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Abstract 

For applications in energy harvesting, environmentally friendly cooling, and as 

power sources in remote or portable applications, it is desired to enhance the efficiency of 

thermoelectric materials. One strategy consists of reducing the thermal conductivity while 

increasing or retaining the thermoelectric power factor. An approach to achieve this is doping 

to enhance the Seebeck coefficient and electrical conductivity, while simultaneously 

introducing defects in the materials to increase phonon scattering. Here, we use Mg ion 

implantation to induce defects in epitaxial ScN (111) films. The films were implanted with Mg+ 

ions with different concentration profiles along the thickness of the film, incorporating 0.35 to 

2.2 at.% of Mg in ScN. Implantation at high temperature (600 ˚C), with few defects due to the 

temperature, does not substantially affect the thermal conductivity compared to a reference 

ScN. Samples implanted at room temperature, in contrast, exhibited a reduction of the thermal 

conductivity by a factor of three. The sample doped with 2.2 at.% Mg also showed an increased 

power factor after implantation. This study thus shows the effect of ion-induced defects on 

thermal conductivity of ScN films. High-temperature implantation allows the defects to be 

annealed out during implantation, while the defects are retained for room-temperature 

implanted samples, allowing for a drastic reduction in thermal conductivity.  
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1 Introduction 

Thermoelectric materials and devices are applied for energy harvesting, 

converting waste heat (temperature gradients) into useful electricity, as power sources in remote 

or portable applications using Seebeck effect, and for environmentally friendly cooling using 

the Peltier effect [1]. The efficiency of a thermoelectric material is connected to the 

dimensionless thermoelectric figure of merit (ZT=S2σT/κ), which consists of the Seebeck 

coefficient (S), the electrical conductivity (σ), the thermal conductivity (κ), and the absolute 

temperature (T). To enhance the figure of merit of a material, and thus the efficiency, strategic 

optimizations are required since all parameters (S,  and ) are highly interrelated [2,3]. 

Different approaches are used for improving ZT, including strategies to increase 

the power factor and reducing the thermal conductivity. Maximizing the power factor includes 

the search of new materials or optimization of existing ones using approaches such as doping, 

alloying and/or nanoscale effects (e.g., quantum confinement) [4]. Minimizing the thermal 

conductivity can be achieved by alloying, forming composites, use of naturally poor thermal 

conductors such as some layered materials, with soft phonon modes, and nanostructuring of the 

materials [2,3,5-10]. For nanoscale materials, quantum size effects can affect the density of 

state at the Fermi level (EF) and thus increase the power factor [5,11]. From bulk (3D) to thin 

film (2D), the thermal conductivity can be reduced by boundary scattering without reducing the 

electrical conductivity or power factor. With thin films, similar approaches are used as for bulk 

materials, and further approaches include superlattices and multilayers [12-15]. 

In the present study, we investigate an approach to enhance the power factor of 

thin films by doping in combination with reduction of the thermal conductivity by the creation 

of defects (point defects and nanoscale line defects). For doping, we use ion implantation 

instead of directly introducing the dopants while depositing the material. Ion implantation is a 

commonly used technique for doping of silicon in the semiconductor industry and is suitable 
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for doping thin films or the surface of bulk materials. It is a method known for precise dose 

control and good reproducibility as well as full range possible implanted elements. Depending 

on the energy and mass of the implanted ions, different degrees of damage will be induced in 

the implanted material. Typical collision cascade effects will so create point defects (vacancies, 

interstitials, vacancy-interstitial pairs, and antisites) and possibly extended defects 

(dislocations, vacancy clusters, …) which can progressively evolve or disappear during 

annealing. These evolutions are strongly materials dependent [16]. In contrast to semiconductor 

industry, these defects and imperfections can be an advantage for thermoelectric materials and 

increase phonon scattering, leading to a reduced thermal conductivity.  

As a possible model system to demonstrate this general idea of reducing the 

thermal conductivity as well as doping by ion implantation, we choose ScN. Several of the 

semiconducting transition metal nitrides, in particular ScN- and CrN-based materials have 

recently emerged as promising thermoelectric materials [13,17-22]. ScN has favorable 

properties such as high carrier mobility (10-180 cm2 V-1 s-1), carrier concentration in the range 

1018–1022 cm-3 [23], low electrical resistivity (~300 µΩ.cm) [19] and a narrow indirect band gap 

of around 0.9 eV [23,24]. In comparison with established thermoelectric materials like PbTe 

and Bi2Te3 [2], the power factor of ScN (2.5–3.3 Wm-1K-2) [19,25] is in the same order of 

magnitude [19,25-29]. However, the thermal conductivity is relatively high (10-12 W m-1 K-1) 

[25,30] and needs to be minimized for thermoelectric application.  Previous studies have shown 

different approaches for reducing the thermal conductivity of ScN [27,30-32]. For example, the 

thermal conductivity of ScN was reduced by a factor of five using Nb alloying, but the power 

factor was degraded, leading to an overall thermoelectric figure of merit similar to that of ScN 

[27]. 

The nature of dopants used in the ScN system has to be chosen wisely.  More than 

creating defects in the ScN matrix, the dopant may play an important role on the electronic 
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and/or optical properties of ScN. Kerdsongpanya et al. theoretically demonstrated the influence 

of introduction of impurities in ScN on either N or Sc sites on the density of states around EF 

[33]. The desired effect for maximizing the Seebeck coefficient of thermoelectric materials is 

to have a steep slope of the transport distribution function close to EF. This can be achieved 

with the presence of impurities or vacancies in the ScN matrix which creates a peak close to EF 

[2,34]. Kerdsongpanya et. al. proposed magnesium doping in ScN to achieve a peak shift 

towards EF [33]. According to first-principles calculations a few percent of Mg doping is 

enough to induce these effects [33]. Mg contents above 3 at.% shift EF into the valence band, 

rendering the material p type, as experimentally demonstrated by Saha et al. [28,35]. 

Furthermore, contaminants such as oxygen and fluorine can act as donors in ScN, also leading 

to a shift of EF [25,33]. 

In the present work, epitaxial ScN thin films were grown using DC reactive 

magnetron sputtering and then implanted with Mg+ ions. Different implantation conditions were 

tested in order to analyze the influence on the thermoelectric properties of the concentration of 

dopants but also of the defects created by implantation. A series of samples implanted at room 

temperature with different doses from 0 to 2.2 at.%, was used for a complete study with the 

evolution of the thermoelectric properties with the concentration of dopants implanted with 

defects. The samples implanted at room temperature with an average concentration of 2.2 at.% 

of Mg exhibited a large decrease in thermal conductivity by 70 % and an increased absolute 

value of the Seebeck coefficient by 60 %. One of the samples was implanted at high temperature 

with 2.2 at.% Mg in order to isolate the effect of magnesium doping since a large fraction of 

the implantation-induced defects might be annealed during the implantation process at high 

temperature. The same implantation (2.2 at. % Mg) performed at room temperature on a ScN 

film was used for comparison and for evaluating the effect of irradiation-induced defects on the 

thermoelectric properties.  
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2 Experimental details 

ScN thin films were deposited using DC reactive magnetron sputtering in an ultra-

high vacuum chamber (base pressure 10-6 Pa) with Sc (50-mm diameter, MaTek: Sc 99.5%). 

The sputtering targets were operated with 125 W under a pressure of 0.27 Pa (2 mTorr) in an 

Ar/N2 (flow ratio 75% Ar / 25% N2) sputtering-gas mixture. 10 mm x 10 mm one side-polished 

substrates of Al2O3 (c-cut) (Alineason Materials & Technology) were used. The sapphire 

substrates were kept at a temperature of 800 ˚C and under constant rotation during the 

deposition. Prior to deposition, the substrates were cleaned first for 10 min in acetone in an 

ultrasonic bath, then in ethanol, and blown dry with a N2-gun. One sample was selected as a 

reference (labelled REF), the other six samples were implanted with Mg+ ions. The SRIM 2013 

software [36] was used to simulate and determinate the appropriate ion energies and respective 

doses needed to obtain the desired Mg concentration in the ScN film (density of 4.26 g/cm3 

(calculated from the ICDD data 032-0656286)). Two different profiles for the Mg concentration 

were applied: one flat by using five different energies for Mg+ ions and one with a Gaussian-

like profile along the thickness of the film by using only one energy for implanted ions. The 

implanted dose of Mg was adjusted for each energy by controlling the duration of the 

implantation while maintaining a current beam density not exceeding 5A.cm-2 to avoid a 

temperature increase of the ScN films during the implantation process. Table 1 summarizes the 

conditions of implantation for the different samples. The first series of samples were implanted 

at room temperature with different average concentrations of Mg (Mg/(Sc+N+Mg)) from 0.35 

at.% to a maximum of 2.2 at.% (labelled RT as Room Temperature). Another film was also 

implanted to obtain 2.2 at.% of Mg at a temperature of 600 ˚C (labeled HT as High 

Temperature). Finally, a sample was implanted at room temperature but using only one energy 

of 150 keV for implanted Mg+ (labelled SE as Single-Energy) with a total dose selected to 
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obtain an average of 2.2 at.% of Mg in ScN, but with a Gaussian-like profile. For every 

implantation, the samples were tilted with an angle of 2-5˚ to prevent channeling of the 

implanted Mg ions into the epitaxial ScN thin films. 

 

Table 1. List of the samples with their labels and different conditions of Mg implantation. The 
thickness of each film is also listed. The average concentration of magnesium is the one deduced 
from depth XPS profile measurement performed on the sample 2.2RT and extrapolated to the 
other samples according the ToF SIMS measurement. (HT = High Temperature, SE = Single-
Energy, RT = Room Temperature.) 

 

Sample 
label 

Average 
conc. of 

Mg 
(at.%) 

Thickness 
(nm) 

Temperature 
(C) 

Fluence of implanted Mg+ ions for the 
different energies (1015 ions/cm2) 
20 

keV 
50 

keV 
100 
keV 

150 
keV 

180 
keV 

Total 

2.2 HT 2.2 410 600 2.3 5.6 9 6 20 42.9 

2.2 SE 2.2 330 
room 

temperature 
   43  43 

2.2 RT 2.2 345 

room 
temperature 

2.3 5.6 9 6 20 42.9 

1.1 RT 1.1 405 1.15 2.75 4.5 3 10 21.4 

0.75 RT 0.75 410 0.76 1.8 3 2 6.7 14.3 

0.39 RT 0.35 435 0.38 0.9 1.5 1 3.3 7.6 

REF 0 365        

 
 

X-ray diffraction (XRD) measurements were performed with an X’Pert PRO from 

PANalytical apparatus for -2θ scans using a Cu Kα radiation with a nickel filter. Philips X'Pert-

MRD with Cu Kα radiation was used for the rocking curves and φ-scans. Surface and cross 

sections of the films were examined by scanning electron microscopy (SEM, LEO Gemini 

1550, Zeiss). High Resolution Scanning Transmission Electron Microscopy (HRSTEM) images 

were acquired with the Linköping double Cs-corrected FEI Titan3 60−300 operated at 300 kV 

using the High Angle Annular Dark Field (HAADF) detector. Time-of-flight Secondary Ion 

Mass Spectrometry (TOF-SIMS) using a TOF-SIMS V instrument (ION-TOF GmbH, 

Germany) was used for measuring the Mg distribution in the implanted films. Dual-beam depth 
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profiling, by alternately applying an analysis beam and a sputter beam (non-interlace), was done 

in positive mode. This allows selected positive secondary ion species to be monitored as a 

function of sputter time. A low-energy electron flood gun was applied for charge-compensation 

during profiling. A quasi-continuous 2.0 keV O2
+ beam with a current of 670 nA and scanned 

over 350 x 350 m2, was used as sputter beam. A pulsed 30 keV Bi+ beam, cycle time 40 s, 

was used as analysis beam, with a target current of 3.8 pA and an analysis field of view of 80 x 

80 m2 at the centre of the sputter craters. Ion mass spectra were acquired, with an extraction 

voltage of 2000 V between the sputter sequences, in the so-called spectroscopy mode (bunched 

6.5 ns Bi+ ion beam pulse width). SurfaceLab 6 software (v. 6.5, ION-TOF GmbH) was used 

for spectra recording and data processing. XPS was performed with an Axis Ultra DLD 

instrument from Kratos Analytical (UK). The system base pressure during spectra acquisition 

was 1.1×10-9 Torr (1.5×10-7 Pa). A monochromatic Al Kα radiation (h = 1486.6 eV) from the 

source powered to 150 W was used. Compositional depth profiles were obtained by recording 

core level spectra after each sputtering step consisting of 3 minutes-long bombardment with 4 

keV Ar+ ions followed by 10 min. irradiation at the reduced energy of 0.5 keV to minimize the 

surface damage and avoid forward implantation of surface species [37]. The Ar+ ion beam was 

incident at the 20° angle from the surface and rastered over the area of 3×3 mm2. All spectra 

were collected from the area of 0.3×0.7 mm2 and at normal emission angle. The analyzer pass 

energy was set to 20 eV which results in the full width at half maximum of 0.55 eV for the Ag 

3d5/2 peak. Elemental compositions were determined based on Sc 2p, N 1s, O 1s, and Mg 2s 

peak areas using Casa XPS software (version 2.3.16), and elemental sensitivity factors supplied 

by Kratos Analytical Ltd. 

Thermal conductivity of the films was obtained at room temperature using 

modulated thermoreflectance microscopy (MTRM). In this setup, a pump beam at 532 nm 

delivered by a Cobolt MLD laser, intensity modulated by an acousto-optical modulator at a 
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frequency f, is focused on the surface of the sample with an objective lens (N.A. = 0.5). Then, 

thermal waves were excited in the sample and monitored by the reflectivity surface change 

recorded around the pump location by another focused laser beam. The specification of the 

setup is the spatial measurement around the pump beam. We use a 488 nm Oxxius laser to 

maximize the probe sensitivity to the thermal field on a gold surface. A photodiode and a lock-

in amplifier record the AC reflectivity component, in a frequency range between 1 kHz and 1 

MHz. The measurement of the reflectivity of the probe on the surface is performed along a x 

axe from -10 m to + 10 m around the pump beam area. The figure S1 represents typical curve 

of the amplitude and the phase part of the reflectivity signal measured on a gold/substrate and 

on a gold/film/substrate sample. Finally, the amplitude and phase experimental data were fitted 

according to a standard Fourier diffusion law to extract the thermal conductivity of the ScN 

films [38-41]. A full explanation of the thermal conductivity measurement, fitting and model 

used is reported in the Supplemental Material. 

The in-plane Seebeck coefficient and the electrical resistivity were measured 

simultaneously from room temperature to 500C under a low-pressure helium atmosphere (∼ 

9×104 Pa, purity 99.999% with <0.5 ppm residual oxygen) using ULVAC-RIKO ZEM3 with a 

special design for thin films. The substrate contribution to the Seebeck coefficient and electrical 

resistivity is negligible, and the instrumental error is within 7%. The room-temperature Hall 

effect measurements up to 5 T magnetic field were performed employing physical property 

measurement system (PPMS Dynacool). 
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3 Results and discussion 

XRD -2 scans of as-deposited and Mg-implanted ScN thin films are presented 

in figure 1a. The observation of only one diffraction peak from the film demonstrated strong 

(111) texture of the ScN thin films. The inset shows the ScN (111) peaks in magnified view 

around 34.34. From here, it is evident that no peak shift is observed after the Mg implantation. 

The corresponding lattice parameter 4.52 Å is close to earlier reported values (4.50 Å, ICDD 

PDF 00-045-0978 (ScN)). Figure 1b shows the evolution of the Full Width at Half Maximum 

(FWHM) of the Rocking curve performed on the 111 reflection of the film. FWHM Values 

vary between 2.4  and 1.9 showing that no degradation of the macroscopic view of the crystal 

quality of the film was noticeable by XRD. The inset shows a −scan of ScN reference sample 

(=70.5, ScN (111)). The six peaks appear due to twin domain symmetry of ScN grown on 

sapphire substrates [19,27]. Thus, the films are composed of single phase epitaxial cubic ScN 

with an out-of-plane [111] orientation. Due to the low quantity of implantation and the small 

difference of the ionic radius between Sc3+(VI) and Mg2+(VI), it is not possible to discuss a 

potential substitution of Mg for Sc by these XRD results.  

In figure 2, the optical image and the surface morphology from the SEM of the 

films are shown. No noticeable change of the morphology of the surface of the film has been 

observed by SEM after implantation of Mg ions The non-implanted ScN sample has a yellowish 

color characteristic of ScN material [42], but the Mg-implanted samples are brown/black. This 

drastic change of color indicates changes in the bandgap with insertion of states or doping [33]. 

A depth-profile composition analysis of the sample 2.2 RT by x-ray photoelectron 

spectroscopy gave an average concentration (Mg/(Mg+Sc+N)) around 2.2 at.% at a plateau (50- 

300 nm depth) plus a presence of oxygen at 9 at.% (see  Supplemental Material, figure S6). Even 

with a base pressure of 610-8 torr, oxygen incorporation at several at.% level in ScN occurs 

due to the high reactivity of Sc with oxygen from residual water during deposition  
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[18,32,33,43-46]. Gregoire et. al. demonstrated an occupancy of oxygen on the nitrogen site 

possible from 2 at.% to 6 at.% which correspond at a maximum to Sc0.94฀0.06N0.94O0.06 [32]. A 

higher presence of oxygen in the film leads to the accumulation of oxygen at the grain 

boundaries and defects [18]. In the present study, the most probable case is an incorporation of 

oxygen at few at.% level in the Sc1-xMgxN1-yOy (0 < y < 0.06) and Sc2O3 at the grain 

boundaries/defects at a few percent ( 2 mol.%) (More details can be found in the  Supplemental 

Material, figure S7). This sample with an average of 2.2 at.% of Mg was used as reference in 

order to calculate the percentage of magnesium in each film from the Mg+ signal intensity 

detected by TOF-SIMS. It is important to note that the oxygen content does not affect the 

purpose of the present work, as these oxygen contaminations only marginally affect the thermal 

conductivity [47]. However, oxygen doping acts as donor doping and leads to a shift EF towards 

the conduction band [25,33]. Thus, we do not obtain p-type Mg-doped ScN, as in the work of 

Saha et al. [28,35]. 

From the SRIM simulations, a depth profile of the implanted Mg ions in ScN thin 

films can be calculated (Figures 3a and 4b). Figure 3a shows how several implantation energies 

have been used to obtain an approximately constant concentration of magnesium in the ScN 

film. Figure 3b gives the Mg profile from only one implantation energy (150 keV), with a total 

dose of Mg equivalent as for the 2.2 RT sample. A maximum of around 3 at.% was expected at 

200 nm from the surface of the sample (figure 3b). The Mg profiles measured with TOF-SIMS 

are presented in Figure 3c and 3d. Since the thin films have slightly different thicknesses, the 

film depths were normalized according to film/substrate interface in order to facilitate 

comparison. The intensities were also normalized to the substrate signal (Al+). The ScN 

reference sample had no detectable Mg+ signal. The Mg+ signal measured on the flat-profile-

implanted samples is slightly lower at the surface of the film, but then almost flat until it drops 

close to the substrate interface. The intensity of the Mg+ signal is consistent with a higher 



12 
 

concentration of magnesium in the film. We note that the sample implanted at high temperature 

(2.2 HT) and at room temperature (2.2 RT) have the same elemental depth profile features 

(profile and intensity). A variation of the concentration of Mg is observed along the thickness 

with a maximum observed at half of the thickness (200 nm) and, almost symmetrically, a 

decrease of Mg concentration up to the surface and the film/substrate interface. The profiles 

throughout the film appear relatively similar for all samples and match the profiles from the 

SRIM simulations. The small increase of the Mg+ signal appearing at the interface between film 

and substrate is due to different Mg+ yield in ScN and Al2O3.  

Figure 4 shows HAADF-HRSTEM images of the ScN reference sample, the 2.2 

RT sample and 2.2 HT sample where two columnar grains and the grain boundary between 

them can be observed for both samples. Local Fast Fourier Transforms (FFT) were performed 

on the different zones marked in the corresponding micrograph. Very similar comments can be 

addressed for the reference sample (before implantation) (figure 4a) and the high-temperature-

implanted sample (2.2 HT) (figure 4c). They both present a high level of ordering and 

homogeneity inside the grains with sharp spots on local FFT. In other words, these observations 

did not allow for identification of defects inside the grains which could have formed during the 

growth process or during the Mg implantation at 600°C. In the case of the room-temperature-

implanted sample, the high degree of ordering of the atoms is visible in some parts of the 

columnar grains and this is confirmed by the sharp spots on the local FFT (see areas #1 and #2 

on figure 4b). Blurry and likely defect-rich areas, with a typical size of ten nanometers, are 

distinguishable as well as a broadening of the spot on their local FFT (area #3). The HRSTEM 

analysis illustrates the difference between the room-temperature implantation and high-

temperature implantation of ScN. By implanting the magnesium at 600C, the thermal energy 

during implantation appears to be sufficient to anneal out most of the defects induced by 
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implantation. In contrast, at room temperature, the defects and local misalignment of atoms 

exists within the grains.  

Figure 5a is a closer comparison of the TOF-SIMS analysis of the 2.2 RT and 2.2 

SE samples. Both samples had a similar substrate/film interface up to 100-150 nm thickness. 

At a distance between 150 nm and 300 nm, the 2.2 SE had a higher at.% of Mg (3 at.% locally) 

than the 2.2 RT . Close to the surface, the 2.2 SE had a lower at.% of Mg than 2.2 RT down to 

a negligible amount of Mg at the top surface of the film. Figure 5b represents the evolution of 

total atom displacement (recoil expressed in displacement per atom, dpa) of Sc and N simulated 

by SRIM in a case of multi-energy and a single-energy implantation aiming for a total dose of 

43 1015 ions/cm2. The two simulated curves show a similar quantity and distribution of 

displacement per atom (~20-30 dpa) and thus defects induced by the implantation. In terms of 

composition, the 2.2 RT and 2.2 SE samples differed with different profiles of Mg along the 

thickness. Nevertheless, in terms of total displacement per atom and total induced defects, the 

2.2 RT and 2.2 SE films were essentially identical with an average displacement per atom 

evaluated at 19 dpa for the sample 2.2 RT and 20 dpa for the 2.2 SE. The different results from 

TOF-SIMS, HRSTEM, and SRIM simulation are summarized in Table 2.  
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Table 2: The different characteristics of the sample after ion implantations: concentration of 
dopant and induced defects with their depth profile and average displacement per atom (dpa). 

Sample 
label 

Dopants Defects 

Average 
conc. of 

Mg (at.%) 
Depth profile 

Temperature 
of implantation 

Point and/or 
extended 
defects 

Average dpa 
along the 

film 

2.2 HT 2.2 “flat” 600 C - - 

2.2 SE 2.2 
Gaussian-like 

peak 
room 

temperature 
yes 20 

2.2 RT 2.2 

“flat” 
room 

temperature 
yes 

19 

1.1 RT 1.1 9.5 

0.73 RT 0.75 6.6 

0.39 RT 0.35 3.3 

REF 0 - - - - 

 
 

Figure 6 shows the thermal conductivity of the Mg-implanted ScN films. The 

value of the thermal conductivity of the ScN reference sample is similar to earlier reported 

values for ScN thin films (10-12 Wm-1K-1) [25,27,30,47]. The sample implanted at high 

temperature exhibits a thermal conductivity similar to the value of the reference sample ScN. 

With a temperature high enough to anneal out the defects, the difference is within the error bars 

and can thus be considered negligible in this case. The smaller or negligible effect of Mg 

dopants on thermal conductivity compare to the one observed in previous study with Nb doping 

can be explain by a lower difference of atomic mass between Sc (44.95 u) and Mg (24.31 u) 

than Sc and Nb (92.20 u) [27]. 

For room-temperature implantation, a trend of decreasing thermal conductivity 

for higher amount of implanted Mg is clear. A large drop between the ScN reference (10.5 Wm-

1K-1) and the sample implanted with 0.37 at.% of Mg (4.2 Wm-1K-1) can be seen. The other 

implanted samples at room temperature and using multi-energy implantation have similarly low 

values of the thermal conductivity as the 0.37 RT sample. A minimum is observed for 0.75 at.% 
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of Mg in ScN with a thermal conductivity of 3.2 Wm-1K-1. The sample implanted using a single 

beam-energy also has a similar thermal conductivity, comparable to the lowest observed with a 

flat Mg concentration-profile.  

This large decrease in thermal conductivity (2.5 times lower) for ScN when 

implanting a small amount of Mg may be explained by the increased level of phonon scattering 

due to the presence of defects induced by ion implantation. The single-energy implanted sample 

did not show a substantially different thermal conductivity in comparison to the multi-energy 

implanted samples.  Thus, the Mg concentration-profile along the thickness of the film does not 

substantially affect the thermal conductivity of the film. In summary, these results indicate that 

room temperature Mg implantation is preferred if a lower thermal conductivity is desired, to 

avoid annealing out the defects and retaining the corresponding phonon scattering. 

The results of simultaneous measurements of the Seebeck coefficient and the 

electrical resistivity together with their corresponding power factor are shown in figure 7. Fig. 

7 a-c presents the results from the 2.2 at.% Mg sample with three different conditions (room 

temperature RT, high temperature HT and single-energy SE) plus the as deposited ScN 

reference sample. In Fig. 7 d-f, the results from the samples with different Mg concentrations 

are presented. The Seebeck coefficient, the electrical resistivity, and the power factor at certain 

fixed temperatures as a function of Mg concentration and type of implantation are presented in 

figure S9 of Supplemental Material.  

The ScN reference film is also plotted showing the lowest absolute value of the 

Seebeck coefficient (-41 µV/K at 775 K). The film implanted at high temperature (5% HT), 

considered here as “defect-free”, exhibited an absolute value of the Seebeck coefficient slightly 

higher than the ScN reference sample mentioned above (-56 µV/K at 775 K). The trend of 

increasing the Seebeck coefficient predicted from DFT calculations [33] is corroborated by the 

results obtained from these experiments. Implantation at room temperature led to samples 
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exhibiting higher absolute values of the Seebeck coefficient up to around -67µV/K (775 K). 

The Mg concentration profile does not seem to affect the Seebeck coefficient with similar 

behavior with the temperature for the 2.2 SE. The evolution of the Seebeck coefficient values 

with the concentration of dopants is low with a maximum absolute values obtained for the 

sample with 0.75 at.% of Mg (-69µV/K at 775 K). The results from the Seebeck coefficient 

measurements show at first an effect of the magnesium doping with an increase of the Seebeck 

values and secondly combining with the creation of defect (point and/or extended defects) 

another increase of the Seebeck coefficient values.  

The lowest electrical resistivity value is observed for the ScN reference sample 

(~250 µΩ.cm). This sample exhibited almost a constant electrical resistivity values over the 

whole measured temperature range. The sample implanted at high temperature (2.2 HT) 

exhibited a temperature dependence of the electrical resistivity ((T)) similar to the ScN 

reference, but with higher values (~750 µΩ.cm). Similar to the Seebeck coefficient, no 

differences are observed between the multi-energy and the single-energy implanted films. For 

all the samples implanted at room temperature, a trend of starting with almost constant 

resistivity values can be observed, but then a decrease after around 450 K. This change of 

resistivity may be due to recombination of some point defects (such as Frenkel defects). These 

point defects can recombine at low temperature (a few hundreds of kelvin) and can lead to the 

creation of extended defects in the materials (line defects such as dislocations or twins). The 

removal of defects after implantation differs between materials. In the case of silicon, the most 

studied material for ion implantation, a complete removal of the extended defects can be 

achieved only at high temperature such as 1100-1300 K [48]. In our case, one can propose that 

the measurement temperature is insufficient too to anneal the extended defects present before 

the measurement and/or created by point-defect recombination during the measurements. The 

temperature dependent resistivity from 70K to room temperature is presented in supplemental 
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material (figure S8) where differences between the reference sample and the 2.2 RT can be 

observed due to the mobility of charge carrier which is affected by the defects induced during 

implantation. The resistivity values differ slightly with the concentration of Mg. In the 

temperature range of measurement, the sample with 0.75 at.% of Mg exhibited the highest 

values of electrical resistivity and the 2.2 at.% implanted at room temperature the lowest. The 

increase of the electrical resistivity can be due to a small contribution of Mg insertion into ScN 

film observed on 2.2 HT sample and an important contribution from the defects created by ion 

bombardment [49]. 

The combination of the Seebeck coefficient and the electrical conductivity for 

ScN reference sample gives the power factor ~ 0.5510-3 W/mK2 at 775 K. The sample 

implanted at high temperature exhibited a lower power factor than the ScN reference sample as 

well as the samples implanted with a low amount of magnesium (0.35 to 1.1 at.%). The samples 

with 2.2 at.% implanted using a single-energy and multi-energies exhibited the highest power 

factor 0.6410-3 W/mK2 (at 775 K).  

The lower (absolute) value of the Seebeck coefficient for ScN compared to earlier 

reported ScN films, is most likely due to the higher amount of oxygen contamination present 

in the film, especially the presence of oxide at grain boundaries and/or defects [18,19,32]. A 

presence of oxide at grain boundaries/defects affected the thermoelectric properties with a 

reduced Seebeck and electrical conductivity resulting to a low power factor [18,27].  

Saha et al reported on the electrical, carrier concentration and Seebeck coefficient 

of Sc1-xMgxN films grown by dc-magnetron co-sputtering [28,35]. They reported an increase 

of electrical resistivity, a decrease of the mobility and room temperature Seebeck values 

between -50 to -100V/K when doping with Mg. They also reported a switch from n-type to p-

type behavior for film with x > 0.028. In the present study, the film contained a higher amount 

of oxygen and, within the doping range of the study, only n-type behavior was observed. As 
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previously mentioned, the doping by magnesium in ScN shifts EF towards the valence band, 

but oxygen doping ScN leads to a shift towards the conduction band [25,33]. The higher oxygen 

contamination in the present work than in the work of Saha et al. thus explains why the n-type 

behavior is retained also for higher concentration of magnesium in ScN.  

Mg doping in ScN with low amount of defects, achieved by high temperature ion 

implantation, yielded a similar thermal conductivity as the ScN reference and lower power 

factor due to a higher electrical resistivity. However, implantation of magnesium at room 

temperature with a constant or Gaussian-like distribution of Mg along the thickness led to 

samples exhibiting different physical properties. Implantation at room temperature will create 

point defects and extended defects which play an important role on the conduction of phonons 

and charge carriers (electrons or holes). Three features can be emphasized here after 

implantation of Mg: a decrease of the thermal conductivity, an increase of the absolute value of 

Seebeck coefficient, an increase of the resistivity and a different (T).  
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Conclusions  

Ion implantation was used to implant Mg in order to induce doping and defects in 

epitaxial ScN (111) films grown on sapphire substrates using reactive DC magnetron sputtering. 

Mg+ ions were implanted with different concentration profiles along the thickness of the film.  

The ion implantations of 0.3 to 2.2 at.% of Mg in ScN did not affect the rock-salt ScN crystal 

structure nor morphology of the films. A high temperature of implantation tends to anneal the 

defects, while doping did not alter the thermal conductivity in comparison to a ScN reference 

( 10 Wm-1K-1). In contrast, the room-temperature-implanted samples exhibited large reduction 

in thermal conductivity to values close to 3.2 Wm-1K-1and an increase of the power factor is 

also observed for the sample with 2.2 at. % Mg compared to the ScN reference samples. Thus, 

this study showed the importance of ion-induced defects in the material on the thermal 

conductivity, in that high temperature implantation allows the defects to be annealed out during 

implantation, while the defects are retained for room-temperature implanted samples, allowing 

for a drastic reduction in thermal conductivity.  
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Figure 1 

 

Figure 1. a) Offset-separated θ-2θ scans of ScN film grown on c-axis-oriented sapphire 
substrates. The inset graph shows a close up of the ScN (111) peak. The numbers in 
corresponding colors correspond to the average concentration of Mg in ScN films. b) FWHM 
values of the rocking curve performed on the 111 reflection. The inset shows φ-scan (at  
=70.5⁰) of the ScN reference sample grown on sapphire substrate. 
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Figure 2 

 

 

Figure 2. The morphology of the Mg-implanted ScN films observed by SEM. To the right, the 
optical appearance of the films is presented. The numbers to the left indicate the amount of 
implanted Mg in the ScN films. 
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Figure 3 

 

Figure 3. a) Simulation results of Mg implantation in ScN using SRIM. Different implantation 
energies and fluencies were used for a flat Mg profile in the ScN film. The presented graph is 
based on 2.2 RT sample. b) Simulation of the single-energy implantation (150 keV for the 
sample 2.2 SE). c, d) TOF-SIMS profiles of selected ions for the different implanted films.  
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Figure 4 

 

Figure 4. HRSTEM micrograph with HAADF detector of the ScN Ref sample (a), the 2.2 RT 
sample (b) and the 2.2 HT sample (c). Below each image, local FFT of the corresponding zone 
marked on the image. 
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Figure 5 

 

Figure 5. Comparison between film implanted with one energy (2.2 SE) or five energies of 
implantation (2.2 RT): a) TOF-SIMS profile of Mg ions and the estimated at.% of Mg in ScN 
along the thickness of the film. b) SRIM simulation of the recoil concentration (displacement 
per atoms) (Sc + N) with a total dose of Mg+ of 431015 ions/cm3. 
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Figure 6 

 

Figure 6. The thermal conductivity values of the different alloys obtained by fitting of the 
modulated thermoreflectance microscopy measurements. Model: 250 nm gold (k= 225 W/mK; 
D = 0.910-4 m2/s) / Mg-ScN film on Al2O3 (k = 46 W/mK; D = 1.4810-5 m2/s). 
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Figure 7 

 

Figure 7. The measured Seebeck coefficient (S), the electrical resistivity () and the power 
factor (S2) from room temperature to 770 K of: a, b, c) the reference sample, the 2.2 SE, the 
2.2 RT and 2.2 HT; d, e, f) the samples implanted at room temperature with different 
concentrations of Mg. 
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Supplemental material 

 

I. Modulated thermoreflectance setup and analysis 

 

a) Generality and measurement  
 

Thermal conductivity of the films was obtained at room temperature using modulated 
thermoreflectance microscopy (MTRM). In this setup, a pump beam at 532 nm delivered by a 
Cobolt MLD laser, intensity modulated by an acousto-optical modulator at a frequency f, is 
focused on the surface of the sample with an objective lens (N.A. = 0.5). Then, thermal waves 
were excited in the sample and monitored by the reflectivity surface change recorded around 
the pump location by another focused laser beam. The specification of the setup is the spatial 
measurement around the pump beam. We use a 488 nm Oxxius laser to maximize the probe 
sensitivity to the thermal field on a gold surface. A photodiode and a lock-in amplifier record 
the AC reflectivity component, in a frequency range between 1 kHz and 1 MHz. The 
measurement of the reflectivity of the probe on the surface is performed along a x axe from -10 
m to + 10 m around the pump beam area. The figure S1 represents typical curve of the 
amplitude and the phase part of the reflectivity signal measured on a gold/substrate and on a 
gold/film/substrate sample. Finally, the amplitude and phase experimental data were fitted 
according to a standard Fourier diffusion law to extract the thermal conductivity of the ScN 
films [38-41].  

 

 
Figure S1: a) amplitude and b) phase signals of the reflectivity of the probe beam with the experimental 
data, the corresponding fitting curve of a gold/film/substrate model and a simulated curve of 
gold/substrate model for comparison. In inset of b), a schematic view of the measurement along the x 
axe with the probe (blue) and pump (green) spot.  
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b) Details on fitting process 
 

 
Figure S2: Schematic representation of the steps process for the evaluation of the thermal properties of 
the different layers in the model used for the thermoreflectance measurement. The “???” represents the 
values fitted in the model to reproduce the experimental values, the other values are considered fixed 
and known.  
 

In order to remove the difference of the surface aspect such as the reflectivity which may 
differs in a series of sample, a capping layer composed of was of Au(250nm)/Cr(5nm) was 
deposited on all samples. the layer of chromium was used as an adhesion layer for gold. Prior 
deposition, the samples were cleaned with a spray of acetone followed by ethanol to finally be 
dried with N2 gun. The gold layer is deposited by evaporation on all samples together with the 
bare substrate and the “BK7” samples. The “BK7” sample is a borofloat® borosilicate glass 
substrate from Edmund optics ® glass whose thermal conductivity and diffusivity are well 
known and provided by the supplier. The sample were placed carefully into the thickness 
homogenized zone of the evaporation chamber holder (2-inch square). Due to the sample 
configuration the fit is performed with several steps in order to determine the thermal properties 
of the film. In the heat diffusion equation, the parameters are the thermal conductivity k, the 

thermal diffusivity D (D = .𝐶𝑘 , where  is the density of the film, Cp the heat capacity and k the 

thermal conductivity) and the thickness of each layer. A schematic description of the process is 
presented on the figure S2.  

A first step consists on evaluating the thermal properties (k and D) of the gold layer using 
a sample gold/BK7 where the thickness of the gold is measured by profilmeter [39]. Once the 
thermal properties (k and D) of gold capping layer are known, we process to the second step to 
evaluate the thermal properties of the substrate by fixing in the model the parameters of the 
gold layer. A best fit allows to evaluate the thermal properties of the substrate which were 
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evaluated to be k= 46 Wm-1K-1 and a diffusivity of 1.4810-5 m2 s-1 [51,52]. Finally, when, the 
substrates and the capping layer are well known, we continue to the step 3 (described below in 
detail) with a model including the film in between the capping layer and the substrate.  
 
 

c) Analysis and fit of experimental data in the case of a sample composed of 
Gold/ScN/sapphire  

 

 
Figure S3: spatial amplitude (a and c) and phase (b and d) of the reflected signal of the probe beam 

(experimental data of the 2.2HT sample) along with the simulated curves varying the total thermal 

resistant of the film with gold/film/sapphire model 

 
 
In the case of film with a thermal conductivity lower than the gold (4 -15 Wm-1K-1 

compare to 300 Wm-1K-1 for the gold), a first approximation is to perform a best fit on 
experimental data using an equivalent thermal resistant layer whose resistance Req corresponds 
to the total film. Once the thermal resistance Req is determined, the thermal conductivity of the 
film kfilm can be calculated by the following equation:  𝑅𝑒𝑞 = 𝐿𝑓𝑖𝑙𝑚𝑘𝑓𝑖𝑙𝑚 
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Where, L and k represent the thickness and the thermal conductivity of the film 
respectively. Figure S3 shows the simulated curves for different thermal resistance Req 
compared to the experimental data of the 2.2 HT sample presented in the main manuscript. 
Using the best fit, the experimental data curve can be simulated with a Req between 4.0 and 4.5 
 10-8 m2 K W-1. At maximum, an error of  0.3 10.-8 m2 K W-1was noticed on the evaluation 
of the Req during the “best fit” which correspond to an error of   0.6 Wm-1K-1 on the thermal 
conductivity for this sample. In Figure 6 of the main manuscript, the error observed during the 
analysis of the sample series is plotted for all the points and varies between  0.5 and  0.6 
Wm-1K-1.  

The figure S4 represents the simulated curves with a layer with the thermal 
conductivity of 9.1 and a diffusivity varying from 110-6 to 5010-6 m2 s-1. the diffusivity of 
the film has no or a very low impact on the amplitude part of the signal which is more sensitive 
to the thermal conductivity. Therefore, the diffusivity is deduced from the phase of the signal. 
The diffusivity of the experimental data can be estimated between 3 and 1010-6 m2 s-1 without 
affecting the estimation of the thermal conductivity. This poor accuracy on the diffusivity of 
the film does not allow to determine the heat capacity of the film with enough accuracy.  
 
 

 

Figure S4: spatial amplitude (a) and phase (b) of the measured signal of the sample 2.2HT (experimental 
data) with simulated curve of a gold/film/ Al2O3 model having a film with a k = 9.1 Wm-1K-1 and 
different diffusivity from 1 to 50 10-6 m2 s-1.  

 
 

This method allows to evaluate the thermal conductivity of ScN film with an accuracy 
around  0.6 Wm-1K-1 and not the diffusivity (or heat capacity) of the film. In order to determine 
the diffusivity of the films with high accuracy supplementary measurement on the film without 
a gold layer on top would be necessary, unfortunately the ScN materials does not absorbed the 
pump signal used in this setup. Note here that no interface thermal resistant (ITR) layers were 
used in the model.  
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d) Interface thermal resistant (ITR) neglected in the system gold/ScN/Al2O3 for 
evaluating the thermal conductivity 

 
In the previous measurement, the ScN layer was considered as a total thermal resistance 

and the interface thermal resistance between gold/film and film/Al2O3 were not taken into 
account. In reality, the thermal resistance is defined as:  𝑅𝑒𝑞 = 𝐼𝑇𝑅𝑡𝑜𝑝  +  𝑅𝑆𝑐𝑁  +  𝐼𝑇𝑅𝑏𝑜𝑡𝑡𝑜𝑚 

 
Where ITRtop and ITRbottom are the interface gold/film and film/substrate. To evaluate the 

interface resistance of ScN films, the two ITR needs to be known. A proper way to evaluate 
those to ITR is to measure thermoreflectance using a series of sample with different film 
thicknesses and that approximation needs to be assume for a constant ITR regardless the 
thickness of the film.  

A study reported the interface thermal resistance of nitride films where no ITR could not 
be estimated on the ScN films deposited on MgO due to an extremely low ITR combined to the 
ScN film masking the ITR [52]. In the same study, the ITR of HfN/MgO, ZrN/MgO and 
TiN/MgO were evaluated at 5, 3 and 2 10-9 m2 K W-1. Same approximation can be cone for 
ITRtop where for example gold/Cr ITR values were evaluated to be in the order of 10-9 m2 K W-

1 [53]. Approximating the ITRbottom of ScN/Al2O3 in the same order of magnitude as the one 
observed with the other nitrides, and the ITRtop to the ones observed in a system gold/Cr, the 
interface thermal resistance would not affect the total resistance of the layer evaluated at 4.50.3 
10-8 m2 K W-1.  
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e) fitting curves of all samples studied 

 

Figure S5: a) amplitude and b) phase signals of the reflectivity of the probe beam with the experimental 
data and corresponding fitting curve of a gold/film/substrate model for all samples. (refer to main article 
for sample names).  
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II. Elemental analysis and description of the composition of the film.  

 

The XPS depth profile analysis of the sample 2.2 RT is presented in Figure S5. Sc, Mg, 
N and oxygen were detected throughout the thickness of the films with a variation between the 
1st and 2nd cycle of sputtering due to surface contamination. We can notice that the scandium 
concentration is constant (45.0 at.%) and that the nitrogen and oxygen have a reverse evolution 
and respectively have a concentration at the 10th cycle of 43.7 at.% and 9 at.%. A higher oxygen 
(lower nitrogen) content is present at the surface. The depth profile of magnesium is consistent 
with the TOF-SIMS measurement with an increase until a plateau at a 2.15-2.25 at.% of Mg 
(Mg/(Sc+N+Mg). This result was used as a reference sample to extrapolate the different atomic 
concentration in the films using the ToF SIMS Mg intensity detected. 

 

Figure S6. Depth profile concentration measured by XPS of the sample 2.2 RT sample. 

 

From XPS measurements, the composition of the film can be determined. The film 
contains in total 9 % of oxygen which can be incorporated in ScN or like an oxide such as Sc2O3 
at grain boundaries and/or defects. Figure S6 describes the possible compositions of the film 
from a full incorporation of oxygen in the rock salt structure of ScN at the nitrogen site to a 
maximum of 3% of Sc2O3 and 97% of Sc0.89Mg0.05N1. This calculation is base considering a 
full dissolution of Mg into ScN cell. Dissolved oxygen into ScN in nitrogen site is commonly 
observed at few at.% level.  For example, a 3 at.% level of oxygen in a ScN film leads to 
Sc0.94฀0.06N0.94O0.06. [18,19,25,45] In the present study and following the different papers 
reporting the growth of ScN, the films are mostly composed of 2 to 3 at.% of oxide present at 
the grain boundary plus a partial incorporation of oxygen into ScN at few at.% level. 
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Figure S7. Possible composition of ScxMgy□z(Nx’Oy’)1 versus the amount of Sc2O3 present in the film 
(grain boundaries/defects). The vertical line and the rectangular blue zone at 2.2 to 3 at.% of Sc2O3 
represent the maximum dilution amount of oxygen into ScN reported in the literature (3 at.% of oxygen 
contamination). Composition deduced from the elemental analysis of the depth profile XPS 
measurement performed on the sample 2.2 RT. 
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III. Electrical characterization from low temperature to room temperature 

 

 

Figure S8. Temperature dependence of the electrical resistivity measured from 70 K to room 
temperature of: a) the ScN REF film and b) and ScN film implanted at room temperature with 2.2 at.% 
of Mg. the number n correspond to the carrier concentration of the films at room temperature. 

 

The charge carrier concentration measured by Hall-effect measurement on the as 
deposited ScN sample and the 2.2 RT implanted are 0.111019 cm-3 and 0.271019 cm-3, 
respectively. The figure S7 presents the temperature dependence of the electrical resistivity 
from 70 K to 260 K measured on the ScN reference sample and 2.2 RT implanted. After 
implantation of 2.2 at.% of Mg in ScN, the electrical resistivity drastically increased from 550 
.cm to 10 000 .cm at 260 K. Temperature dependence of the two films are reverse one 
has its resistivity increasing slowly when the other one has its resistivity decreasing from 40 K 
to room temperature. The conduction of electron in a semiconductor or a metal can be scattered 
by different mechanisms such lattice vibrations, dislocation, impurities, grain boundaries, 
vacancies etc. The electrical conductivity 𝜎 defined by: 𝜎 (𝑇) = 𝑛(𝑇). 𝑒. 𝜇𝑑(𝑇) 

Where 𝑛(𝑇) is carrier concentration, 𝑒 the electronic charge and 𝜇𝑑(𝑇) the drift 
mobility. Following Mathiessen’s rule, the total drift mobility is defined as follow [54]:   1𝜇𝑑(𝑇) =  ∑ 1𝜇𝑖(𝑇) 𝑖  

 where 𝜇𝑖 is the drift mobility corresponding to each scattering process involved in the 
electron conductivity. After implantation of magnesium, a higher carrier concentration  𝑛(𝑇) 
increases and a lower electrical conductivity involves a drift mobility higher and thus an 
important contribution of defects on the mobility of charge carrier. 
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IV. Thermoelectric properties, another view   

Figure S8 presents another perspective of the thermoelectric properties with the Seebeck 
coefficient, electrical resistivity, and power factor. This figure represents the same data as 
presented in Figure 7, but the evolution of the different characteristics at a constant temperature 
versus the concentration level of Mg or for different implantation procedure: room 
temperature/high temperature, multi-energy/single-energy.  

 

Figure S9. The measured Seebeck coefficient (S), the electrical resistivity () and the power factor (S2) 
at different temperatures for: a, b, c) the reference sample, the 2.2 SE, the 2.2 RT and 2.2 HT; d, e, f) 
versus the concentration of Mg implanted into ScN. This figure is a different representation and 
perspective of the data presented in Figure 7 of main manuscript. 
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V. High angle annular dark field (HAADF) STEM analysis 

 

 

Figure S10. HAADF-STEM images of a) the 2.2 RT film and b) 2.2 HT film with the chemical mapping 
of Sc and Mg. Note here that the signal for collection of magnesium is low and no big contrast and or 
high concentration zone were observed (grain boundary). 

 

 

 


