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Abstract 
Innovation is one of the primary characteristics 

that separates successful from unsuccessful 
organizations. Organizations have a choice in 
selecting knowledge that is recombined to produce 
new innovations. The selection of knowledge is 
influenced by the status of inventors in an 
organization’s internal knowledge network. In this 
study, we model knowledge flow within an 
organization and contend that it exhibits unique 
characteristics not incorporated in most social 
network measures. Using the model, we also propose 
a new measure based on random walks and team 
identification and use it to examine innovation 
selection in a large organization. Using empirical 
methods, we find that inventor status determined by 
the new measure had a significant positive 
relationship with the likelihood that his/her 
knowledge would be selected for recombination. We 
believe that the new measure in addition to modeling 
knowledge flow in a scientific collaboration network 
helps better understand how innovation evolves 
within organizations.  
 
 
1. Introduction  
 

Innovation is one of the primary characteristics 
that separates successful from unsuccessful 
organizations [1]. It has been described as a problem 
solving process where the solutions are discovered 
via the search of existing knowledge and the novel 
recombination of existing solutions to those problems 
[2, 3]. Evolution of innovation can be studied and 
traced by examining this recombinatory process and 
the various factors that influence it. Organizations 
have a choice in selecting knowledge that is 
recombined to produce new innovations. Studies 
have suggested that this choice is influenced by 
social networks both within and outside the 
organization [4-6]. Specifically, the selection of 
knowledge for recombination is influenced by the 
status of inventors in an organization�s internal 

knowledge network [7-9]. Organizations (and 
inventors within) attach more value and recombine 
knowledge of high-status inventors.  

Various social network measures have been used 
to establish the status of inventors in knowledge 
networks [5, 10-12]. However, the measures make 
implicit assumptions about the flow of knowledge 
within an organization. For instance, the widely used 
betweenness centrality measure [13] assumes that 
knowledge flows along shortest paths. Often these 
assumptions are not valid for modeling knowledge 
flow within organizations. Establishing the status of 
inventors (and thus their influence on the 
recombinatory innovation process) based on these 
measures may lead to misleading results. 

In this paper, we examine the role of inventor 
status in intra-organizational knowledge networks on 
the selection of knowledge that is recombined to 
produce innovation. We focus on intra-organization 
networks since recombination of internal knowledge 
helps establish competitive advantage for a longer 
time [14]. In addition, many innovative organizations 
are known to build upon their internal knowledge to 
survive and thrive in their businesses [15]. We model 
knowledge flow within an organization and contend 
that it exhibits unique characteristics not incorporated 
in most social network measures. Using the model, 
we also propose a new measure based on random 
walks and team identification and use it to examine 
innovation selection in a large organization. 

In particular, we explore the following research 
questions: 
• How can we effectively model the flow of 

knowledge within an intra-organizational 
knowledge network? 

• How can we establish the status of an individual 
in a collaborative knowledge network? 

• How does the status of an inventor in a 
knowledge network affect innovation evolution? 
 

The rest of this paper is organized as follows: 
Section 2 presents the literature review and 
background, Section 3 describes the research design 
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and testbed. Section 4 presents the experimental 
results and discussion. Section 5 concludes and 
proposes future directions. 

 
2. Literature review  
 
2.1. Innovation and evolution 
 

Innovation has been described in the literature as 
a problem-solving process wherein solutions are 
discovered via the search and recombination of 
existing knowledge [2, 3, 16]. During this process, 
each innovative organization is faced with a decision 
to select existing knowledge that is recombined to 
produce new innovative artifacts. These choices are 
important as different paths of recombination can 
lead to different technological capabilities and 
performance [17, 18]. Thus, the selection of 
knowledge plays an important role in the direction of 
innovation evolution and the future success of the 
organization in a competitive domain. 

As the recombination process proceeds, a focal 
innovation emerges that other innovations build upon 
[7, 15, 19]. This focal innovation defines an 
organization�s area of expertise [20]. In order to 
understand innovation evolution, it is necessary to 
identify the factors leading to the selection of a focal 
innovation. It has been shown that individuals and 
organizations do not select innovations just by their 
technical merits [19, 21], other factors like the 
expertise of inventors, scope of the innovation, and 
number of other innovations in the same field play an 
important role in the selection process. Inventors also 
select the focal innovation based on the status of the 
innovation�s inventors in the knowledge network [7, 
8]. One way to establish the status of an inventor is to 
use social network measures.  

 
2.2. Social network measures 
 

In the following discussion, knowledge networks 
are characterized as social networks with inventors as 
nodes and collaboration as links between them. 
Various measures to quantify characteristics of social 
networks have been proposed in the literature [22, 
23]. Measures to identify high-status nodes are 
usually known as centrality or prestige measures. 

Several measures of node centrality have been 
developed including degree centrality, closeness, 
betweenness, information centrality, and influence 
measures [24, 25]. These measures are not 
independent of the dynamic processes that unfold 
within a network [26]  and make different implicit 
assumptions about the path of knowledge flow in a 

network (we focus on the knowledge flow as this 
study examines innovation diffusion and selection). 
However, many studies use these measures without 
regard to the implicit assumptions made by them. 
This might lead to poor results or a wrong 
interpretation of the network phenomenon under 
study [24]. Thus, it is necessary to model the 
assumptions pertinent to the network under study 
prior to selecting the centrality measure. 

Based on analysis of previous studies [24, 27, 28], 
we contend that there are three primary requirements 
for a measure to correctly identify high-status nodes 
in a knowledge network of inventor collaborations. 
These are: 
• Account for Diversity of knowledge (D): This 

implies that a high status inventor is likely to 
receive diverse knowledge from different parts 
of the network. In SNA theory, this is best 
represented by betweenness measures. 
Betweenness is a measure of the influence a 
node has on the spread of information through 
the network [29]. The higher the betweenness, 
the more frequently a node is likely to receive 
information from disjoint parts of a network. 
This is important as the recombination of diverse 
knowledge from disjoint parts of the network is 
likely to lead to more innovation [27, 28]. 

• Random diffusion (R): This implies that the 
measure should assume that knowledge does not 
select a preferred path (like the shortest path) of 
travel through a network. This does not 
necessarily imply that all paths (of all lengths) 
are equally important. It has been shown that 
shorter paths may be important in transferring 
certain kinds of knowledge [30]. 

• Parallel duplication (P): This implies that 
multiple copies of the same knowledge can exist 
in a network. Thus, when given a choice in the 
path of travel, knowledge can travel on multiple 
paths at once [24]. For instance, knowledge is 
transferred to multiple individuals during team 
presentations. This assumption is especially 
important in this study since we are studying 
inventors within organizations where they are 
likely to be organized in project teams. 

 
Commonly used social network measures do not 

satisfy the above assumptions for knowledge flow. 
For instance, Freeman�s betweenness measure [13] 
does not take into account the duplication of 
knowledge. Bonacich�s power [31] accounts for 
random diffusion and parallel duplication, however, 
it is not a betweenness measure and thus does not 
consider diversity of knowledge. Newman�s random 
walk betweenness [29] assumes D and R however, 
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does not contain a parallel duplication component. A 
comprehensive discussion of these centrality 
measures and their assumptions is provided by 
Borgatti [24].  We propose a measure based on 
Newman�s random walk betweenness centrality to 
model knowledge flow in the collaboration networks 
studied here. A team identification component is 
added to the measure that assumes parallel 
duplication of knowledge within teams in an 
organization. Details of the proposed measure are 
presented in the research design. We believe that the 
proposed measure satisfies all three 

requirements for knowledge flow and better identifies 
high status inventors.  
 
2.3. Knowledge networks and effects on 
innovation 
 

There have been many studies to examine the 
relationship between network properties and 
innovative processes. The studies can broadly be 
divided into two categories based on the level of 
analysis: (1) network level studies focus on network 
topology and its relationship to innovative output and 
(2) node level studies focus on positional 
characteristics of individual nodes and relationship to 
innovation selection and output. In this study, we 

focus on node level studies to examine the effect of 
individual status on innovation selection. 

Node level studies can also be classified by 
network extent into intra-organization and inter-
organization studies. Intra-organization studies focus 
on networks of individuals within an organization 
and examine the effects of the networks on 
innovative output. Inter-organization studies examine 
the influence of a network of individuals (both within 
and outside an organization) or a network of 
stakeholder or partners outside the boundaries of an 
organization. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1 presents a representative set of previous 

work [5, 7, 8, 11, 19, 32, 33] that uses node level 
measures to study knowledge networks and 
innovation. Among the studies that focused on 
innovation selection, Singh [8] found that the degree 
centrality of an inventor did not have a significant 
effect on the impact of his/her innovation. Podolny & 
Stuart [19] found that inventor-status did not have a 
significant positive impact of the selection of their 
innovation. They also found that the status of other 
related innovators in the network had a positive 
association on the impact of the focal innovation. 
However, both these studies used degree to establish 
status which may not be an accurate representation of 
inventor status in a knowledge network and thus may 

Table 1. Innovation studies using node-level measures 
 

 
Network 
Extent Measures Aim/Result 

Patrakosol & Olson, 
2007 

Inter-org.  Degree centrality  Effect of collaboration on IT innovation. 
Result: Close collaborations lead to 
evolutionary innovation  

Singh, 2007 Inter-org.  Degree centrality and 
extensions  

Impact of collaboration on innovation 
selection and future productivity  

Bell, 2005 Both  Degree centrality  Impact of managerial network on 
innovation. Result: higher degree leads to 
higher innovation  

Nerkar & 
Paruchuri, 2005 

Intra-org.  Bonacich power, 
structural holes  

Impact of inventor positions on 
innovation selection.  

Singh, 2005 Both  Shortest paths  Effect of shortest path on innovation 
selection  

Ahuja, 2000 Inter-org.  Node degree, 
structural holes  

Effect of measures on the organizations�  
innovative output. Result: degree � 
positive, structural holes � negative.  

(Podolny & Stuart, 
1995) 

Inter-org.  Degree centrality  Study the factors that determine 
innovation selection  

Note: Studies marked in bold specifically focused on innovation selection. These are discussed in detail in the 
text.
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not give the right results. Singh [5] found that as 
shortest path length between inventors increased, 
they were less likely to cite each other. The study 
acknowledged that presence of multiple paths 
between inventors may have different affects. Nerkar 
& Paruchuri [7] found that an inventor had a 
significant positive impact on the selection of his/her 
innovation. We used a statistical technique similar to 
their study, however, we proposed a new measure 
better suited to the problem domain.  

 

 
3. Research design and testbed  
 

Figure 1 shows the research design and process 
used to acquire data, extract knowledge networks, 
develop the network measures, and statistically 
evaluate the effect of network measures on 
innovation selection. 
 
3.1. Data acquisition 
 

This study used nanotechnology related patents 
from the United States Patent and Trademark Office 
(USPTO). This is because patents are considered to 
be excellent indicators of innovation in organizations 
[7, 34]. We selected nanotechnology as it is an 
innovative field that promises fundamental changes 
to a wide variety of research domains [35]. The 
patents were limited to the nanotechnology field by 
using a keyword search on the full text of the patent 
(for details see [36]). Each patent document was 
downloaded using a web spider and parsed to extract 
information on assignee organization, inventors, issue 
and application dates, citation, and other fields. Table 
2 shows the statistics of the patents obtained. 
 

Table 2. Key statistics of nanotechnology patents 
extracted from USPTO 

Date range  1976-
2006  

Patents  97, 562  
Assignee institutions (organizations)  26, 304  
Inventors (individuals)  189, 045 

 
The testbed in this study included the top 

organization by the number of inventors 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(International Business Machines � IBM). Large 
organizations are usually in business for a longer 
period of time and tend to have more established 
knowledge networks and better developed internal 
knowledge. This is important in this study as an 
organization with a quality internal knowledge base 
is likely to specialize in a certain area and recombine 
its own knowledge to produce innovations. 
 
3.2. Network extraction 
 

A knowledge network based on common 
affiliations was extracted for inventors in IBM. In the 
network, each node was represented by an inventor 
and two inventors were linked to each other if they 
were listed on the same patent. Such a network 
reflects strong associations as inventors listed on the 
same patent are likely to have intense collaboration 
while working on that innovation. Such an observed 
collaboration marks the beginning of a strong tie that 
lasts beyond the collaboration date [5, 37]. 
 
3.3 Spell construction 
 

A spell divides the life of a patent (from issue date 
till the end of the dataset) into time periods. Each 

Network Extraction
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Figure 1. Research design and process 
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time period is used as a data point to determine the 
effect of various variables on the citation (or no 
citation) of the patent in that spell. In line with prior 
research [7, 19], spells of up to 1 year were created 
for each patent. The first spell began at issue date and 
ended at either the close of the same year or at the 
citation date if the patent is cited within that year. 
The next spell began at the start of the year - if the 
previous spell ended at the previous year or at the 
citation date - if the previous spell ended in a citation. 

The strategy of dividing time into spells 
effectively measures the effect of network measures 
of individuals who coauthored that patent on the 
citation of a patent through its entire life. The 
measures were computed on the basis of the network 
three years prior to the spell. That is, only inventors 
who had applied for patents in the three years prior to 
the spell were considered to be part of the network 
for that spell. This is in line with previous research 
that shows that inventors are productive for three to 
five years [38]. We found support for this with the 
median productive life-span of an inventor being 3-5 
years in our dataset. 
 
3.4. Network measurement 
 

In this sub-section, we describe the social network 
measures that were used to determine the status of 
inventors in the network. Based on previous studies 
[7, 19] three measures were selected for comparison: 
betweenness centrality, Bonacich power, Random 
walk centrality. We also proposed a new measure 
called Random Walk w/Teams which is likely to suit 
this problem domain more than other measures. 

 
3.4.1. Betweenness centrality (BC) 
 

This is a well-known and widely used 
betweenness measure proposed by Freeman (1979). 
Intuitively, BC of node k is defined as the fraction of 
times that a node i needs the node k in order to reach 
node j via the shortest path. BC for a node k is 
calculated as [24]: 

i j k

ikj

i j ij

g
g

≠ ≠

 

where, gij is the number of geodesic paths from i 
to j and gikj is the number of these geodesics that pass 
through k. 

 
3.4.2. Bonacich power (BP) 

 
The BP measure suggests that a node is important 

to the extent that it is connected to other important 

nodes. The importance of a node emerges recursively 
from the pattern of connections among all the 
inventors (this concept is similar the PageRank [39] 
algorithm). Details on the implementation of the 
measure can be found in Bonacich [31]. 
 
3.4.3. Random walk centrality (RW) 
 

RW is a relatively new measure that includes 
contributions from all paths between nodes to 
calculate betweenness [29]. RW for node k is equal 
to the number of times a random walk from i to j 
passes through k - averaged over all i and j. Thus, the 
measure includes paths that may not be optimal, 
though shorter paths still contribute more to the 
score. Details on the method can be found in 
Newman (2005). The measure also assumes that on 
each step during the random walk, information passes 
from the current node to one adjacent node (i.e., no 
parallel duplication). However, this assumption may 
not hold in knowledge networks of the kind studied 
here. Diffusion of information may happen in parallel 
within teams and follow a random walk outside them. 

 
 
3.4.4 Random walk with Teams (RWT) 
 

Innovative organizations generally have teams of 
inventors working together on projects. The 
communication levels within these project teams are 
much higher as compared to between teams [40]. We 
contend that there is close to parallel duplication of 
knowledge within teams, i.e., if one member of a 
team receives knowledge that is pertinent to the 
project, then all members of the team have access to 
it. With this assumption, we propose to add team 
identification to the RW measure to address the issue 
of parallel duplication. 
 
Team identification 
 

 
 

Figure 2. Flow of knowledge within an organization 
with teams 

 
Figure 2 shows a schematic of the assumed flow 

of knowledge within an organization with three 
teams. The circles in the figure indicate teams of 
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inventors. The dashed arrows indicate parallel 
information duplication (within teams). The solid 
arrows indicate random walks between teams. As can 
be seen in the figure, we assume that knowledge 
diffuses in a parallel fashion within teams and flows 
through random walks outside them. In order to use 
this phenomenon to establish the status of inventors, 
we need to identify teams within an organization. We 
used the community identification algorithm 
proposed by Girvan & Newman [41] to identify 
teams in the collaboration network. The algorithm 
identifies cohesive communities using an iterative 
edge removal strategy based on betweenness 
measures. It has been shown to be superior to other 
community detection techniques [42] specially in 
scientific collaboration networks. 

 
RW Betweenness calculation 

 
Once teams are identified, the network is 

collapsed with each team replaced by a single 
composite node. This preserves the connections 
between all team members and individuals outside. 
Random walk betweenness (using the Newman 
(2005) procedure for RW) scores are then calculated 
for each node in each component of the collapsed 
network. Thus, the RWT measure calculates RW 
betweenness score for entire teams taken as one node 
and single inventors who are not part of any teams. 
For statistical analysis, every individual in a team 
received the same RWT score. We believe that these 
new RWT scores will explain innovation diffusion 
better and identify individuals whose knowledge is 
valued for recombination within an organization. 

 
3.5 Statistical analysis 
 

We used patent citation data for statistical 
analysis since citation leaves a trail of how a patent 
builds upon previous innovations. Unlike in academic 
papers, patent citations are not likely to be 
superfluous [5, 43]. In addition, studies show that 
correlation between patent citations and actual 
knowledge diffusion is high [34, 44]. An intra-
organizational citation of a patent is a choice made by 
the organization (and individuals within) to build on 
knowledge contained in the patent. In this study, we 
aim to ascertain if the network position of an inventor 
influences this selection process. Thus, the dependent 
variable is the citation of a patent by inventors other 
than those involved in its creation. 

Cox proportional hazard models were used to 
study the effects of network measures on patent 
citation (other models including Weibull and 
Exponential were tested however, they were not 

found to be a good fit). The models used a repeated 
event hazard rate analysis to incorporate spells. These 
models were used since they incorporate both 
censored and uncensored cases, i.e., whether or not 
the patent was cited. Three kinds of variables were 
included in the statistical model: dependent variable: 
patent citation, explanatory variables: each of the 
social network measures, and control variables: 
factors (other than network measures) that effect 
patent citations. Since multiple inventors may be 
assignees on the same patent, a maximum of the 
social network scores among all the inventors for that 
patent was used as an independent variable. 

Based on various previous studies, the following 
control variables were included:  
• Calendar age: this controls for improvements in 

technology since the start of the dataset [19]. As 
databases and information retrieval techniques 
improve, patents are easier to find and cite. 

• Patent age: a patent is more likely to be cited if it 
has been around longer.  

• Patent age squared: as the age of a patent 
increases, it may be outdated and less likely to be 
cited. 

• Scope of a patent: The USPTO uses a technology 
classification system where a patent is classified 
into one or more technology classes. Studies 
have used the number of classes to represent the 
breadth of a patent that has an effect on the 
patent�s impact [45]. We include this variable as 
the number of USPTO technological classes the 
patent is classified into.  

• Number of claims: the number of claims 
indicates the value of a patent and the 
technological spaces it occupies or protects [45].  

• Age of prior art: Patents that build on old 
knowledge have different citation patterns than 
new ones [46]. This is calculated as the median 
of the difference between grant year of the focal 
patent and that of the references cited within that 
patent. 

• Self citation: A self-citation indicates confidence 
of an individual on his/her work. This may 
encourage other individuals to cite that work [7]. 
This is operationalized as a categorical variable 
which is a �1� if patent has been self-cited before 
spell, and �0� otherwise. 

• Number of patent references/Number of 
academic references: Patents that cite more prior 
art may have a different influence than others. 
They may be in technologically crowded classes 
and have a different influence as compared to 
other patents [3].  

• Team size: One patent can have multiple 
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inventors. When determining the effect of social 
network measures on the citation of a patent, we 
used the maximum of the measures among all 
the inventors of that patent. Including team size 
as a control variable accounts for effects of all 
inventors on the patent [7]  since a heterogeneity 
in team members can lead to differences in the 
influence of a patent [47].  

• International presence of an inventor: 
Knowledge flows across international boundaries 
are different [8] and may affect the citation of a 
patent. This is operationalized as a variable that 
is set to �1� if any inventor on patent is outside 
the U.S. and �0� otherwise. 

• Time to grant: A patent that is granted 
immediately may be uncontroversial and simple. 
A complex patent may take time to get approved. 
This might affect citation rates (Nerkar & 
Paruchuri, 2005).  

• Technological effects: This controls for the 
difference in patenting across technological 
areas. Certain technological areas may cite a 
larger number of prior patents than others. This 
is operationalized as dummy variables for the top 
20 classes (with ties retained) each organization 
patents in. 

Based on the results obtained by previous node-
level studies and the assumptions for knowledge flow 
in a network, three hypotheses were examined in this 
study with each in its own independent model. Each 
hypothesis tested the effect of an inventor�s status (as 
established by a network measure) on the likelihood 
of his/her knowledge being selected by other 
inventors. These are summarized in Table 3. 

 
Table 3. Hypotheses tested 

Measure Effect 
H1  Betweenness centrality  No effect  
H2  Bonacich power  No effect  

H3  Random walk w/Teams 
(proposed)  

Positive 
effect  

 
4. Experimental results and discussion 
 

In this section, we show the results of the Cox 
proportional hazards analysis. Four models were 
constructed for IBM � one for control variables and 
one for each of the three measures. The correlation 
matrix (not shown in the paper) shows that all 
correlations except those between some network 
measures are low and do not pose multi-collinearity 
problems. The high correlations between some 
network measures do not cause problems since each 
regression model contains only one measure. 

Table 4 shows the results for all four Cox 
regression models for IBM. The first column lists all 
the network measures and control variables. Each 
model (from Model 1 - Model 4) contained one 
network measure. As can be seen in Model 0, the 
likelihood of a patent being cited decreased (i.e., the 
hazard ratio < 1.0) with an increase in patent age and 
time to grant. This may be because as a patent 
increases in age, its contents become less relevant in 
a fast moving field like nanotechnology. The 
likelihood of patent citation increased with an 
increase in calendar age. The reason behind this may 
be the better availability of information retrieval 
technology and databases which make it easier to 
find a patent and cite it. The likelihood also increased 
with an increase in the claim count and academic 
references. As mentioned before, the claims are the 
number of �spaces� occupied by the patent. More the 
spaces occupied, more likely the patent will be cited 
[45]. The significance of these control variables 
generally persisted across all models. 

Model 1 shows that the BC score of inventors 
was found to have an insignificant effect on the 
citation of their patents. Thus, the measure does not 
adequately explain the effect inventor status on the 
selection of his/her knowledge for innovation. As 
discussed before, BC is based on the assumption that 
knowledge flows along shortest paths that may not 
suit this problem domain. Random walk [29] was 
also found to be insignificant (Model 2). This may be 
because even though the RW measure incorporates 
random diffusion and is a betweenness measure, it 
does not incorporate the influence of teams. 
Individuals between teams draw knowledge from 
diverse communities and the RW w/Teams measure 
is likely to perform better in this problem domain. 

The Bonacich power of an inventor was found 
to be significant in Model 3. The measure has also 
been found to be significant by prior studies [7]. This 
implies that an inventor�s knowledge is perceived to 
be more important (and cited) if he/she is connected 
to other important inventors. However, the absolute 
effect of the BP measure is very small since the 
hazard ratio is close to 1.0. A hazard ratio of 1.0 
indicates that the variable does not increase or 
decrease the likelihood of a patent citation. 

As can be seen from the table (Model 4), the 
random walk w/teams measure had a significant 
positive association with the citation of a patent. A 
unit increase in the RWT score of an inventor 
associated with a patent increases the likelihood of 
the patent being cited by 87%. This shows that the 
position of the inventor in a network positively 
effects the selection of his/her knowledge for 
recombination. There are three components to the 
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RWT measure that may have contributed to its 
significance. Firstly, the focus on diversity of 
knowledge which implies that knowledge of 
inventors who have high betweenness scores is 
perceived to be valuable by an organization. 
Inventors with high betweenness are also likely to 
obtain knowledge from multiple disparate 
communities that may increase their innovative 
potential. Secondly, random diffusion is an important 
part of the RWT measure and this may have 
contributed to its positive significance. This is 
because information may not necessarily flow 
through shortest paths in a knowledge network (as 
shown by the insignificance of Freeman�s 
betweenness centrality). A third factor is parallel 
diffusion, the RWT measure takes into consideration 
that knowledge can diffuse within a team from one 
individual to multiple individuals. These three 
assumptions in the RWT measure make it better 

suited to explain inventor status in the collaboration 
networks we study here. 
 
5. Conclusions 
 

In this study, we examined the role of inventor 
status in knowledge networks on the selection of 
knowledge that is recombined to produce innovation 
in the nanotechnology field. A new network measure 
based on random walks and team identification 
(RWT) was proposed to model knowledge flow 
within an inventor collaboration network. Using 

empirical methods, it was found that inventor status 
as measured by RWT had a significant positive 
relationship with the likelihood that his/her 
knowledge would be selected for recombination. We 
believe that the new measure in addition to modeling 
knowledge flow in a scientific collaboration network 
will help better understand how innovation evolves 
within organizations. 

In the future, we plan to test other important 
social network prestige measures like Burt�s 
Structural Hole measures and information measures 
like flow centrality to test their effect on innovation 
selection and compare them to the proposed measure. 
In addition, we also plan to conduct a similar study 
on multiple large organizations both individually and 
combined to a larger dataset to provide more validity 
to our results.  
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