction <40%
 - Left main disease requiring PCI
 - Bifurcation lesion with 2-stent technique
 - Chronic total occlusion
 - Presence of previously implanted DES within 6 months
 - In-stent restenosis lesion

Study Design

Patients with long coronary lesions (Implanted stent ≥28 mm in length) N = 1400

DES implantation with IVUS guidance n = 700 DES implantation with angiography guidance n = 700

Clinical follow-up at 12 months Primary end point: MACE Cardiac death, target-lesion related MI, and ischemia-driven TLR

Trial Registration: clinicaltrial.gov Identifier: NCT01308281

Statistical Analysis

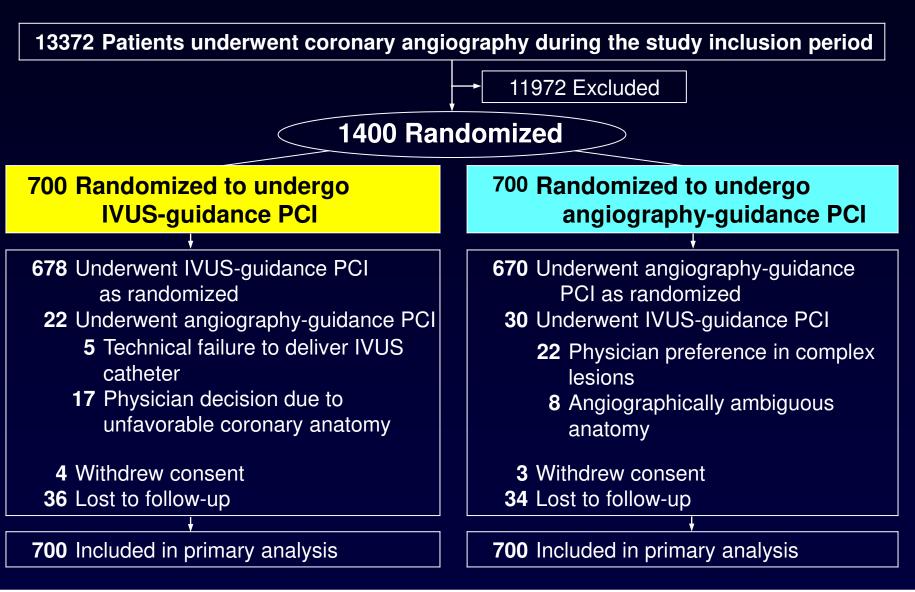
Sample size calculation

- Assumption the overall incidence of MACE to be <u>7% at the</u> <u>1-year in the angiography-guidance arm.</u>
- Superiority comparison with <u>an expected risk reduction of</u> <u>50% in the IVUS-guidance arm</u> (α=0.05, β=0.8, drop-out=5-10%)
- \rightarrow Each 700 patients in the IVUS guidance arm and in the angiography guidance arm.

Turco MA, et al. *JACC Cardiovasc Interv.* 2008;1:699-709 Kim YH, et al. *Circulation.* 2006;114:2148-2153

Primary analysis

- Intention-to-treat analysis with cumulative incidences of MACE at 1 year using the Kaplan-Meier estimates.
- Comparison using the log-rank test.



Procedure

- Criteria for stent optimization
 - ✓ IVUS-guidance arm
 - Minimal lumen CSA > lumen CSA at distal reference segments
 - Angiography-guidance arm
 - Angiographic residual diameter stenosis
 <30% and the absence of angiographically
 detected dissection

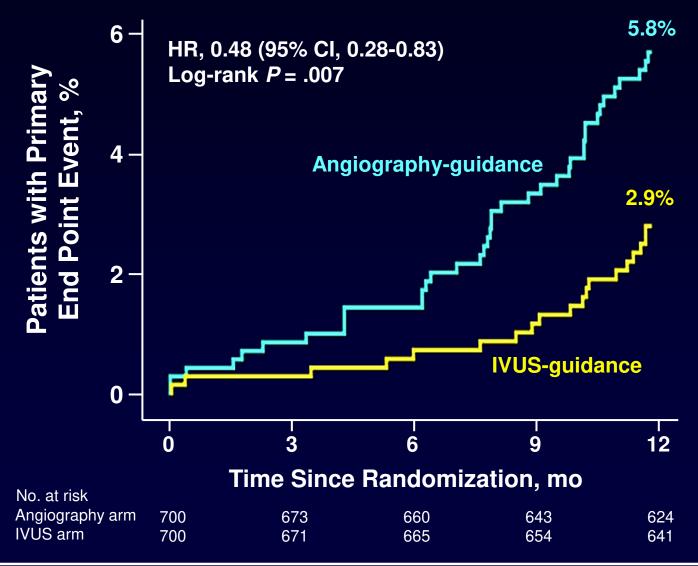
Study Flow

Baseline Characteristics

Characteristics	IVUS-guidance	Angiography-guidance	P value
No. of patients	700	700	
Age, y	64 (9)	64 (9)	.54
Male sex	483 (69)	481 (69)	.91
Hypertension	454 (65)	444 (63)	.58
Diabetes mellitus	250 (36)	256 (37)	.74
Left ventricular ejection fraction, %	62.9 ± 9.8	62.4 ± 10.2	.33
Clinical presentation			.36
Stable angina	358 (51)	356 (51)	
Unstable angina	242 (35)	226 (32)	
Acute myocardial infarction	100 (14)	118 (17)	
No. of treated lesions per patients	1.34 (0.56)	1.36 (0.57)	.57
Duration of DAPT, days	365 (180, 365)	365 (180, 365)	.15
Coronary arteries			.14
Left anterior descending artery	455 (65)	419 (60)	
Left circumflex artery	96 (14)	108 (15)	
Right coronary artery	149 (21)	173 (25)	
Baseline QCA data			
Reference vessel diameter, mm	2.89 ± 0.45	2.85 ± 0.45	.13
Minimum lumen diameter, mm	0.83 ± 0.42	0.82 ± 0.43	.56
Diameter stenosis, %	71.1 ± 14.3	71.4 ± 14.4	.70
Lesion length, mm	34.7 ± 10.8	35.2 ± 10.5	.41
Stent length, mm	39.3 ± 13.1	39.2 ± 12.3	.90

Angiographic and Procedural Characteristics

Characteristics	IVUS-guidance	Angiography- guidance	<i>P</i> value
Adjunct post-dilatation	534 (76)	402 (57)	<.001
Final balloon size, mm	3.14 ± 0.43	3.04 ± 0.42	<.001
Overlapping stent	145 (21)	138 (20)	.64
No. of stents per lesions	1.3 (0.5)	1.3 (0.5)	.48
Stent edge dissections	15 (2)	13 (2)	.70
Coronary perforation	0	0	1.00
Maximal inflation pressure, atm	16.5 ± 4.1	15.9 ± 4.1	.052
Post-intervention QCA data			
Reference vessel diameter, mm	3.03 ± 0.44	2.97 ± 0.43	.01
Minimum lumen diameter, mm	2.64 ± 0.42	2.56 ± 0.39	<.001
Diameter stenosis, %	12.79 ± 8.66	13.74 ± 8.05	.04

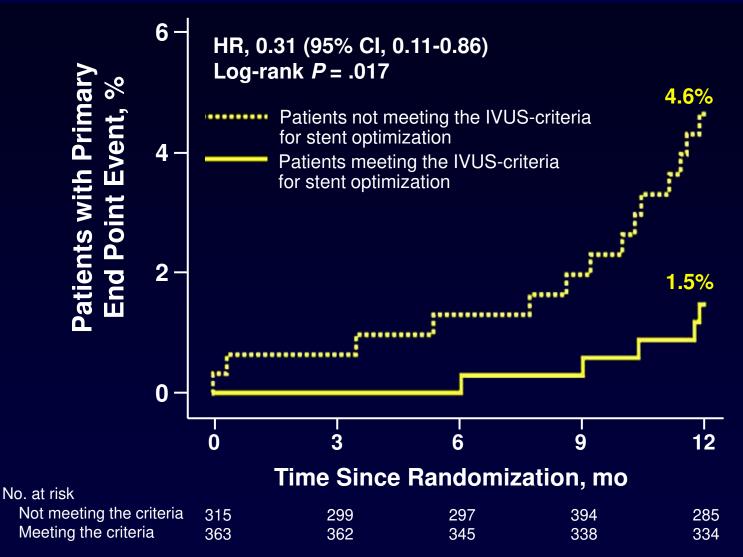


Clinical outcomes at 1 year

	IVUS- guidance (n=700)	Angiography- guidance (n=700)	Hazard ratio (95% CI)	Log- Rank <i>P</i> value
Primary End Point				
MACE	19 (2.9%)	39 (5.8%)	0.48 (0.28–0.83)	.007
Secondary End Point				
Cardiac death	3 (0.4%)	5 (0.7%)	0.60 (0.14-2.52)	.48
Target lesion related MI	0	1 (0.1%)	-	.32
Ischemia-driven TLR	17 (2.5%)	33 (5.0%)	0.51 (0.28-0.91)	.02
Stent thrombosis	2 (0.3%)	2 (0.3%)	1.00 (0.14-7.10)	1.00
Acute	1 (0.1%)	1 (0.1%)	-	-
Sub-acute	1 (0.1%)	0	-	-
Late	0	1 (0.1%)	-	-

Primary End Point

SEVERANCE CARDIOVASCULAR HOSPITAL


YONSEI UNIVERSITY COLLEGE OF MEDICINE

Post-intervention IVUS analysis in subgroup of IVUS guidance

Procedural and IVUS Characteristics	Patients meeting the IVUS criteria	Patients not meeting the IVUS criteria	P value
No. of patients	363	315	
Adjunct post-dilatation	282 (78)	237 (75)	.34
Final balloon size, mm	3.15 ± 0.45)	3.13 ± 0.42	.52
Maximal inflation pressure, atm	16.5 ± 3.9	16.4 ± 4.4	.87
Proximal reference EEM area, mm ²	17.52 ± 5.34	17.27 ± 5.04	.56
Proximal reference lumen area, mm ²	9.02 ± 3.51	8.86 ± 3.27	.57
Minimal lumen area, mm ²	6.09 ± 1.91	5.71 ± 1.71	.008
Distal reference EEM area, mm ²	9.44 ± 3.98	10.94 ± 3.83	<.001
Distal reference lumen area, mm ²	5.55 ± 1.82	6.83 ± 1.68	<.001

Primary End Point

Conclusions

- Among patients requiring long coronary stent implantation, the use of IVUS-guidance for DES implantation was associated with a significant 2.9% absolute reduction and 48% relative reduction in the risk of MACE at 1 year, compared with angiography-guidance.
- Our findings suggest better clinical outcomes of MACE with IVUS-guidance compared to angiography-guidance for DES implantation, particularly for diffuse long lesions.

Original Investigation

Effect of Intravascular Ultrasound–Guided vs Angiography-Guided Everolimus-Eluting Stent Implantation The IVUS-XPL Randomized Clinical Trial

Sang Jin Hong, MD. Byeong Vasik Klim, MD, Dong-Ho Shen, MD, MPH, Chung-Mo Nam, IRbD, Jung Sun Kim, MD. Yaung Cuk Ko, MD, Donghoon Choi, MD, Tae Soo Kang, MD, Woong Choi Kang, MD, Ae-Young Her, MD, Yanghoon Klim, MD, Seurej Ho Hur, MD, Burn-Kee-Hong, MD, Hyudonson Kiwan, MD, Yanghoo Jang, MD, Myeong Ki Hong, MD, (MD, Fel the FUSS/KIT: Investigations

INFORMANCE. Use of intravascular ubtascund (INUS) promotes better clinical outcomes for contrary intervention in complex coronary lesions. However, randomized data demonstrating, the clinical used/news of INUS are limited for lesions treated with drug exiting strents.

ODECTIVE To determine whether the long term clinical outcomes with NUS guided drag-blucking steet implantation are superior to those with angiography-guided implantation in patients with long coronary lesions.

DESIGN: SETTING, AND PAINTONANTS The Impact of Intravascular Ultrasound Guidance on Outcomes of Xience Prime Stents in Long Lesions (VUS-XPL) randomized, multicenter trial was conducted in 1400 patients with long coronary lesions (implanted stent #28 mm in length) between October 2010 and July 2014 at 20 centers in Korea.

INTERVENTIONS Patients were randomly assigned to receive IVUS-guided (n = 700) or angiography-guided (n = 700) everolimus-eluting stent implantation.

MAIN CUTCOMES AND MEASURES. Primary outcome measure was the composite of major adverse cardiac events, including candiac death, target lesion related myocardial inflaction, or ischemia-driven target Hesion necessorialization at 1 year, analyzed by immethion-to-treat.

BENATS: One-year follow-up was complete in 1023 patients (04.5%). Major adverse cardiac events at 1 year occurred in 19 patients (2.9%) undergoing IVUS guided and in 39 patients (2.9%) undergoing angiography guided stem implantation (absolute difference, ~2.9%) (95% CL, ~5.14% to ~0.79%) (hazard ratio (HR), 0.448 (95% CL, 0.28 to 0.83), P ~ 0.07. The difference was driven by a lower risk of ischemia-driven target lesion revascularization in patients undergoing IVUS guided (17 (2.5%)) compared with angiography-guided (35 (5.0%)) teen implantation (HR, 0.51 (95% CL, 0.28 to 0.91), P = 02). Candiac death and target lesion-related myocardial infarction ware not significantly difference between the 2 groups. For cardiac death, there were B patients (0.0%) in the IVUS-guided group (HR, 0.60 (95% CL, 0.14 to 2.52), P = 48). Target lesion-related myocardial infarction occurred in 1 patient (0.1%) in the low to 3.52, P = 48). Target lesion-related myocardial infarction occurred in 1 patient (0.1%) in the angiography-guided security difference.

CONCLUSIONS AND MULLYANCE. Among patients requiring long coronary steril implantation, the use of IVUS-guided severolemus-eluting steril implantation, compared with angiography-guided steri implantation, resulted in a significantly lower rate of the composite of major adverse caediac events at 1 year. These differences were primarily due to lower rink of traget lesion revacularization.

THIAL RECENTRATION clinicaltrials gov Identifier NCTOBO8281

JAMA. doi:10.1004/jama.2015.15454 Published online Recomber 10, 2015 Author Affiliations: Author affiliations are intend at the end of the article: Group Information: The INIT's XIS.

Supplemental content at jama.com

Investigators are listed at the end of this article. Corresponding Author: Myrring Ki

Hong, MD, HAD, Delsion of Gardology, Sevenance Cardiovanniae Hanpital, Stones University College of Biels Ine, DH Strehen-dong, Sendammings, Senal DO 752, Koma Orieltoogellishinka a3

13

JANA The Journal of the American Medical Association

S-J Hong and coauthors

Effect of Intravascular Ultrasound– Guided vs Angiography-Guided Everolimus-Eluting Stent Implantation: The IVUS-XPL Randomized Clinical Trial

Published online November 10, 2015

Available at jama.com and on The JAMA Network Reader at mobile.jamanetwork.com

