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Effect of Intrusion Detection and Response on

Reliability of Cyber Physical Systems

Robert Mitchell, Ing-Ray Chen, Member, IEEE

Abstract—In this paper we analyze the effect of intrusion
detection and response on the reliability of a cyber physical
system (CPS) comprised of sensors, actuators, control units,
and physical objects for controlling and protecting a physical
infrastructure. We develop a probability model based on
stochastic Petri nets to describe the behavior of the CPS in
the presence of both malicious nodes exhibiting a range of
attacker behaviors, and an intrusion detection and response
system (IDRS) for detecting and responding to malicious events
at runtime. Our results indicate that adjusting detection and
response strength in response to attacker strength and behavior
detected can significantly improve the reliability of the CPS. We
report numerical data for a CPS subject to persistent, random
and insidious attacks with physical interpretations given.

Index Terms - Intrusion detection, intrusion response, cyber
physical systems, performance analysis.

ACRONYMS

CPS Cyber physical system

IDRS Intrusion detection and response system

IDS Intrusion detection system

RTU Remote terminal unit

MTU Master terminal unit

MTTF Mean time to failure

SPN Stochastic Petri net

NOTATION

TIDS Intrusion detection interval

Xb Compliance degree of a bad node

Xg Compliance degree of a good node

Xi Compliance degree of arbitrary node i
CT System minimum compliance threshold

ci ith compliance degree output
x̂ Estimate of x
pfn Per-node host IDS false negative probability

pfp Per-node host IDS false positive probability

Pfn System IDS false negative probability

Pfp System IDS false positive probability

prandom Random attack probability by a

random attacker

pa Attack probability by an insidious attacker

λc Per-node capture rate

λif Impairment rate for an attacker to cause

severe functional impairment
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I. INTRODUCTION

A cyber physical system (CPS) is typically comprised of

sensors, actuators, control units, and physical objects for

controlling and protecting a physical infrastructure. Because

of the dire consequence of a CPS failure, protecting a CPS

from malicious attacks is of paramount importance. In this

paper, we address the reliability issue of a CPS designed

to sustain malicious attacks over a prolonged mission period

without energy replenishment. A CPS often operates in a rough

environment wherein energy replenishment is not possible,

and nodes may be compromised (or captured) at times. Thus,

an intrusion detection and response system (IDRS) must

detect malicious nodes without unnecessarily wasting energy

to prolong the system lifetime.

Intrusion detection system (IDS) design for CPSs has

attracted considerable attention [1], [7]. Detection techniques

in general can be classified into three types: signature based,

anomaly based, and specification based techniques. In the area

of signature based IDS techniques, Oman and Phillips [22]

study an IDS for CPSs that tests an automated XML profile

to Snort signature transform in an electricity distribution

laboratory. Verba and Milvich [26] study an IDS for CPSs

that takes a multitrust hybrid approach using signature based

detection and traffic analysis. Our work is different from these

studies in that we use specification based detection rather

than signature based detection to deal with unknown attacker

patterns.

In the area of anomaly based IDS techniques, Barbosa

and Pras [2] study an IDS for CPSs that tests state machine

and Markov chain approaches to traffic analysis on a water

distribution system based on a comprehensive vulnerability

assessment. Linda, et al. [18] study an IDS for CPSs that uses

error-back propagation and Levenberg-Marquardt approaches

with window based feature extraction. Gao, et al. [16] study

an IDS for CPSs that uses a three stage back propagation

artificial neural network (ANN) based on Modbus features.

Bellettini and Rrushi [4] study an IDS for CPSs that seeds

the runtime stack with NULL calls, applies shuffle operations,

and performs detection using product machines. Yang, et

al. [28] study an IDS for CPSs that uses SNMP to drive

prediction, residual calculation, and detection modules for an

experimental testbed. Bigham, et al. [5] study an IDS for

CPSs that demonstrates promising control of detection and

false negative rates. Tsang and Kwong [25] study a rich

multitrust IDS for CPSs that uses a novel machine learning

approach. Xie, et al. [27] survey anomaly detection techniques,



and advocate an anomaly based layered approach. Our work

is different from these studies in that we use specification

based rather than anomaly based techniques to avoid using

resource-constrained sensors or actuators in a CPS for profiling

anomaly patterns (e.g., through learning), and to avoid high

false positives (treating good nodes as bad nodes).

In the area of specification-based IDS techniques, Cheung,

et al. [12] study a specification based IDS that uses PVS

to transform protocol, communication pattern, and service

availability specifications into a format compatible with

EMERALD. Carcano, et al. [6] propose a specification based

IDS that extends [15]; it distinguishes faults from attacks,

describes a language to express a CPS specification, and

establishes a critical state distance metric. Zimmer, et al.

[29] study a specification based IDS that instruments a

target application, and uses a scheduler to confirm timing

analysis results. Our work is also specification based. However,

our work is different from these prior studies in that

we automatically map a specification into a state machine

consisting of good and bad states, and simply measure a

node’s deviation from good states at runtime for intrusion

detection. Moreover we apply specification-based techniques

to host-level intrusion detection only. To cope with incomplete,

uncertain information available to nodes in the CPS, and to

mitigate the effect of node collusion, we devise system-level

intrusion detection based on multitrust to yield a low false

alarm probability.

While the literature is abundant in the collection and

analysis aspects of intrusion detection, the response aspect

is little treated. In particular, there is a gap with respect to

intrusion detection and response. Our IDRS design addresses

both intrusion detection and response issues, with the goal to

maximize the CPS lifetime.

Our methodology for CPS reliability assessment is model-

based analysis. Specifically, we develop a probability model

to assess the reliability property of a CPS equipped with

an IDRS for detecting and responding to malicious events

detected. Untreated in the literature, we consider a variety

of attacker behaviors including persistent, random, and

insidious attacker models, and identify the best design settings

of the detection strength and response strength to best

balance energy conservation versus intrusion tolerance for

achieving high reliability, when given a set of parameter

values characterizing the operational environment and network

conditions. Parameterization of the model using the properties

of the IDS system is one major contribution of the paper.

The rest of the paper is organized as follows. Section II gives

the system model. Section III develops a mathematical model

based on stochastic Petri nets [23], [11], [10] for theoretical

analysis. Section IV discusses the parameterization process

for the reference CPS. Section V presents numerical data

with physical interpretations given. Finally, Section VI outlines

some future research areas.

II. SYSTEM MODEL/REFERENCE CONFIGURATION

A. Reference CPS

Our reference CPS model is based on the CPS infrastructure

described in [21] comprising at the sensor layer 128 sensor-

carried mobile nodes. Each node ranges its neighbors

periodically Each node uses its sensor to measure any

detectable phenomena nearby. Each node transmits a CDMA

waveform. Neighbors receiving that waveform transform the

timing of the PN code (1023 symbols) and RF carrier

(915 MHz) into distance. Essentially, each node performs

sensing and reporting functions to provide information to

upper layer control devices to control and protect the CPS

infrastructure, and in addition utilizes its ranging function for

node localization and intrusion detection.

The reference model is a special case of a single-enclave

system with homogeneous nodes. The IDS functionality is

distributed to all nodes in the system for intrusion and

fault tolerance. On top of the sensor-carried mobile nodes

sits an enclave control node responsible for setting system

parameters in response to dynamically changing conditions

such as changes of attacker strength. The control module is

assumed to be fault and intrusion free through security and

hardware protection mechanisms against capture attacks and

hardware failure.

Fig. 1. Reference CPS.

Fig. 1 contextualizes our reference CPS which is comprised

of 128 sensor-carried mobile nodes, a control unit, and

physical objects for controlling and protecting a physical

infrastructure. The mobile nodes are capable of sensing

physical environments, as well as actuating and controlling

the underlying physical objects in the CPS. They function

as sensors and actuators, each carrying sensors for sensing

physical phenomena, as well as actuating devices for

controlling physical objects. The CPS literature identifies these

mobile nodes as RTUs. Sitting on top of these mobile nodes

is a control unit which receives sensing data from the mobile

nodes and determines actions to be performed by individual

nodes or a group of mobile nodes. This triggers their actuating

devices to control and protect the physical objects in the CPS.



We exemplify a number of applications to which our reference

CPS can apply.

1) Disaster recovery (say after an earthquake) might involve

a group of mobile nodes with motion and video sensing

and actuating capabilities cooperating under the control

of a disaster corrective control unit to protect and

recover physical objects (e.g., people or a physical

infrastructure).

2) Emergency rescue (say a burning building) may require

a group of mobile fighters equipped with motion and

video sensing and fighting capabilities cooperating under

the control of a control unit to rescue physical objects

(e.g., people trapped or seized).

3) Military patrol (combat or reconnaissance) [13] might

consist of a group of mobile patrol nodes equipped with

motion sensing and fighting capabilities cooperating

under the control of a control unit to protect and

control physical objects (e.g., geographic areas or critical

resources).

4) Pervasive healthcare [19] might use a group of mobile

medical personnel equipped with motion and video

sensing and actuating capabilies cooperating under the

control of a control unit to protect and provide healthcare

to physical objects (e.g., patients or medical devices).

5) Unmanned aircraft systems [20] might consist of a group

of unmanned aerial vehicles equipped with sensing

and aircraft fighting capabilities cooperating under the

control of a remote control unit to control and protect

physical objects (e.g., geographic areas).

The control unit contains control logic and provides

management services. The CPS literature identifies this

control unit as an MTU. In contrast with the RTUs, an

MTU implements the broad strategic control functions. Our

reference CPS is distinct from Wireless Sensor Networks

(WSNs); WSNs are resource constrained, mostly stationary,

and have a specific traffic profile. On the other hand, our

reference CPS is safety-critical, mobile, and uses ad hoc

networking with bidirectional flows. We do not make any

assumptions regarding the network structure used to connect

nodes in a CPS. In our reference CPS, nodes are mobile,

and they are connected through wireless links to the control

node. Our host IDS design (Section II.D) is based on local

monitoring, and our system-level IDS design (Section II.E) is

based on the voting of neighbor monitoring nodes. Both IDS

techniques can be generically applied to any network structure

(such as a star configuration) used in a CPS.

B. Security Failure

While our approach is general enough to take any security

failure definition, we consider two security failure conditions.

The first condition is based on the Byzantine fault model [17].

That is, if one-third or more of the nodes are compromised,

then the system fails. The reason is that once the system

contains 1/3 or more compromised nodes, it is impossible

to reach a consensus, hence inducing a security failure. The

second condition is impairment failure. That is, a compromised

CPS node performing active attacks without being detected can

impair the functionality of the system and cause the system to

fail. Impairment failure is modeled by defining an impairment-

failure attack period by a compromised node beyond which the

system cannot sustain the damage.

Specifically, a control unit in our reference CPS would

take in multiple sensor readings (from sensor-carried mobile

nodes) sensing the same physical phenomena to make a

decision on actions to be performed by a set of actuators

(also mobile nodes). The first failure mode, Byzantine failure,

accounts for the condition that the control unit is not able to

obtain any sensor reading consensus. The second failure mode,

impairment failure, accounts for the condition that impairment

by a bad node (especially an actuator) over an impairment-

failure period without being detected will severely impair the

system and cause the system to fail.

C. Attack Model

The first step in investigating network security is to

define the attack model. We consider capture attacks which

turn a good node into a bad insider node. At the sensor-

actuator layer of the CPS architecture, a bad node can

perform data spoofing attacks (reporting spoof sensor data)

and bad command execution attacks. At the networking

layer, a bad node can perform various communication

attacks including selective forwarding, packet dropping, packet

spoofing, packet replaying, packet flooding, and even Sybil

attacks to disrupt the system’s packet routing functionality. At

the control layer, a bad node can perform control-level attacks

including aggregated data spoofing attacks, and command

spoofing attacks. Nodes at the control layer, however, are

less susceptible to capture attacks because they are normally

deployed in a physical confine which protects them from

tampering. For this reason, in this paper, our primary interest

is on capture attacks of sensor-actuator nodes performing basic

sensing, actuating, and networking functions.

We consider three attacker models: persistent, random,

and insidious. A persistent attacker performs attacks with

probability one (i.e., whenever it has a chance). The primary

objective is to cause impairment failure. A random attacker

performs attacks randomly with probability prandom. The

primary objective is to evade detection. It may take a longer

time for a random attacker to cause impairment failure because

the attack is random. However, random attackers are hidden

so it may increase the probability of Byzantine security failure

once the number of bad nodes equals or exceeds 1/3 of the

node population. An insidious attacker is hidden all the time to

evade detection until a critical mass of compromised nodes is

reached to perform “all in” attacks. The primary objective is to

maximize the failure probability caused by either impairment

or Byzantine security failure.

D. Host Intrusion Detection

Our host intrusion detection protocol design is based

on two core techniques: behavior rule specification, and

vector similarity specification. The basic idea of behavior



rule specification is to specify the behavior of an entity (a

sensor or an actuator) by a set of rules from which a state

machine is automatically derived. Then, node misbehavior

can be assessed by observing the behaviors of the node

against the state machine (or behavior rules). The basic idea

of vector similarity specification is to compare similarity of

a sequence of sensor readings, commands, or votes among

entities performing the same set of functions. A state machine

is also automatically derived from which a similarity test

is performed to detect outliers. More specifically, the states

derived in the state machine would be labeled as secure

versus insecure. A monitoring node then applies snooping

and overhearing techniques observing the percentage of time a

neighbor node is in secure states over TIDS. A longer sojourn

time in secure states indicates greater specification compliance,

while a shorter sojourn time indicates less specification

compliance. If Xi falls below CT , node i is considered
compromised. We apply these two host IDS techniques

to the reference CPS as follows. (a) A monitoring node

periodically determines a sequence of locations of a sensor-

carried mobile node within radio range through ranging, and

detects if the location sequence (corresponding to the state

sequence) deviates from the expected location sequence. (b)

A monitoring node periodically collects votes from neighbor

nodes who have participated in system intrusion detection

(described below), and detects dissimilarity of vote sequences

among these neighbors for outlier detection.

The measurement of compliance degree of a node frequently

is not perfect, and can be affected by noise and unreliable

wireless communication in the CPS. We model the compliance

degree by a random variable X with G(·) = Beta(α, β)
distribution [24], with the value 0 indicating that the output is

totally unacceptable (zero compliance), and 1 indicating the

output is totally acceptable (perfect compliance), such that

G(a), 0 ≤ a ≤ 1, is given by

G(a) =

∫ a

0

Γ(α + β)

Γ(α)Γ(β)
xα−1(1 − x)β−1 dx, (1)

and the expected value of X is given by

EB [X] =

∫ 1

0

x
Γ(α + β)

Γ(α)Γ(β)
xα−1(1 − x)β−1 dx =

α

α + β
.

(2)

The α and β parameters are to be estimated based on the
method of maximum likelihood by using the compliance

degree history collected during the system’s testing phase

in which the system is tested with its anticipated attacker

event profile, and where the compliance degree is assessed

using the specification-based host IDS technique described

earlier. A node’s anticipated event profile describes a node’s

behaviors, and predicts the next state the node will be

entering upon an event occurrence, given that the node is

in its current state. For example, a persistent attacker will

likely go to another bad state because it performs attacks

continuously. A random attacker will likely go to a bad state

in accordance to its random attack probability because it

performs attacks randomly. A good node on the other hand

will likely go to another good state because it complies with its

behavior rules, unless the detection of its behaviors is hindered

by noise or wireless channel error. The compliance degree

history collected this way is the realization of a sequence of

random variables (c1, c2, ..., cn), and n is the total number of
compliance degree outputs observed. The maximum likelihood

estimates of α and β are obtained by numerically solving

n∂Γ(α̂+β̂)
∂α̂

Γ(α̂ + β̂)
−

n∂Γ(α̂)
∂α̂

Γ(α̂)
+

n
∑

i=1

log ci = 0

n∂Γ(α̂+β̂)

∂β̂

Γ(α̂ + β̂)
−

n∂Γ(β̂)

∂β̂

Γ(α̂)
+

n
∑

i=1

log(1 − ci) = 0 (3)

where

∂Γ(α̂ + β̂)

∂α̂
=

∫

∞

0

(log x)xα̂+β̂−1e−xdx.

A less general though simpler model is to consider a single

parameter Beta(β) distribution with α equal to 1. In this case,
the density is β(1 − x)β−1 for 0 ≤ x ≤ 1, and 0 otherwise.
The maximum likelihood estimate of β is

β̂ =
n

n
∑

i=1

log(
1

1 − ci

)

(4)

Host intrusion detection is characterized by pfn and pfp.

While many detection criteria [3], [8], [9] are possible, we

consider a threshold criterion in this paper. That is, if Xb is

higher than CT , then there is a false negative. Suppose that Xb

is modeled by a G(·) = Beta(α, β) distribution as described
above. Then pfn is given by

pfn = Pr{Xb > CT } = 1 − G(CT ). (5)

On the other hand, if Xg is less than CT then there is

a false positive. Again suppose that Xg is modeled by a

G(·) = Beta(α, β) distribution. Then pfp is given by

pfp = Pr{Xg ≤ CT } = G(CT ). (6)

Here we observe that these two probabilities are largely

affected by the setting of CT . A large CT induces a small

false negative probability at the expense of a large false

positive probability. Conversely, a small CT induces a small

false positive probability at the expense of a large false

negative probability. A proper setting of CT in response

to attacker strength detected at runtime helps maximize the

system lifetime.

E. System Intrusion Detection

Our system IDS technique is based on majority voting

of host IDS results to cope with incomplete and uncertain

information available to nodes in the CPS. Our system-

level IDS technique involves the selection of m detectors

as well as the invocation interval TIDS to best balance

energy conservation vs. intrusion tolerance for achieving

high reliability. Each node periodically exchanges its routing



information, location, and identifier with its neighbor nodes. A

coordinator is selected randomly among neighbors so that the

adversaries will not have specific targets. We add randomness

to the coordinator selection process by introducing a hashing

function that takes in the identifier of a node concatenated

with the current location of the node as the hash key. The

node with the smallest returned hash value would then become

the coordinator. Because candidate nodes know each other’s

identifier and location, they can, without trading information,

execute the hash function to determine which node would

be the coordinator. The coordinator then selects m detectors
randomly (including itself), and lets all detectors know each

others’ identities so that each voter can send its yes or no vote

to other detectors. Vote authenticity is achieved via preloaded

public keys. At the end of the voting process, all detectors

will know the same result; the node is diagnosed as good, or

as bad based on the majority vote.

The system IDS is characterized by Pfn and Pfp. These two

false alarm probabilities are not constant but vary dynamically,

depending on the percentage of bad nodes in the system

when majority voting is performed. We will derive these two

probabilities in the paper.

F. Intrusion Response

Our IDRS reacts to malicious events detected at runtime

by adjusting CT . For example, when it senses an increasing

attacker strength, it can increase CT with the objective to

prevent impairment security failure. This approach results in

a smaller false negative probability, which has a positive

effect of reducing the number of bad nodes in the system,

and decreasing the probability of impairment security failure.

However, it also results in a larger false positive probability,

which has the negative effect of reducing the number of

good nodes in the system, and consequently increasing the

probability of Byzantine security failure. To compensate for

the negative effect, the IDRS increases the audit rate (by

decreasing the intrusion detection interval) or increases the

number of detectors to reduce the false positive probability

at the expense of more energy consumption. The relationship

between the minimum compliance threshold CT set versus

pfn and pfp must be determined at static time so the system

can adjust CT dynamically in response to malicious events

detected at runtime.

III. MODEL AND ANALYSIS

Table I lists the set of parameters used in our model-

based analysis of intrusion detection and response designs. The

parameter N defines the starting network size (i.e., the number
of nodes). The hostility of the network is characterized by λc;

the impairment rate for a bad node to cause severe functional

impairment is λif ; pfp and pfn are host IDS false positive and

false negative probabilities, respectively, while Pfp and Pfn are

system-level IDS false positive and false negative probabilities,

respectively; TIDS is the intrusion detection interval; m is the
number of detectors used in the system IDS.

TABLE I
PARAMETERS USED FOR ANALYSIS OF INTRUSION DETECTION AND

RESPONSE DESIGN

Parameter Meaning Type

N number of nodes in a CPS input
λc per node compromise rate (Hz) input
λif per node impairment rate (Hz) input
pfp probability of per-host IDS false positive input
pfn probability of per-host IDS false negative input
TIDS intrusion detection interval (s) input
m number of detectors in the system IDS input
Pfp probability of system IDS false positive derived
Pfn probability of system IDS false negative derived
prandom random attack probability by a random attacker input
pa attack probability by an insidious attacker derived
NIDS maximum IDS cycles before energy exhaustion derived
MTTF system lifetime output

TABLE II
TRANSITION RATES OF THE SPN MODEL.

Transition Name Rate

TENERGY 1
NIDS×TIDS

TCP Ng × λc

TFP
Ng×Pfp

TIDS

TIDS
Nb×(1−Pfn)

TIDS

TIF pa × Nb × λif

Our theoretical model utilizes stochastic Petri net (SPN)

techniques [14]. Fig. 2 shows the SPN model describing the

ecosystem of a CPS with intrusion detection and response

under capture, impairment, and Byzantine security attacks.

The underlying model of the SPN model is a continuous-

time semi-Markov process with a state representation (Ng ,

Nb, Ne, impaired, energy) where Ng is the number of good

nodes, Nb is the number of bad nodes, Ne is the number of

nodes evicted (as they are considered as bad nodes by intrusion

detection), impaired is a binary variable with 1 indicating
impairment security failure, and energy is a binary variable
with 1 indicating energy availability and 0 indicating energy

exhaustion.

Fig. 2. SPN Model for Intrusion Detection and Response.

Table II annotates transitions, and gives transition rates

used in the SPN model. The SPN model shown in Fig. 2

is constructed as follows.

• We use places to hold tokens, each representing a node.

Initially, all N nodes are good nodes (e.g., 128 in our



reference CPS), and put in place Ng as tokens.

• We use transitions to model events. Specifically, TCP

models good nodes being compromised; TFP models a

good node being falsely identified as compromised; TIDS

models a bad node being detected correctly.

• Good nodes may become compromised because of

capture attacks with rate λc. This assumption is modeled

by associating transition TCP with an aggregate rate

λc × Ng . Firing TCP will move tokens one at a time

(if it exists) from place Ng to place Nb. Tokens in place

Nb represent bad nodes performing impairment attacks

with probability pa.

• When a bad node is detected by the system IDS as

compromised, the number of compromised nodes evicted

will be incremented by 1, so place Ne will hold one

more token. On the other hand, the number of undetected

compromised nodes will be decremented by 1, i.e., place

Nb will hold one less token. These detection events are

modeled by associating transition TIDS with a rate of

(Nb × (1−Pfn))/(TIDS) with 1−Pfn accounting for the

system IDS true negative probability.

• The system-level IDS can incorrectly identify a good

node as compromised. This is modeled by moving a good

node in place Ng to place Ne from firing transition TFP

with a rate of (Ng × Pfp)/(TIDS), with Pfp accounting

for the system IDS false positive probability.

• The system energy is exhausted after time NIDS ×
TIDS, where NIDS is the maximum number of intrusion

detection intervals the CPS can possibly perform before

it exhausts its energy due to performing ranging, sensing,

and intrusion detection functions. It can be estimated

by considering the amount of energy consumed in

each TIDS interval. This energy exhaustion event is

modeled by placing a token in place energy initially, and
firing transition TENERGY with rate 1/(NIDS × TIDS).
When the energy exhaustion event occurs, the token in

place energy will be vanished, and the system enters
an absorbing state meaning the lifetime is over. This

condition is modeled by disabling all transitions in the

SPN model.

• When the number of bad nodes (i.e., tokens in place

Nb) is at least 1/3 of the total number of nodes (tokens

in places Ng and Nb), the system fails because of a

Byzantine failure. The system lifetime is over, and is

modeled again by disabling all transitions in the SPN

model.

• Bad nodes in place Nb perform attacks with probability

pa, and cause impairment to the system. After

an impairment-failure time period is elapsed, heavy

impairment due to attacks will result in a security failure.

We model this situation by firing transition TIF with a rate

of pa×Nb×λif indicating the amount of time needed by

paNb bad nodes to reach this level of impairment, beyond

which the system cannot sustain the damage. The value

of λif is system specific, and is determined by domain

experts. A token is flown into place impaired when

such a security failure occurs. Once a token is in place

impaired, the system enters an absorbing state, meaning
the lifetime is over. Again, it is modeled by disabling all

transitions in the SPN model.

Here we note that the last two bullet points cover the two

conditions that would cause a security failure.

We utilize the SPN model to analyze two design tradeoffs.

• Detection strength vs. energy consumption – As we

increase the detection frequency (a smaller TIDS) or the

number of detectors (a larger m), the detection strength
increases, thus preventing the system from running into a

security failure. However, this increases the rate at which

energy is consumed, thus resulting in a shorter lifetime.

Consequently, there is an optimal setting of TIDS and m
under which the system MTTF is maximized, given the

node capture rate and attack model.

• Detection response vs. attacker strength – As the random

attack probability pa decreases, the attacker strength

decreases, thus lowering the probability of security failure

due to impairment attacks. However, compromised nodes

become more hidden and difficult to detect because they

leave less evidence traceable, resulting in a higher per-

host false negative probability pfn, and consequently

a higher system-level false negative probability Pfn.

This increases the probability of security failure due to

Byzantine attacks. The system can respond to a detected

instantaneous attacker strength, and adjust CT to trade

a high per-host false positive probability pfp for a low

per-host false negative probability pfn, or vice versa, so

as to minimize the probability of security failure. Hence,

there exists an optimal setting of CT as a function of

attacker strength detected at time t under which the
system security failure probability is minimized.

Let L be a binary random variable denoting the lifetime of
the system such that it takes on the value of 1 if the system is

alive at time t, and 0 otherwise. Then, the expected value of
L is the reliability of the system R(t) at time t. Consequently,
the integration of R(t) from t = 0 to ∞ gives the mean time
to failure (MTTF) or the average lifetime of the system we

aim to maximize. The binary value assignment to L can be
done by means of a reward function assigning a reward ri of

0 or 1 to state i at time t as

ri =

{

1 if system is alive in state i,
0 if system fails due to security or energy failure.

A state is represented by the distribution of tokens to places

in the SPN model. For example, with the SPN model defined

in Fig. 2, the underlying state is represented by (Ng , Nb,

Ne, impaired, energy). When place energy contains zero
tokens, it indicates energy exhaustion. When Ng is less than

or equal to twice Nb, it indicates a Byzantine failure. When

place impaired contains a token, it indicates a security failure
due to significant functional impairment. Once the binary value

of 0 or 1 is assigned to all states of the system as described

above, the reliability of the system R(t) is the expected value
of L weighted on the probability that the system stays at a



particular state at time t, which we can obtain easily from
solving the SPN model using SPNP [14]. The MTTF of the

system is equal to the cumulative reward to absorption, i.e.,

MTTF =

∫

∞

0

R(t)dt, (7)

which we can again compute easily using SPNP.

IV. PARAMETERIZATION

TABLE III
PARAMETERS AND THEIR VALUES FOR THE REFERENCE CPS.

Parameter Meaning Default value

N number of nodes or network size 128
n̄ number of neighbors within radio range 32
pfn per-host false negative probability [1-20%]
pfp per-host false positive probability [1-20%]
λc per-node capture rate 1/[1-24hr]
λif per-node impairment rate 1/[12-48hr]
TIDS intrusion detection interval [1-60min]
m number of intrusion detectors per node [3,11]
α number of ranging operations 5
Et energy for transmission per node 0.000125 J
Er energy for reception per node 0.00005 J
Ea energy for analyzing data per node 0.00174 J
Es energy for sensing per node 0.0005 J
Eo initial system energy 16128 kJ

We consider the reference CPS model introduced in Section

II operating in a 2 × 2 area with a network size (N ) of 128
nodes. Hence, the number of neighbors within radio range,

denoted by n̄, initially is about 128/4=32 nodes. Our IDS
design is based on local monitoring, so it can be generically

applied to any network structure. A node in our reference CPS

uses a 35 Wh battery, so its energy is 126000 J. The system

energy initially, denoted by Eo, is therefore 126000 J × 128
= 16128000 J. Table III lists the set of parameters and their

values for the reference CPS.

A. System-Level IDS Pfn and Pfp

We first parameterize the system IDS Pfn and Pfp given per-

host IDS false positive probability pfp and per-host IDS false

negative probability as input. We first note that Pfn and Pfp

highly depend on the attacker behavior. A persistent attacker

constantly performs slandering attacks such that it will vote a

bad node as a good node, and conversely a good node as a

bad node, to eventually cause a security failure. However, a

random or an insidious attacker will only perform slandering

attacks randomly with probability pa to avoid detection.

We first differentiate the number of active bad nodes, Na
b ,

from the number of inactive bad nodes, N i
b , with Na

b + N i
b =

Nb, such that at any time

Na
b = pa × Nb (8)

N i
b = (1 − pa) × Nb (9)

The difference between an active bad node and an inactive bad

node is that an inactive bad node behaves as if it were a good

node to evade detection, including casting votes the same way

as a good node would, when it participates in the system-level

IDS voting process.

For a persistent attacker, pa = 1. For a random attacker,
pa = prandom. For an insidious attacker, to maximize

the benefit of colluding attacks, a compromised node stays

dormant until a critical mass of compromised nodes is gathered

so that pa = 1 when Nb ≥ NT
b , and pa = 0 otherwise, where

NT
b is a parameter reflecting the insidiousness degree. In other

words, all bad nodes engage in active attacks when there is a

critical mass of compromised nodes in the system.

We calculate Pfn by (10). The equation for P
p
fp is the same

except replacing pfn by pfp in the right hand side expression.

We explain (10) for obtaining Pfn in detail below. The

explanation for Pfp follows the same logic. In (10), m this
is the number of detectors, and ma is the majority of m. The
first summation aggregates the probability of a false negative

stemming from selecting a majority of active bad nodes. That

is, it is equal to the number of ways to choose a majority of

m nodes from the set of active bad nodes times the number of
ways to choose a minority of m nodes from the set of good
nodes, and inactive bad nodes divided by the number of ways

to choose m nodes from the set of all good and bad nodes.
The second summation aggregates the probability of a false

negative stemming from selecting a minority of m nodes from
the set of active bad nodes which always cast incorrect votes,

coupled with selecting a sufficient number of nodes from the

set of good nodes and inactive bad nodes which make incorrect

votes with probability pfn, resulting in a majority of incorrect

votes being cast.

B. Host IDS pfn and pfp

Next, we parameterize the host IDS false negative

probability pfn and false positive probability pfp for persistent,

random, and insidious attacks. The system, after a thorough

testing and debugging phase, determines a minimum threshold

CT such that pfn and pfp, measured respectively based on (5)

and (6), are acceptable to system design. Let pp
fn and pp

fp be the

false negative probability and the false positive probability of

the host IDS when pa = 1 (e.g., under persistent attacks). Let
the minimum threshold CT value set for the persistent attack

case be denoted by Cp
T .

Let pr
fn, and pr

fp respectively be the false negative

probability, and the false positive probability of the host IDS

when pa < 1 (e.g., under random attacks). For the case
of random attacks with probability pa < 1, conceivably the
amount of evidence observable from a bad node would be

diminished proportional to pa. Consequently, with the same

minimum threshold Cp
T being used, the host false negative

probability would increase. We again utilize (5), and (6)

to respectively obtain pr
fn, and pr

fp for each given pa value

during the testing and debugging phase. Here we note that

the host false positive probability would remain the same,

i.e. pr
fp = pp

fp, because the attacker behavior does not affect

false positives, given the same minimum threshold Cp
T being

used.
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TABLE IV
β IN BETA(1,β) AND RESULTING pfn , AND pfp VALUES UNDER VARIOUS

ATTACK MODELS.

Attack Type β pfn pfp

Random with Pa=1.000 (Persistent) 1.20 6.3% 7.3%
Random with Pa=0.800 1.00 10.0% 7.3%
Random with Pa=0.400 0.75 17.8% 7.3%
Random with Pa=0.200 0.50 31.6% 7.3%
Random with Pa=0.100 0.20 63.1% 7.3%
Random with Pa=0.050 0.13 74.1% 7.3%
Random with Pa=0.025 0.09 81.3% 7.3%
Insidious 0; 1.20 100%; 6.3% 7.3%

Lastly, let pi
fn, and pi

fp be respectively the false negative

probability, and the false positive probability of the host

IDS under insidious attacks. Obviously, the false positive

probability is not affected, so pi
fp = pp

fp. Because insidious

nodes stay dormant until a critical mass is achieved to perform

“all in” attacks, the false negative probability is one during the

dormant period, and is equal to that under persistent attacks

during the “all in” attack period. Specifically,

pi
fn =

{

pp
fn if Nb ≥ NT

b ,
1 otherwise.

(11)

Here we note that pfn and pfp obtained above for persistent,

random, or insidious attacks would be a function of time as

input to (10) for calculating system-level IDS Pfn and Pfp

dynamically.

We apply the statistical analysis described by (1)-(4) to get

the maximum likelihood estimates of β (with α set as 1) under
each attacker behavior model, and then utilize (5) and (6) to

yield pfn and pfp. The system minimum threshold CT is set

to Cp
T = 0.9 to yield pp

fn = 6.3%, and pp
fp = 7.3%. Table

IV summarizes β values, and the resulting pfn and pfp values

under various attacker behavior models. The persistent attack

model is a special case in which pa = 1. The insidious attack
model is another special case in which pa = 1 during the “all
in” attack period, and pa = 0 during the dormant period.

C. Parameterizing CT for Dynamic Intrusion Response

The parameterization of pfn and pfp above is based on a

constant CT being used (i.e., Cp
T = 0.9). A dynamic IDS

response design is to adjust CT in response to the attacker

strength detected with the goal to maximize the system

lifetime. The attacker strength of a node, say node i, may be

estimated periodically by node i’s intrusion detectors. That is,
the compliance degree value of node i, Xi(t), as collected by
m intrusion detectors based on observations collected during
[t − TIDS, t], is compared against the minimum threshold
Cp

T set for persistent attacks. If Xi(t) < Cp
T , then node i

is considered a bad node performing active attacks at time

t; otherwise, it is a good node. This information is passed
to the control module who subsequently estimates Na

b (t),
representing the attacker strength at time t.
In this paper, we investigate a simple yet efficient IDS

response design. The basic idea is to decrease the per-host false

negative probability pfn when the attacker strength is high, so

we may quickly remove active attackers from the system to

prevent impairment failure. This goal is achieved by increasing

the CT value. Conversely, when there is little attacker evidence

detected, we lower CT so we may quickly decrease the

probability of a good node being misidentified as a bad node,

i.e., lowering the per-host false positive probability, to prevent

Byzantine failure.

While there are many possible ways to dynamically control

CT , in this paper we consider a linear one-to-one mapping

function as

CT (t) = Cp
T + δCT

× (Na
b − 1) (12)

Here CT (t) refers to the CT value set at time t as a response to
the attacker strength measured by Na

b (t) detected at time t; Cp
T

is the minimum threshold set by the system for the persistent

attack case; and δCT
is the increment to CT per active bad

node detected. Essentially we set CT to Cp
T when Na

b (t)
detected at time t is 1, and linearly increase (or decrease)
CT with increasing (or decreasing) attacker strength detected.

With Cp
T = 0.9 in our CPS reference system, we set δCT

= 0.5
and parameterize CT (t) as

CT (t) =















0.85 if Na
b = 0

0.90 if Na
b = 1

0.95 if Na
b = 2

0.99 if Na
b ≥ 3

(13)

Note that when CT is closer to 1, a node will more likely

be considered as compromised even if it wanders only for a

small amount of time in insecure states. A large CT induces

a small per-host false negative probability pfn at the expense

of a large per-host false positive probability pfp.



D. Energy

Lastly, we parameterize NIDS, the maximum number of

intrusion detection cycles the system can possibly perform

before energy exhaustion, as

N =
Eo

ETIDS

(14)

where Eo is the initial energy of the reference CPS. ETIDS
is

the energy consumed per TIDS interval due to ranging, sensing,

and intrusion detection functions, calculated as

ETIDS
= n × (Eranging + Esensing + Edetection) (15)

where Eranging, Esensing, Edetection stand for energy spent for

ranging, sensing, and intrusion detection in a TIDS interval,

respectively. Here the energy spent per node is multiplied with

the node population in the CPS to get the total energy spent

by all nodes per cycle.

In (15), Eranging stands for the energy spent for periodic

ranging. It is calculated as

Eranging = α × [Et + n̄ × (Er + Ea)] (16)

Here a node spends Et energy to transmit a CDMA waveform.

Its n̄ neighbors each spend Er energy to receive the waveform,

and each spend Ea energy to transform it into distance. This

operation is repeated for α times for determining a sequence
of locations. In (15), Esensing stands for the amount of energy

consumed due to periodic sensing. It is computed as

Esensing = n̄ × (Es + Ea). (17)

Here a node spends Es energy for sensing navigation and

multipath mitigation data, and Ea energy for analyzing sensed

data for each of its n̄ neighbors. Finally, Edetection stands for

the energy used for performing intrusion detection on a target

node. It can be calculated by

Edetection = m×(Et+n̄·Er)+m×(Et+(m−1)·(Er+Ea)).
(18)

Here we consider the energy required to choose m intrusion
detectors to evaluate a target node (the first term), and the

energy required for m intrusion detectors to vote (the second
term). Specifically, the first term is the number of intrusion

detectors times the cost of transmitting plus the number of

nodes in radio range times the cost of receiving. The second

term is the number of intrusion detectors times the cost of

transmitting plus the number of peer intrusion detectors times

the cost of receiving plus the cost of analyzing the vote.

V. NUMERICAL DATA

In this section, we present numerical data for reliability

assessment as a result of executing intrusion detection and

response in a CPS. Our objective is to identify optimal

design settings in terms of the optimal values of TIDS, m,
and CT under which we can best trade energy consumption

versus intrusion detection, as well as response effectiveness

versus impairment security failure, to maximize the system

MTTF, when given a set of parameter values characterizing

the operational and networking conditions.

A. Effect of Intrusion Detection Strength

We first examine the effect of intrusion detection strength

measured by the intrusion interval, TIDS, and the number

of intrusion detectors, m. We only present results for the
reference CPS under persistent attacks, as the results for other

types of attacks show similar trends.

Fig. 3 shows MTTF versus TIDS as the number of detectors

(m) in the system-level IDS varies over the range of [3,11] in
increments of 2. We see that there exists an optimal TIDS value

at which the system lifetime is maximized to best tradeoff

energy consumption versus intrusion tolerance. Initially, when

TIDS is too small, the system performs ranging, sensing,

and intrusion detection too frequently, and quickly exhausts

its energy, resulting in a small lifetime. As TIDS increases,

the system saves more energy, and its lifetime increases.

Finally, when TIDS is too large, although the system can save

even more energy, it fails to catch bad nodes often enough,

resulting in the system having many bad nodes. Bad nodes

through active attacks can cause impairment security failure.

Furthermore, when the system has 1/3 or more bad nodes out

of the total population, a Byzantine failure ensues. We observe

that the optimal TIDS value at which the system MTTF is

maximized is sensitive to the m value. The general trend is
that, as m increases, the optimal TIDS value decreases. Here

we observe thatm = 7 is optimal to yield the maximum MTTF
because too many intrusion detectors would induce energy

exhaustion failure, while too few intrusion detectors would

induce security failure. Using m = 7 can best balance energy
exhaustion failure versus security failure for high reliability.
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Fig. 3. MTTF vs. TIDS and m.

Fig. 4 shows MTTF versus TIDS as the compromising rate

λc varies over the range of once per 4 hours to once per 24

hours to test the sensitivity of MTTF with respect to λc (with

m fixed at five to isolate its effect). We first observe that, as
λc increases, MTTF decreases because a higher λc will cause

more compromised nodes to be present in the system. We also

observe that the optimal TIDS decreases as λc increases. This

happens because, when more compromised nodes exist, the

system needs to execute intrusion detection more frequently to
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maximize MTTF. Fig. 4 identifies the best TIDS to be used to

maximize the lifetime of the reference CPS to balance energy

exhaustion versus security failure, when given CT and λc

characterizing the operational and networking conditions of

the system.

B. Effect of Attacker Behavior

In this section, we analyze the effect of various attacker

behavior models, including persistent (with pa = 1, pi
fn and

pi
fp given as input), random (with pa = prandom, pr

fn, and

pr
fp given as input), and insidious attacks (with pa = 1 when

Nb ≥ NT
b = 10 and pa = 0 otherwise, pi

fp, and pi
fn defined

by (11) given as input). The analysis conducted here is based

on static CT . In the next section, we will analyze the effect

of dynamic CT as a response to attacker strength detected at

runtime.

Fig. 5 shows MTTF versus TIDS with varying prandom

values. We first observe that the system MTTF is low when

prandom is small (e.g., prandom = 0.025). This happens
because, when prandom is small, most bad nodes are dormant

and remain in the system without being detected. Thus, the

system suffers from Byzantine failure quickly, leading to a low

MTTF. As prandom increases from 0.025 to 0.2, the system

MTTF increases because of a higher chance of bad nodes

being detected and removed from the system, thus reducing the

probability of Byzantine security failure. As prandom increases

further, however, the system MTTF decreases again because of

a higher probability of impairment security failure as there will

be more bad nodes actively performing impairment attacks.

In the extreme case of prandom = 1, all bad nodes perform
attacks, and the system failure is mainly caused by impairment.

The maximum MTTF occurs when prandom = 0.2, at which
point the probability of security failure due to either type of

security attacks is minimized. Here we should note that the

result of prandom = 0.2 yielding the highest MTTF is a balance
of impairment security failure rate versus Byzantine failure

rate dictated by the parameter settings of the reference CPS

as given in Tables III and IV.
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Fig. 6 compares the MTTF versus TIDS of the reference

CPS under the three attacker types head-to-head. It shows

that the MTTF is the highest for the reference CPS under

random attacks. The MTTF of the CPS under persistent attacks

is the second highest. As expected, the reference CPS under

insidious attacks has the lowest MTTF. We attribute this

result to the fact that, unlike persistent attacks which aim to

cause impairment failure, insidious attacks while dormant can

cause Byzantine failure, and while “all in” can also cause

impairment failure. The extent to which the system MTTF

differs depends on the relative rate at which impairment failure

versus Byzantine failure occurs. The former is dictated by λif ,

and the latter is dictated by how fast the Byzantine failure

condition is satisfied. The result that the MTTF difference

between persistent attacks (the second curve) and insidious

attacks (the last curve) is relatively significant is due to a large

Byzantine failure rate compared with the impairment failure

rate. On the other hand, the reference CPS under random

attacks can more effectively prevent either Byzantine failure

or impairment failure from occurring by removing bad nodes

as soon as they perform attacks. The system MTTF difference

between random versus persistent attacks again depends on

the relative rate at which impairment failure versus Byzantine

failure occurs.

C. Effect of Intrusion Response

In this section, we analyze the effect of intrusion response,

i.e., dynamic CT as a response to attacker strength detected

at runtime, on the system MTTF.

Fig. 7 shows MTTF versus TIDS under the static CT design

and the dynamic CT design for the persistent attack case. We

see there is a significant gain in MTTF under dynamic CT

over static CT . The reason is that, with persistent attacks, all

bad nodes are actively performing attacks, so the system is

better off by increasing CT to a high level to quickly remove

bad nodes to prevent impairment failure. We also observe that,

in the case the optimal TIDS at which MTTF is maximized

decreases compared with the static CT case so to as quickly
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remove bad nodes from the system.
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Fig. 8 shows the MTTF versus TIDS under the static CT

design and the dynamic CT design for the random attack

case with prandom = 0.2. We pick the case of prandom = 0.2
because it yields the highest MTTF among all random attack

cases in the reference CPS system (see Fig. 5). Here again we

observe that dynamic CT performs significantly better than

static CT , when operating at the identified optimal TIDS value.

The optimal TIDS value under dynamic CT design again is

smaller than that under static CT design to quickly remove

nodes that perform active attacks.

Fig. 9 shows the MTTF versus TIDS under the static CT

design and the dynamic CT design for the insidious attack

case. Here we observe the MTTF difference is relatively small

compared with persistent or random attacks. The reason is that

bad nodes do not perform active attacks until a critical mass is

reached, so dynamic CT would set a lower CT value during the

dormant period while rapidly setting a higher CT value during

the attack period. Because the attack period is relatively short

compared with the dormant period, the gain in MTTF isn’t
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very significant. Nevertheless, we observe, even for insidious

attacks, dynamic CT still performs better than static CT .

As our CT dynamic control function (12) adjusts CT solely

based on the attacker strength detected regardless of the

attacker type, we conclude that the dynamic CT design as a

response to attacker strength detected at runtime can improve

MTTF compared with the static CT design.
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VI. FUTURE WORK

In this paper, we developed a probability model to analyze

the reliability of a cyber physical system in the presence of

both malicious nodes exhibiting a range of attacker behaviors,

and an intrusion detection and response system for detecting

and responding to malicious events at runtime. For each

attacker behavior, we identified the best detection strength (in

terms of the detection interval and the number of detectors),

and the best response strength (in terms of the per-host

minimum compliance threshold for setting the false positive

and negative probabilities), under which the reliability of the

system may be maximized.



There are several future research directions, including (a)

investigating other intrusion detection criteria (e.g., based on

accumulation of deviation from good states) other than the

current binary criterion used in the paper based on a minimum

compliance threshold to improve the false negative probability

without compromising the false positive probability; (b)

investigating other intrusion response criteria (e.g., exponential

increase of the minimum compliance threshold) other than the

linear function used in the paper, and analyzing the effect on

the system lifetime; (c) exploring other attack behavior models

(e.g., an oracle attacker that can adjust the attacker strength

depending on the detection strength to maximize security

failure), and investigating the best dynamic response design to

cope with such attacks; (d) developing a more elaborate model

to describe the relationship between intrusion responses and

attacker behaviors, and justifying such a relationship model

by means of extensive empirical studies; and (e) extending

the analysis to hierarchically-structured intrusion detection and

response system design for a large CPS consisting of multiple

enclaves each comprising heterogeneous entities subject to

different operational and environment conditions and attack

threats.
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