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Abstract

Recorded potentials in the extracellular space (ECS) of the brain is a standard measure of

population activity in neural tissue. Computational models that simulate the relationship

between the ECS potential and its underlying neurophysiological processes are commonly

used in the interpretation of such measurements. Standard methods, such as volume-con-

ductor theory and current-source density theory, assume that diffusion has a negligible

effect on the ECS potential, at least in the range of frequencies picked up by most recording

systems. This assumption remains to be verified. We here present a hybrid simulation

framework that accounts for diffusive effects on the ECS potential. The framework uses (1)

the NEURON simulator to compute the activity and ionic output currents frommulticompart-

mental neuron models, and (2) the electrodiffusive Kirchhoff-Nernst-Planck framework to

simulate the resulting dynamics of the potential and ion concentrations in the ECS,

accounting for the effect of electrical migration as well as diffusion. Using this framework,

we explore the effect that ECS diffusion has on the electrical potential surrounding a small

population of 10 pyramidal neurons. The neural model was tuned so that simulations over

*100 seconds of biological time led to shifts in ECS concentrations by a few millimolars,

similar to what has been seen in experiments. By comparing simulations where ECS diffu-

sion was absent with simulations where ECS diffusion was included, we made the following

key findings: (i) ECS diffusion shifted the local potential by up to*0.2 mV. (ii) The power

spectral density (PSD) of the diffusion-evoked potential shifts followed a 1/f 2 power law. (iii)

Diffusion effects dominated the PSD of the ECS potential for frequencies up to several

hertz. In scenarios with large, but physiologically realistic ECS concentration gradients, dif-

fusion was thus found to affect the ECS potential well within the frequency range picked up

in experimental recordings.
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Author Summary

When electrical potentials are measured in the extracellular space (ECS) of the brain, they

are interpreted as a signature of neural signalling. The relationship between the ECS

potentials and the underlying neuronal processes is often studied with the aid of computer

models. The ECS potential is typically assumed not to be affected by diffusive currents in

the ECS, and existingmodels therefore neglect diffusion.However, there may be scenarios

where this assumption does not hold. Here, we present a new computational model which

explicitly models ion-concentration dynamics in the ECS surrounding a neural popula-

tion, and which allows us to quantify the effect that diffusive currents have on the ECS

potential. Using this model, we simulate a scenario where a population of pyramidal neu-

rons is active over a long time, and produces large, but realistic concentration gradients in

the ECS. In this scenario, diffusive currents are found to influence the ECS potential at fre-

quency components as high as ten hertz. Unlike previously believed,we thus predict that

there are scenarios where recorded local field potentials (LFPs) are likely to contain signa-

tures not only of neural activity, but also of ECS diffusion.

Introduction

The number of ions exchanged between neurons and the extracellular space (ECS) during a

brief period of activity (i.e., due to the integration of synaptic input and generation of a few

action potentials) is typically too small to evoke significant changes in extracellular ion concen-

trations. In models of short-term electrical signalling of neurons, the ion concentrations of the

main charge carriers (e.g., K+, Na+, Cl-) are therefore commonly assumed to remain effectively

constant. This assumption often holds also at longer time scales, due to the work done by neu-

ronal and glial uptake mechanisms in maintaining ion concentrations close to baseline levels.

However, during periods of intense neural signalling, the uptake mechanisms may fail to keep

up, and ion concentrations in the ECS may change by several millimolars [1–5]. For example,

the extracellular K+ concentration can increase from a typical baseline level of around 3 mM

and up to levels between 8 and 12 mM during non-pathological conditions [4, 6–8]. Ion-con-

centration shifts in the ECS will change neuronal reversal potentials and firing patterns [9–12],

and too large deviations from baseline levels can lead to pathological conditions such as hyp-

oxia, anoxia, ischemia, epilepsy and spreading depression [9, 13–15].

One of the most common experimental methods for investigating neural activity is the

measurement of electrical potentials with extracellular electrodes. Commonly, it is assumed

that extracellular potentials predominantly reflect transmembrane cellular current sources,

including synaptic currents and currents through active and passive membrane mechanisms

in neurons and glial cells [16–19]. However, in scenarios where ECS concentration gradients

become sufficiently large, electrical currents carried by diffusing ions in the ECS could in

principle also give measurable effects on the extracellular electrical potentials (cf., liquid junc-

tion potentials [20–22]). In support of this, local ion-concentration changes in the ECS are

indeed often accompanied by slow local negative potential shifts, which can be on the order

of a few millivolts [1, 3, 13, 23–27]. Whereas K+ buffering currents through the glia-cell

membranes are believed to be the main source of these slow potential shifts [3, 7], it has been

estimated that also diffusive currents along extracellular concentration gradients could con-

tribute by shifting ECS potentials by up to 0.4 mV [3]. As ion concentrations in the ECS typi-

cally vary on the time scale of seconds [3, 4, 28], it is nevertheless a priori unclear whether

diffusion-evokedpotential shifts would be picked up by the electrodemeasurement systems
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applied in most experiments, which typically have cut-off frequencies of about 0.1–0.2 Hz or

higher (see e.g., [29, 30]).

In most computational studies of ECS potentials, diffusive currents in the ECS are assumed

to be negligible compared to the currents propelled by the electrical field (hereby termed field

currents). This is, for example, an underlying assumption in volume-conductor theorywhich

has been the basis for estimating ECS potentials from cellular current sources [18, 31–36], and

in estimation of current-source density (CSD) which predicts transmembrane neural current

sources from recordings of extracellular potentials [29, 34, 37–40]. Another series of theoretical

studies have aimed to incorporate possible effects of diffusion in the complex impedance envi-

ronment of the extracellularmedium [41–44], and have suggested that such effectsmay

account for the 1/f-scaling observed for the LFP-power spectrumat low frequencies [41]. In

neither of the above mentioned studies, however, ionic diffusionwas explicitly modelled.

The reason why diffusive effects are often neglected in models of extracellular fields, may be

that the task of modelling it is challenging. This is because the study of diffusion requires an

explicit tracking of all present ions and their spatiotemporal dynamics: i.e., keeping track of

only the electric currents and net electric charges is not sufficient. Existing electrodiffusive

models have typically been based on the Poisson-Nernst-Planck (PNP) formalism [45–51].

The PNP formalism explicitly models charge-relaxation processes, which occur at spatiotem-

poral scales on the order of nanometers and nanoseconds. This requires an extremely high spa-

tiotemporal resolution, which makes PNP models computationally expensive and unsuited for

predictions at the tissue/population level [52]. However, a series of modelling schemes have

been developed that circumvent the charge relaxation processes, essentially by replacing Pois-

son’s equation by the constraint that the bulk solution is electroneutral [28, 52–58]. The elec-

troneutrality condition is a physical constraint valid at a larger spatiotemporal scale, and thus

allows for a dramatic increase in the spatial and temporal grid sizes in the numerical simula-

tions. One of these simpler models were previously developed by our group [28, 57], and is

here referred to as the Kirchhoff-Nernst-Planck (KNP) scheme. The KNP scheme is a means of

deriving the local potential in the intra- and extracellular bulk solution from the constraint that

Kirchhoff ’s current law should be fulfilled for all finite volumes (the sum of currents into a

finite subvolume of bulk solution should be zero).

In the current work we have developed a hybrid modelling formalism that allows us to

compute electrodiffusive ion dynamics in the ECS surrounding active neurons. The formal-

ism is briefly summarized in Fig 1. First, it utilizes the NEURON simulator [59, 60], which is

a standard tool for simulating morphologically complex neurons, to simulate the activity of a

neural population and its exchange of ions with the ECS (Fig 1A). Second, it utilizes the KNP

formalism [28, 57] to compute the dynamics of ion concentrations and the electrical potential

in the ECS surrounding the neurons (Fig 1B). The KNP scheme accounts for all electrical cur-

rents entering an ECS subvolume in the system (i.e., transmembrane ionic currents, trans-

membrane capacitive currents, diffusive currents through the ECS, and field currents

through the ECS), as well as for concentration-dependent variations in the ECS conductivity

(seeMethods). It computes the ECS potential from the constraint that all currents into a ECS

subvolume should sum to zero (Fig 1C). In this way, the KNP-scheme accounts for effects of

ionic diffusion on the ECS potential, and thus differs from previous simulation schemes for

computing ECS potentials based on output from standard neuron simulators such as NEU-

RON (e.g. [61]).

We have here used the hybrid scheme to model a small tissue element consisting of a popu-

lation of ten pyramidal neurons embedded in ECS (Fig 1A). Motivated by the layered struc-

tures of cortex and hippocampus, we assumed lateral homogeneity, so that all spatial variation

occurred in the vertical direction. As neuronal model, we used a well established

Effect of Ionic Diffusion on Extracellular Potentials

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005193 November 7, 2016 3 / 38



multicompartmental model of pyramidal cells [62]. The ten neurons were centered at the same

depth level of the tissue. Although the choice of neuronal model was somewhat arbitrary, and

the small tissue element was too simple to represent any particular biological system, the

model gave rise to biologically realistic variations in ECS concentrations, and we regard it as a

meaningful scenario for which we could explore how diffusive currents in the ECS can influ-

ence extracellular potentials.

In simulations that evoked large, but not pathologically large, concentration gradients in the

ECS, we found that diffusion gave rise to a detectable 1/f 2 power law in the low-frequency part

of the power spectral density (PSD) of the ECS potential. Furthermore, we found that diffusion

influenced the PSD for frequencies as high as 1–10 Hz. This quantitative prediction was, of

course, specific to the particularmodel setup used here. Although the relative effects of diffu-

sion may be smaller in many realistic, more complex scenarios (see Discussion), we regard our

findings as an important demonstration that in general, diffusive currents can not by default be

assumed to have a negligible impact on ECS potentials.

The article is organized as follows: In the Results section, we use the KNP scheme to explore

the role of diffusive currents on electrical potentials in the ECS surrounding a population of

pyramidal neurons. In the Discussion section, we discuss possible implications that our find-

ings will have for the interpretation of data from extracellular recordings. The Discussion also

includes an overviewof the assumptions made in the presented model, and on how the frame-

work can be expanded to allow for more thorough investigations of concentration-dependent

effects on ion dynamics in neural tissue. A detailed derivation of the KNP-formalism is post-

poned to the Methods section (which is found at the end of the article).

Fig 1. Model system. (A) A piece of neural tissue was subdivided into 15 subvolumes (depth intervals). The edges n = 1 and n = 15 were auxiliary
compartments used to implement appropriate boundary conditions. In these subvolumes ion concentrations were set to be constant baseline levels. In
n = 1, the ECS potential was set to V = 0, while in n = 15, V was derived so that no net current entered/left the system (see Methods for details). A
population of 10 neurons (only one shown in the figure) was positioned so that it occupied the interior 13 subvolumes. The output of specific ions into
each subvolume was computed for all segments of all 10 neurons and summed, yielding the total input of an ion species k to each subvolume
(illustrated by red arrows). (B) Ion-concentration dynamics in an ECS subvolume n. Here jkM

n denotes the total transmembrane flux density of ion
species k into the subvolume n from the whole population of neurons. jkf and jkd denote ECS flux densities between neighboring subvolume driven by
electrical potential differences and diffusion, respectively. (C) The extracellular potential is calculated by demanding that the sum of currents into each
ECS subvolume is zero. Currents were determined by summing the contributions from all ionic fluxes (red arrows), and adding the capacitive current
(black arrows).

doi:10.1371/journal.pcbi.1005193.g001
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Results

The strategy employed in the current study was as follows: First, we simulated the neurody-

namics of a small population of ten pyramidal neurons by means of the simulation tool NEU-

RON, and recorded (as a time series) the transmembrane output of all ionic species, as well as

the capacitive current, into the different subvolumes of the ECS (Fig 1A). For simplicity, we

assumed that the neurodynamics was independent of the ECS dynamics. The simulation was

run for a long time period (84 seconds), since ECS diffusion typically takes place on a much

longer time scale than the millisecond time scale of neuronal firing and synaptic integration.

Second, we used the KNP-formalism to simulate the ECS dynamics resulting from the neuro-

nal output (Fig 1A and 1B). We considered the two cases where (i) diffusive transports were

not included (i.e., so that ECS ion transports were solely due to field currents), and (ii) where

diffusive transports were included. In the simulations the time-varyingneuronal output was

applied as an external input to the ECS system. An identical neuronal output was used in the

two cases ((i) and (ii)). Third, we compared the ECS potential obtained in the two cases to

demonstrate how it was affected by the inclusion of diffusion.

The simulation setup is briefly introduced in the following section, while further details are

found in the Methods section. A list of symbols and definitions is given in Table 1.

Dynamics of a small neuronal population

Ten pyramidal neurons were simulated by running ten independent simulations on a single

neuron model. As neuron model, we used a well established model developed for cortical layer

5 pyramidal cells [62]. Each neuron was driven by uncorrelated Poissonian input spike trains

(with the same statistics for all neurons) through 10,000 synapses. Synapses were uniformly

distributed over the membrane area (sections with equal membrane area had the same

expected number of synapses), and synaptic weights were tuned so that the average single-neu-

ron action potential (AP) firing rate was about five APs per second (this is within the range of

typical firing frequencies observed for cortical neurons [63]).

As illustrated in Fig 1, a piece of tissue was subdivided vertically into 15 depth intervals

(here referred to as ECS subvolumes), which we could picture as spanning from the bottom to

the top layer of a layered structure such as cortex or hippocampus. The neurons were

Table 1. List of key symbols and constants.

Symbol Explanation Value/Unit

JkM
n Net membrane flux of ion k into subvolume n mol/s

IMn Net ionic membrane current into subvolume n A

Icap
n Capacitive current into subvolume n A

Vn Extracellular potential in subvolume n V

Jkf
n�1;n Electrical field flux of ion k from subvolume n − 1 to n mol/s

Ifn�1;n Electrical field current from subvolume n − 1 to n A

Jkd
n�1;n Diffusive flux of ion k from subvolume n − 1 to n mol/s

Idn�1;n Diffusive current from subvolume n − 1 to n A

lc Height of each ECS subvolume box 100 μm
Ac Cross-sectional area of each ECS subvolume box 600 μm2

cK0 Baseline ECS K+ concentration 3 mM

cNa0 Baseline ECS Na+ concentration 150 mM

cCa0 Baseline ECS Ca2+ concentration 1.4 mM

cX0 Baseline ECS X- concentration 155.8 mM

doi:10.1371/journal.pcbi.1005193.t001
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positioned so that they occupied the 13 interior subvolumes. The output from all neural seg-

ments contained in a specific subvolume were summed, and this gave the total output into the

given subvolume. In the neuronal output signal we kept separate track of the different kinds of

transmembrane currents, including (i) the net Na+ current, (ii) the net K+ current, (iii) the net

Ca2+ current, (iv) non-specific ionic currents, and (v) the capacitive current. For simplicity, we

assumed that all unspecified ionic currents in the model [62] (such as leakage currents, synap-

tic currents, and currents through non-specific active ion channels) were carried by a single,

non-specified anion species X-. We chose to use an anion, becausemany of the non-specified

currents are likely to be mediated largely by Cl- (for further comments on this choice, see

Methods and Discussion).

The output from the neural population into three selected ECS subvolumes is shown in Fig

2 for the first seven seconds of the simulation. For example, Fig 2A shows the currents into the

subvolume (n = 3) containing the somata. Here, we clearly see the brief Na+ (Fig 2A1) and K+

(Fig 2A2) current pulses associated with neuronal AP firing. The current amplitudes were

about -30 nA (inward, depolarizing current) for Na+ and 30 nA (outward, repolarizing current)

for K+. Generally, the subvolume containing the somata received a higher influx/effluxof ions

(Fig 2A) compared to the subvolumes containing the apical trunk (Fig 2B) and apical branches

Fig 2. Output from the neuronal population. Transmembrane currents into selected extracellular volumes, including
(columnA) the subvolume containing the neuronal somata (n = 3), (columnB) the subvolume containing the trunk of the
apical dendrite (n = 7), and (columnC) the subvolume where the apical dendrites branched out (n = 13). Currents were
subdivided into ion specific currents (row 1–4) and the capacitive current (row 5). The sum of all currents into a subvolume n

is shown in row 6. The location of the midpoint of a neural segment determined which ECS subvolume n it belonged to, and
currents were summed over all neural segments (of all neurons) that occupied a given ECS-subvolume (n). The
transmembrane currents were defined as positive when crossing the membrane in the outward direction. The total
transmembrane currents of the neuron as a whole (summed over all N − 2 subvolumes) were also calculated (columnD).
Results are shown for a 7 second excerpt of simulations.

doi:10.1371/journal.pcbi.1005193.g002
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(Fig 2C). These differences have two explanations: First, the somata subvolume contained a

larger proportion of the total neuronal membrane area, which generally enhanced the ionic

exchange in this subvolume. (Similarly, currents are larger in Fig 2C compared to Fig 2B

because the subvolume where the apical dendrites branched out contained a larger membrane

area than subvolumes containing a part of the apical dendritic trunk.) Secondly, the somata

also had a higher density of Na+ and K+ channels than the dendrites. Accordingly, almost all

exchange of Na+ and K+ between the neurons and the ECS occurred in the soma subvolume

(compare somatic output in Fig 2A1 and 2A2 to the total neuronal output current in Fig 2D1

and 2D2). For the other ions (Ca2+ and X-), the dendrites contributed with a larger proportion

of the total output.

As we just saw, the neurodynamics fluctuated vividly on the millisecond time scale. However,

the input statistics was the same throughout the simulation, so that the slow time-scale neurody-

namics was essentially stationary (seeMethods). To illustrate this, we split the seven seconds of

neural simulations shown in Fig 2 into five 1.4 second time intervals, and averaged the total

transmembrane current (IM) over the five respective intervals. Fig 3 shows how the (temporally

averaged) transmembrane sources were distributed across tissue depth. The spatial profile of IM

was essentially independent of which 1.4 second interval of activity it was averaged over.

The main current source (positive transmembrane current, i.e., net positive charge leaving

the neurons) was found in the soma subvolume (n = 3). The main current sinks (negative

transmembrane current, i.e., net positive charge entering the neurons) were found in subvo-

lumes containing proximal apical dendrites (n = 5, 6) and distal, branching apical dendrites

(n = 12, 13, 14). We note that the transmembrane current profile summed to zero across depth,

meaning that the sinks and sources balanced each others out (no neuron can be a net current

sink nor source).

Of course, the neurodynamics and source/sink configurations seen in Figs 2 and 3 depended

in a complex way on the particular neuronal morphology and the subcellular distribution of

membrane mechanisms and synapses used in the simulations. The main objective of this work

was, however, not to analyze these dependencies, but rather to explore how the ECS potential

surrounding the neuronal population depended on whether diffusionwas included in the sim-

ulations of the ECS dynamics. We investigated this for the particular scenario summarized in

Figs 2 and 3, which was used in all simulations shown in the following, but with 84 seconds of

simulated neurodynamics, and not only the seven seconds depicted in the figures.

Fig 3. Transmembrane current profiles. (A) Tissue subdivided into 15 sub-volumes. (B) Distribution of IM

over the depth of the piece of tissue. IM included all transmembrane currents (ionic + capacitive), and was
low pass filtered by taking the temporal average over the time intervals indicated in the legend.

doi:10.1371/journal.pcbi.1005193.g003
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We note that the neuron model by Hay et al. exhibited a rich repertoire of firing properties,

including the occasional dendritic Ca2+ spikes seen in Fig 2B3. We refer to the original work

for further details on the model properties [62]. In the following, the focus will be on how the

simulated ECS potential (surrounding this given system) depend on whether ECS diffusion is

accounted for.

Diffusion does not affect the fast dynamics of the extracellular potential

Knowing the neuronal output to each ECS subvolume, we used the KNP-formalism to com-

pute the resulting dynamics of ionic concentrations and the electrical potential in the ECS.

Typically, ECS potentials are thought to mainly originate from various transmembrane current

sources [16, 17]. Here, we explored whether diffusive currents in the ECS could constitute an

additional source.

Fig 4A1–4A4 illustrates the dynamics of the ECS potential in two selected subvolumes

(soma, n = 3, solid line; apical dendrite, n = 13, dashed line) due to the neuronal activity shown

in Fig 2. Similarly, Fig 4B and 4C show the field currents and diffusive currents (respectively)

from subvolume n = 3 to n = 4 (solid line) and from subvolume n = 13 to n = 14 (dashed line).

For simplicity, we in the following discussion refer to the current from n = 3 to n = 4 as the cur-

rent out from the soma subvolume, and the current from n = 13 to n = 14 as the current out

from the apical dendrite subvolume. The first column (1) of Fig 4 shows the time course of

these variables over the full simulation, while the remaining columns (2–4) show the time

course over selected, shorter (40 ms) time intervals, which include only a few neuronal APs.

Fig 4. Ion dynamics on shorter time scales. (A) Time development of the ECS potential in the
subvolumes containing the somata (n = 3, solid lines), and apical dendrites (n = 13, dashed lines). Time
development of the ECS field current (B) and diffusive current (C) in the positive z-direction out from the
soma subvolume (i.e., between n = 3 and n = 4, solid lines), and out from the apical dendrite subvolume (i.e.,
between n = 13 and n = 14, dashed lines). The first column (A1–C1) shows the signal for the entire 84 second
simulation, while the three other columns of panels show the signal in three selected, brief intervals during
the simulations. Red lines show the signal obtained when diffusion was assumed to be zero, while blue lines
show the signal obtained with the full electrodiffusive formalism. Field currents varied at the same time scale
as V (*milliseconds), while diffusive currents varied very slowly (* seconds).

doi:10.1371/journal.pcbi.1005193.g004
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Red curves represent the scenario without diffusion in the ECS simulations, while blue curves

represent the scenario with ECS diffusion included.

When we explore the extracellular AP signatures (panels A2–4), we see that they had the

same time course as the field currents (panels B2–4), while diffusive currents varied little at this

fast time scale (panels C2–4). Diffusive currents thus had no impact on the fast temporal

dynamics, and the AP signatures resembled those previously studied in models based on vol-

ume-conductor theory, where diffusive currents are neglected [34].

Somatic AP generation was due to an inward (depolarizing) current into the neuron fol-

lowed by an outward (repolarizing current). Since the sum of transmembrane currents over the

neuron as a whole (all ionic + capacitive currents) must be zero at all times, the dendritic

branches experienced the opposite current configuration during the APs (outward currents fol-

lowed by inward currents). Therefore, AP signatures in the apical ECS subvolume (dashed

lines in Fig 4A2–4A4) had the opposite temporal profiles compared to what we observed in the

soma subvolume (solid lines in panels A2–4).

Although the AP signatures were of the same order of magnitude in the soma and apical

subvolumes, ECS field currents out of the soma subvolume were generally much larger than

field currents between neighboring dendritic subvolumes (panels B2–4). The explanation lies

in the spatial distribution of transmembrane inward and outward currents, and the rather

unique role played by the soma. For example, a local inward current to the soma returned to

the ECS in a widespread manner, i.e., it was distributed over the entire dendritic tree. Neigh-

boring dendritic subvolumes therefore had similar AP signatures, implying that the ECS volt-

age differences (and therefore the field currents) between themwere small.

The diffusive currents varied at a much slower time scale compared to field currents (Fig

4C). This was due to the slow time scale at which ion concentrations varied (as we shall explore

further below). The diffusive current out of the soma region reached a peak value after around

30 seconds, after which it decreased slowly. The concentration build-up was slower in the sub-

volumes containing apical dendrites, and diffusive currents were smaller there, and still

increasing at the end of the simulation (panel C1).

In the early part of the simulation, when diffusive currents were small, the ECS potentialV

was close to identical in the cases with and without diffusion (panel A2). However, as diffusive

currents built up, they did have an effect on V, which was shifted to more negative values in the

simulation with diffusion included compared to case without ECS diffusion (panel A3–A4).

Towards the end of the simulation, diffusion had shiftedV by about -0.2 mV in the soma sub-

volume. In the following, we shall explore this process in further detail.

Diffusion depends on extracellular ion-concentration dynamics

Diffusive currents in the ECS are proportional to concentration gradients in the ECS. To gain

insight in the slow dynamics of the diffusive currents, we must therefore investigate the ECS

ion-concentration dynamics. In our simulations, ECS concentrations varied due to ionic out-

put from the neurons. Fig 5 shows how the ECS concentration varied over the tissue depth at

selected time points. The deviations from the initial concentrations became gradually larger

throughout the 84 second simulation, illustrating the slow time scale of ion-concentration

dynamics in the ECS.

When diffusionwas not included in the ECS simulations (Fig 5A), ionic transports were

solely due to electricalmigration, and were not biased towards following concentration gradi-

ents of distinct species. In this case, the ECS concentration profiles predominantly reflected the

distribution of neuronal sources. For example, somatic AP generation caused a sharp decrease

in the Na+ concentration and a corresponding increase in the K+ concentration in the soma

Effect of Ionic Diffusion on Extracellular Potentials
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subvolume, while the Na+ and K+ concentration changes were relatively small outside this sub-

volume (Fig 5A2 and 5A3). We note that the ion-concentration changes in the soma subvo-

lume were unphysiologically high in the no-diffusion case. However, this was of no concern in

the current study, since ion concentrations had negligible impact on the ECS dynamics in the

case where diffusionwas not included. (In this case the only effect on the ECS potentials came

from the concentration dependence of the ECS conductivity, seeMethods, Eq 11. However, for

the present case the conductivity changes were found to be too small to have a visible impact

on V in the simulations, see Discussion).

With diffusion included in the ECS simulation, the ion-concentration gradients across the

depth of the piece of tissue became smoother (Fig 5B). For example, a fraction of the K+

expelled during somatic AP firing diffusedout of the soma subvolume, and distributed across

the entire tissue volume. In this case, the K+ concentration in the soma subvolume increased

from a baseline level of 3 mM to slightly above 10 mM during the 84 second simulation,

accompanied by a similar reduction in the Na+ concentration. These concentration shifts were

within the range that can be expected under non-pathological physiological conditions (for K+,

the limiting concentration between non-pathological and pathological conditions is typically

estimated to be between 10 and 12 mM [7]).

The buildup of ECS concentration gradients explains the temporal development of the dif-

fusive current that we observed in Fig 4C1. Early in the simulation, the diffusive current out of

the soma subvolume (i.e., from n = 3 to n = 4) increased in an approximately linear fashion

with time. This was because the local ion concentration in the soma subvolume (n = 3)

increased in an approximately linear fashion due to the high neuronal output/input in this sub-

volume. As the ion-concentration gradients built up, diffusion from n = 3 to n = 4 increased,

and the concentration increase in n = 3 became sublinear. Eventually, diffusion tended to

smoothen out the ECS ion-concentration gradients (Fig 5A), and after about 30 s, diffusion

between n = 3 and n = 4 experienced a slight decrease. A similar process took place over the

entire tissue depth, but was slower further away from the soma, as the transmembrane ionic

exchange was smaller there. In the apical dendrites (i.e., diffusion from n = 13 to n = 14), the

diffusive current still increased in a close to linear fashion at the end of the 84 second simula-

tion (Fig 4C1).

Fig 5. Extracellular ion-concentration profiles at selected time points. Spatial profiles of the ECS ion
concentrations over the depth of the piece of tissue at selected time points. Deviances from baseline
concentrations (t = 0) increase throughout the 84 second simulation. Simulations shown for the case with
diffusion set to zero (A) and with diffusion included (B).

doi:10.1371/journal.pcbi.1005193.g005
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Diffusive currents induce slow shifts in extracellular potentials

Due to the slow nature of diffusive currents, we proceeded to investigate the slow time scale

dynamics of the ECS potential. To do this, we took the time series of V (plotted for selected

subvolumes in Fig 4), and split it up in five equal time intervals of 16.8 second duration (adding

up to the total simulation time of 84 seconds). Next, we took the temporal average of V in these

five intervals and obtained a (very) low-pass filtered version of the ECS potential. The results

are displayed in Fig 6 showing how the low-pass filteredV was distributed across the tissue

depth in the cases without (Fig 6A2) and with (Fig 6B2) diffusion included in the ECS

simulations.

We first investigate the ECS voltage gradients obtained in the case where ECS diffusionwas

not included in the simulations (Fig 6B). In this case, there was an ECS voltage drop (of about

1.3 mV) from the soma subvolume to the subvolumes containing the apical dendrites. The

drop in V was consistent with the neuronal source/sinks configurations that we observed ear-

lier (Fig 3): Since the main neuronal current source (transmembrane current entering the ECS)

was found in the soma subvolume (n = 3), while the sinks (transmembrane current leaving the

ECS) were located higher up along the apical dendrites, there had to be an ECS current in the

positive z-direction (corresponding to a negative voltage gradient in this direction) to close the

current loop between the sources and sinks. SimilarV profiles have been seen experimentally

where sustained voltage profiles which vary by a up to several mV at spatial scales of millime-

ters have been seen in cortex [1, 3], hippocampus [26] and in the spinal cord [23].

We also note that the neuronal current sources/sinkswere effectively constant at this slow

time scale (Fig 3), meaning that they were essentially the same in all the five different time

intervals in Fig 6. We would then a priori expect the ECS current to be constant over time as

well. Without extracellular diffusion, this would in turn imply that also the ECS voltage gradi-

ent should remain constant throughout the simulation, which is indeed what is observed in Fig

6A2 (lines are on top of each others).

With diffusion included in the ECS simulations, the situation becamemore complex (Fig

6C). The gross features of the ECS voltage gradient resembled what we saw in Fig 6B. The simi-

larity was not surprising, since the neuronal sources were identical in the two cases. However,

with diffusion included, the ECS potential gradients no longer remained constant throughout

the simulation (Fig 6C). The time-dependent variations were most pronounced in the soma

Fig 6. Extracellular potential profile with and without extracellular diffusion. (A) Tissue subdivided into
15 sub-volumes. (B-C) Distribution of electrical potential V over the depth of the piece of tissue for the
situation where diffusion was assumed to be zero (B), and for the situation with diffusion included (B). The
variables were low-pass filtered by taking the temporal average over the time intervals indicated in the
legend. To facilitate direct comparison, the (constant) V-profile for the case without diffusion was also plotted
in (C).

doi:10.1371/journal.pcbi.1005193.g006
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subvolume where the ECS potential decreased by about 0.2 mV over the time course of the sim-

ulation. This shift in V was caused by diffusive currents along the ion-concentration gradients

that built up during the simulation, and was the same shift that we previously observed in Fig

4A4. A detailed physical interpretation of the diffusion-inducedshifts in the ECS potential is

provided in the following subsection.

Diffusive effects on extracellular potentials explained by Kirchhoff´s
current law

To obtain a more thorough understanding of the interplay between the potentialV and diffu-

sive currents, we next plotted the ECS fluxes of all ion species (K+, Na+, Ca2+, and X-) in the

cases without and with extracellular diffusion (Fig 7). Also here, the focus was on the long

time-scale dynamics, and we compared the time-averaged fluxes taken over five 16.8 second

time intervals (same procedure as used for V in Fig 6). In the rightmost column in Fig 7, we

have also plotted the total electrical ECS current associated with the ionic fluxes (the definition

is given in the caption of Fig 7).

When ECS diffusionwas not included in the simulations, all ion transport in the ECS were

due to the electrical field (Fig 7A). In that case, most of the transports were mediated by the

Fig 7. Extracellular flux densities of ions and net charge. Time-averaged extracellular flux densities in
the cases without (A) and with (B) extracellular diffusion. In the latter case, the total flux density (B3) was
subdivided into the field-driven (B1) and the diffusive (B2) component. When the curves are to the right/left of
the dashed vertical lines, they represent fluxes in the positive/negative z-direction, respectively. The flux
densities were computed as the temporal mean over time intervals indicated in the legend. The scale bar
was the same for all flux densities, including the electrical current density (rightmost column), which was
given in units of the unit charge: i/F = jK+ + jNa+ + 2jCa2+ − jX−.

doi:10.1371/journal.pcbi.1005193.g007
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most abundant ion species in the ECS, which in our simulation were Na+ and X-. Due to the

negative potential gradient between the subvolumes containing the soma and apical dendrites

(Fig 6C), the positively charged Na+ ions were driven away from the soma subvolume, while

the negatively charged X- ions were driven towards the soma subvolume. Both these ion fluxes

amounted to a net electrical current away from the soma subvolume, i.e., a positive current in

subvolumes above the somata (n> 3) and a negative current in subvolumes below the somata

(n< 3).

In simulations including extracellular diffusionwe plotted the ECS flux densities due the

electrical field (jf) and diffusion (jd) separately (Fig 7B1 and 7B2), as well the total flux density

(jf + jd, Fig 7B3). As AP firing evoked a decrease/increaseof Na+/K+ in the soma subvolume,

ECS diffusion drove Na+ into this subvolume, while it drove K+ out of this subvolume (Fig

7B2). As these two cation fluxes were oppositely directed, the net diffusive charge transport

(id/F) was smaller than the charge transported by Na+ and K+ separately. However, the diffu-

sive fluxes still gave rise to a net electrical transport of the same order of magnitude as the field-

driven current, especially around the soma subvolume (compare current densities in panels B1

and B2 in Fig 7).

The ionic fluxes in the ECS differed quite significantly between the cases with and without

ECS diffusion (compare flux densities in panels A with B3 in Fig 7). However, the net electrical

current in the system were identical in the two cases (compare current densities in panels A

and B3). This can be understood from basic electric circuit theory:As the neuronal transmem-

brane sources/sinkswere identical in the two cases, the same had to hold for the net extracellu-

lar current. Otherwise, the current loop would not be completed. This leads to the following

key insight: Since the net electrical current density (itot = if + id) was independent of whether

diffusionwas present in the model or not, an increase in id had to be accompanied by a corre-

sponding decrease in if, and vice versa. A time-dependent variation of diffusive currents there-

fore by necessity evoked a time-dependent variation of the field currents (Fig 7B1)). As if was

proportional to the voltage gradient, this in turn implied that the ECS voltage gradients varied

with time, as observed in Fig 6.

Diffusive currents change the power spectra of local field potentials

So far, we have demonstrated that diffusive currents can have quite substantial effects on ECS

potentials, at least on a slow time scale. As a next inquiry, we would like to know the frequency

range in which diffusion can be expected to have an effect on recorded ECS potentials, and in

particularwhether diffusion can be expected to affect experimental LFP recordings where the

low-frequency cut-off typically ranges from 0.1 Hz to 1 Hz (see e.g., [29, 30]).

We limited this study to ECS potentials recorded in the soma subvolume, where the diffu-

sive effects were most pronounced in our model. Fig 8 shows the power spectral densities

(PSDs) of the ECS potential recorded outside the somata (n = 3), whereV was obtained as in

the above simulations in Figs 4–7). To explore the development of the PSDs over the time

course of our simulation, we split the 84 second time series of V into four 21 second intervals,

and computed the PSD for these time intervals separately.

A first observation is that the PSDs for the simulations without (red lines) and with (blue

lines) ECS diffusion differed dramatically for the lowest frequencies, where the presence of dif-

fusion boosted the PSD by up to several orders of magnitude. Contrarily, for the highest fre-

quency components the PSDs were close to identical in the cases without and with diffusion

(red and blue lines overlap). This was as expected from our previous analysis where we saw

that diffusionwas important for the slow, but not the fast system dynamics (Fig 4). The cross-

over frequency for which the diffusion contributed negligibly to the PSD, was for all four time
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intervals depicted in Fig 8 seen to be in the frequency range between 1 and 10 Hz. Extracellular

diffusionwas thus found to have effect on the PSD for frequency components well within the

range typically considered in recordings of LFPs in vivo [29, 30].

The PSDs obtained with no ECS diffusion (red lines) were quite constant throughout the

simulation, while the PSDs obtained with ECS diffusion included (blue lines) were generally

higher for the earliest time intervals (compare panels A and D). To provide a hand-waving

explanation to the latter, we start by noting that the contribution of diffusion to the local PSD

essentially depended on the absolute value of the temporal variation of local ion concentration

(i.e., on j _ckj, see S1 Appendix), which in turn depended on two competing processes.

The first process was the local neuronal output of ion species k, which was roughly constant

at the long timescale considered here. The second process was ECS transportation of ion spe-

cies k out from/into the local region. Generally, these two processes had opposing effects on the

local ion-concentration dynamics (i.e., when neurons expelled K+ into a given subvolume, ECS

transports tended to drive K+ out from that subvolume). Early in the simulation, ECS concen-

tration gradients (and thus ECS diffusive transports) were small, and the time development of

the local concentration was approximately proportional to the neuronal output. At a later

stage, ECS concentration gradients had built up, and the competing diffusive process had

increased. Then local concentrations changed more slowly with time.

Diffusion can evoke extracellular potentials even in absence of neural
current sources

In the rather complex scenario studied so far, transmembrane and extracellular currents inter-

acted (as is, of course, the case in real brain tissue). However, diffusive fluxes and currents in

the ECS can in principle exist even without on-going neuronal sources, provided that there are

concentration gradients present in the ECS. To improve our understanding of diffusion-gener-

ated potentials, we explored them also in such a simplified scenario. For simplicity, we used the

same simulation as above (Figs 2–7) to generate reasonable ECS concentration gradients

needed in the simplified scenario. However, this time we turned off the neuronal current

sources midways in the simulation (i.e., after 42 seconds), and analyzed the ECS dynamics in

last 42 seconds of the simulation when the ECS dynamics was solely due to diffusion along the

concentration gradients that had built up during the first 42 seconds of the simulation.

For this scenario, only the simulations with ECS diffusion included gave non-trivial results

(when extracellular diffusionwas not included, the ECS voltage gradient instantly turned to

zero when the neuronal current sources were removed, and the extracellular ion fluxes imme-

diately stopped). This can be easily understood from the current conservation laws upon which

Fig 8. Effects of diffusion on power spectral densities (PSDs) for the ECS potential in the soma subvolume. (A–D)
show the power spectra of V in the soma subvolume (n = 3) under four consecutive 21-second time intervals of the 84 second
simulation. Units for frequency and PSD are Hz and mV2/Hz, respectively.

doi:10.1371/journal.pcbi.1005193.g008
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the KNP formalism was based, stating that the sum of currents into an ECS compartment

should be zero (Fig 1C). In the simplified scenario, there were no transmembrane sources after

42 seconds, and with no diffusive currents between ECS subvolumes, the field currents (and

thus voltage differences) between ECS subvolumes must by necessity also be zero.

The simulations with ECS diffusion included are shown in Fig 9. Panels A2–5 show the ECS

concentration profiles at selected time points after the neuronal sources were turned off at

t = 42 s. Initially (i.e., at t = 42 s), ionic concentrations of Na+, K+, Ca2+ and X- in the soma sub-

volume had been shifted by approximately -5.1 mM, 6.0 mM, -0.1 mM and 0.7 mM, respec-

tively, relative to the baseline concentrations. We note that these shifts fulfilled the

requirement of local electroneutrality, i.e., did not correspond to any net change in the local

charge density:Sk(z
kck) = (−5.1 + 6.0 − 2 × 0.1 − 0.7) mM = 0. Here zk and ck are the valence

and concentration, respectively, of ion species k.

The deviations from baseline concentrations were smaller outside the soma subvolume, and

the concentration gradients out of the soma subvolume were quite steep. Diffusive currents

along these gradients gave rise to a diffusion potential, which at t=42 s peaked in the soma sub-

volume whereV was about -0.17 mV (Fig 9B2). Diffusion-evokedvoltage gradients like this are

well understood, and have been observed in many systems with spatial variation in ion compo-

sition [3, 20–22].

With no neuronal sources present, the ECS concentration gradients were gradually

smoothed over time (i.e., for t> 42 s). Consequently, the ECS voltage gradients decayed. At the

end of the simulation (i.e., for t = 84 s), V was about -0.05 mV in the soma subvolume. The

PSD corresponding to this decay process is depicted by the black lines in Fig 9B3 and 9B4.

Since the concentration gradients became gradually smoother, the power was generally higher

during the first 21 s after the neurons were turned off (Fig 9B3) than in the proceeding 21 s

Fig 9. Extracellular dynamics without neuronal current sources. ECS dynamics in time interval between
t = 42 s and t = 84 s after turned off (at t = 42 s). (A2-A5) Profiles of ECS ion concentrations at selected time
points. The ion-concentration gradients alone gave rise to an electrical (diffusion generated) potential in the
ECS. (B2) ECS profiles of the diffusion potential V. The depicted potential corresponds to the temporal
averaged V taken over 8.4 second intervals indicated in the legend. (B3-B4) Power spectral density (PSDs) of
the potential (V) in the soma subvolume (n = 3) due to ECS diffusion (black line) under two consecutive
21-second time intervals. For comparison, the PDSs of the original simulations (i.e, when neuronal sources
were not turned off) were also plotted (red and blue lines). The legend in (A2) applies to all concentration profiles
(A2–A5). The legend in (B3) applies to all PDSs (B3–B4). Units for frequency and power are Hz and mV2/Hz,
respectively.

doi:10.1371/journal.pcbi.1005193.g009
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(Fig 9B4). In both cases, the PSDs were very close to a 1/f 2 power law (the fitted power-law

coefficientswere 1.998 in panel B3 and 2.02 in B4). This so-calledBrownian-noise power law

essentially follows from an exponential decay of local ion concentrations, and can be derived

analytically (see S1 Appendix).

For comparison, we also show the PSDs of the simulation with neuronal sources included

(the red and blue lines in Fig 9B3 and 9B4 are the same as in Fig 8C and 8D, respectively). Also

in the presence of neuronal sources, the electrodiffusiveECS process roughly followed a 1/f 2

power law for low frequencies where diffusion dominated (blue line and black line close to par-

allel for f< 10 Hz).

Comparing the blue and black lines, we further note that the removal of neuronal current

sources at t = 42 s increased the low-frequency components of V, especially during the first 21

second time interval after the time of the sources offset (Fig 9B3). To explain this, we may recall

that the diffusive power spectrum is proportional to the absolute value of the temporal varia-

tion of local ion concentration (j _ckjÞ. As argued above, this value depends on the balance

between two competing processes, i.e., the local neuronal output of ion species k and the ECS

transports of ion species k out from/into the local region. The observation in Fig 9B3 simply

implies that the local concentration approached the baseline levels faster when the neuronal

sources were turned off (black line) than it diverged from the baseline level in the case when the

neuronal sources were kept on (blue line).

In reality, transmembrane current sources and ECS transport processes do interact, and the

correct electrodiffusivePSD is predicted by the blue line in Fig 9B3 and 9B4. Likewise, the pre-

dictedmaximum frequency that will be affected by diffusion is in the frequency range 1–10 Hz

where the red and blue lines in Fig 9B3 and 9B4 merge. However, we still believe that the study

of the simplified decay process process (with neuronal sources turned off)provide useful

insights to how ECS diffusion can affect the PSD. Firstly, the simplified ‘decoupled’ model

nicely illustrated that ECS diffusion gave rise to a 1/f2 contribution to the PSD, as we saw

above. Secondly, we propose that the crossing point between the PSD obtained for the diffusive

process alone (with concentration gradients representable for what one typically see in the sys-

tem) and the PSD obtained from neurodynamics when diffusionwas not included (black vs.

red line in Fig 9B3) may serve as a crude estimate of the maximum frequencies for which diffu-

sion can be expected to influence the PSD. For example, the crossing point between the red and

black line in Fig 9B3 was found in the frequency range 1–10 Hz, which agreed with the fre-

quency range where the blue and red lines merged.We will provide further arguments for the

usefulness of the simplified scenario further in the Discussion. So far, we conclude that in the

current model, diffusive processes affected ECS potentials for frequencies up to several hertz.

Discussion

We tested the hypothesis that, unlike what has been assumed in previous theoretical analysis

based on volume-conductor theory [18, 29, 30, 32, 33, 36], ECS potentials can be influenced by

the presence of diffusive currents in the ECS. To explore this, we simulated the ECS transport

of ions in a piece of neural tissue, stemming from the activity of a small population of ten pyra-

midal cells. We explored a scenario with large, but biologically realistic, fluctuations in ECS

concentrations and compared simulations where diffusive currents were included in the ECS

dynamics with simulations where diffusive currents were set to zero. The following key find-

ings were made: (i) ECS diffusion shifted the local ECS potential by up to*0.2 mV. (ii) The

diffusion-evokedpotential shifts occurred at a slow time scale, and their contribution to the

PSD of the ECS potential followed a 1/f 2 power law at the lowest frequencies. (iii) In the model,

the diffusive process had a non-negligible impact on the PSD for frequencies up to ten hertz,
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i.e., standard volume-conductor theory which ignores diffusion in the ECS, would estimate the

PSD correctly only for frequencies higher than about ten hertz.

We note that effects that diffusion had in the simple, ten-neuron system considered here is

likely to be larger than under most realistic conditons. This is partly because the concentration

gradients in the model were in the upper range of what has been observedunder non-patholog-

ical, experimental conditions, and partly because real tissue contains a multitude of additional

mechanisms which could serve to reduce concentration gradients and at the same time boost

the part of the PSD that reflects transmembrane current sources/sinks (see below for a more

detailed discussion). In most scenarios, we expectmany models that exclude diffusion still to

give quite accurate results for the problems in question. However, we regard the current model-

ling study as a demonstration that, as a generality, diffusive currents can not be assumed to

have a negligible impact on ECS potentials, whereas the actual role of diffusionmust verified in

each specific case.

Kirchhoff-Nernst-Planck formalism

Relationship to other modelling schemes. What we here have coined the KNP formalism

was developed in previous work where we derived a mathematical formalism for simulating

buffering of extracellular K+ by astrocytes [28, 57]. A very similar formalism was developed (in

parallel) in the heart-cell community in the context of a model of ischemia [58]. Our buffering

model accounted for electrodiffusiveprocesses in the intra- and extracellular domain, and was

essentially an expansion of the previous model by Qian and Sejnowski [64], which only consid-

ered the intracellular domain.

The KNP formalism represents a simplification of the computationally expensive PNP-solv-

ers, which derive the local potential from Poisson’s equation (e.g., [47–51]). The PNP system

has been thoroughly analyzed in a series of previous works by Mori, who also proposed a series

of simplifiedmodels and studied their validity under different conditions [53–56, 65]. The

KNP formalism can be regarded as a simplified version of the electroneutralmodel proposed

by Mori [52, 54, 65]. In the current application of the KNP model, we tailored the formalism to

study transport processes in neuronal tissue at a relatively large spatiotemporal scale.

In the original application of the KNP formalism, we modelled both the intra- and extracel-

lular space explicitly [28]. In the current application, we introduced a hybrid modelling frame-

work, where the KNP formalism was only applied to the ECS, while the intracellular dynamics

was computed with the NEURON simulator [59, 60]. The NEURON simulator is an efficient

standard tool for computing the dynamics of morphologically detailed neurons. It can be com-

bined with algorithms for handling the intracellular dynamics of selected ion species due to

local transmembrane influxes/effluxes and decay processes. (In most neural models, such algo-

rithms are typically an exception used only for the signallingmolecule Ca2+, see e.g., [62, 66–

68].) However, intracellular electrodiffusiveprocesses are so far not an integral part of the

NEURON simulator. A limitation with the hybrid scheme is therefore that electrodiffusivepro-

cesses are only accounted for in the ECS domain, where the KNP-formalism is used. An impor-

tant advantage with the hybrid scheme is that it lends itself to be used as a supplement to

compute the ECS dynamics (of ion concentrations and the electrical potential) of the multitude

of already available neural or neural network models based on the NEURON simulator (such

as, e.g., the Blue Brain simulator [69]). Previous tools developed to compute extracellular

potentials from NEURON basedmodels such as LFPy [61] have not incorporated effects of

ionic diffusion in ECS.

Electroneutralityassumption. Along with other electroneutralmodels [53–56, 58, 65],

the KNP formalism provides a means of deriving the local potentialV from the physical
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constraint that the (intra- and extracellular) bulk solution is electroneutral [28]. This approxi-

mation was used as early as in 1890 by Planck, who described electrodiffusion in electrolytes

[70]. In the current application, this approximation means that any nonzero local charge den-

sity within the system is identified as a charge that sits on a capacitive membrane and uniquely

determines the local transmembrane potential of an excitable cell. Put differently, the KNP

scheme assures that the sum of ionic currents into a given tissue sub-volume equals the sum of

capacitive (non-ionic) currents over the cellular membranes that populate the sub-volume (as

illustrated in Fig 1C), so that no net charge is found in the bulk.

The assumption that bulk solutions is electroneutral is not strictly true, as has been the topic

of many discussions (see e.g., [45, 71]). Indeed, Fig 9 showed that in the presence of diffusion,

we could obtain a nonzero voltage gradient even in the absence of neuronal sources, an obser-

vation which is incompatible with the notion of a strictly electroneutral ECS. However, it has

been shown that invoking the electroneutrality assumption is equivalent to invoking the limit

of the exact PNP treatment when charge-density-dependent effects become small [71], and

that the electroneutralmodel works as an excellent approximation at spatiotemporal scales

larger than microseconds and micrometers [52, 65].

Diffusion potentials. Diffusion-generatedpotentials are well known in electrolyte theory.

Often they are referred to as liquid junction potentials, since they are most pronounced at the

boundary between two solutions of different ion composition [20–22, 72].

In reality, the genesis of liquid junction potentials is a three-step process that requires (i) ini-

tial ion-concentration gradients that are such that diffusionwill drive a net electrical charge in

some direction, (ii) a charge separation associated with the diffusive process, and (iii) an elec-

trical potential that arises from the charge-separation process, and opposes further charge sep-

aration. This diffusion-generatedpotential (iii) represents a quasi steady-state scenario where

electrical drift and diffusive drift are opposing and in equilibrium. Simplified equations for

computing diffusion potentials include the Henderson equation and the Goldman-Hodgkin-

Katz equation (see e.g., [22], and S2 Appendix). The relaxation towards this quasi-steady state

occurs very rapidly, i.e., on the nanosecond timescale [73]. Furthermore, the number of ions

that constitute the net charge density during equilibrium is about nine orders of magnitudes

smaller than the number of ions present [72]. The KNP formalism bypasses the rapid equili-

bration process by assuming that the quasi-steady state is reached instantaneously, and derives

the value for V associated with the equilibrium state. In doing so, the KNP formalism implicitly

neglects the tiny local charge separation associated with the charge relaxation process.

To get an intuitive understanding of the diffusion potential, it may help to compare it with

the (in neuroscience)more familiar cellular resting potential, which is typically computed from

the Goldman-Hodgkin-Katz (GHK) equation (see S2 Appendix). The GHK-equation predicts

the equilibrium potential between two compartments A and B with different ion compositions,

i.e., the potential difference at which the diffusive current from A to B equals the field driven

current from B to A. When the resting potential is computed, the compartmentsA and B repre-

sent the inside and outside of an excitable cell membrane. However, if we let A denote the sub-

volume n = 1 where the ion concentrations (by constraint) had the baseline values (Table 1),

and let B denote the compartment n = 3 with concentrations as in Fig 9 at t = 42 s, the GHK

equation (see S2 Appendix) predicts a potential difference of −0.17 mV between the two com-

partments. This agrees with the value we got in Fig 9 when neuronal sources were turned off at

t = 42 s.

Extracellularconductivity. Unlike in volume-conductor theory, where a fixed value typi-

cally is used for the ECS conductivity [18, 32–34], the KNP formalismmodels the conductivity

(σ) as a function of the number of free ionic charge carriers, weighted by their mobility and

valence (cf., Eq 11). In neural tissue, the main charge carriers are typically believed to be
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K+, Na+, and Cl-. The model included K+, Na+, Ca2+ and an unspecified anion species (X-).

The latter essentially represented Cl- in the biological system and was given the same baseline

ECS concentration and diffusion constant as Cl-. The model thus included the main charge car-

riers, and with the initial ion concentrations that we used, we obtained an ECS conductivity

(σ = 0.76 S/m).

In the literature, there are quite some variations in values that are given for the ECS conduc-

tivity, and also variations in how this quantity is defined. In the current study, we used the

porous medium approximation [74], and explicitly accounted for the fact that ECS currents

only go through a volume fraction of about 0.2 of the tissue volume (see methods). However, it

is common to rather define an apparent tissue conductivity, σ0, which is defined using the tissue

as a whole as reference volume for ECS currents [4]. In our case, the apparent conductivity was

thus σ0 = ασ ’ 0.15 S/m. For comparison, Chen and Nicholson found an apparent conductiv-

ity of σ0 = 0.1 S/m [4], while other computational studies of local field potentials and current-

source densities have used values σ0 * 0.3 S/m [18, 32–35, 75]. Our estimate thus lies between

the previously estimated values for σ0, and is relatively close to the value used by Chen and

Nicholson [4].

Relative variations in ion concentration were quite small in the simulations studied here (at

least when it comes to the most abundant species). In addition, such variations tended to be

asymmetric (e.g., decreases in K+ were accompanied by increases in Na+), meaning that varia-

tions in the net number of free charge carriers were even smaller than variations in individual

ion species. Therefore, σ only varied by a few percent relative to the initial value during simula-

tions. As verified in additional test simulations where σ was pegged at the initial values, these

variations had no significant effect on the simulation results.

Albeit its concentration-dependentmagnitude, the conductivity (as defined here) was essen-

tially a pure, resistive conductor, i.e., it was independent of the frequency of currents passing

through it. A frequency independent conductivity finds support in recent experiments [76]

(although there are also experiments that have indicated otherwise [77]).

Model assumptions

The simplifiedmodel set-up used here have several limitations. Firstly, V was computed as an

averaged value over a large ECS volume, and comparison between this and experimental

recordings of V with point-like electrodeswith small contacts is not straightforward. Secondly,

brain tissue contains many types of neurons, which are distributed with somata in different

depth layers (see, e.g., [18, 69, 78]), whereas we only included one. Thirdly, we did not include

synaptic connections between neurons. Such connections could induce a level of synchrony in

the neuronal firing, which likely would influence the power spectrumof the ECS potential [16,

35]. Fourthly, we assumed that spatial variations in the electric potential and ion concentra-

tions occurred only in one spatial dimension. This is clearly not strictly true, and some aspects

of the estimated power spectra are likely to depend on the three-dimensional nature of the real

system. Fifthly, the presently usedmulticompartmental neuronal model [62] (together with

most other available multicompartmental models) does not include ionic uptake mechanisms

such as Na+/K+-pumps. Such mechanisms, along with glial uptake mechanisms [28, 79], would

generally act to maintain the ECS ion concentrations closer to the baseline levels than what we

predicted with our model. These shortcomings are discussed in further detail below.

No feedback from extracellular space to neurons. To compute the ion-concentration

dynamics in the ECS (Fig 5), we counted the number of ions exchanged between the neurons

and the ECS in simulations of the multicompartmental neural model [62]. For simplicity, we

assumed that that there was no feedback from the ECS dynamics to the neurons. That is, we
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did not account for changes in neural reversal potentials due to changes in ECS ion concentra-

tions [9, 12], or ephaptic effects of ECS potentials on neuronal membrane potentials [53, 80–

82]. Such feedbackmechanisms would likely influence the neurodynamics. However, we do

not believe this to be a main concern with the current study, as the main focus was not the neu-

rodynamics as such, but rather the ECS dynamics resulting from it. Having no feedback also

gave us the advantage that we could have exactly the same neurodynamics when comparing

the ECS dynamics in the cases without or with diffusion in the ECS.

Unspecific ion species. Only a subset of the transmembrane currents in the multicom-

partmental neuron model [62] were ion specific, and we therefore assumed that all non-specific

currents were mediated by an unspecified anion species (X-). For simplicity, we assumed that

all non-specific currents (including the leakage current, synaptic currents, and the currents

through non-specific, active ion channels were mediated by the same ion species X-.

Although this is an inaccurate assumption (e.g., leakage currents are composed of several

ion species, and not only one, and the ion channel Ih in the neural model [62] is in reality a cat-

ion-channel), it was not critical for the simulation outcome. One reason for this is that the ECS

ion concentrations did not have any significant effects on the ECS conductivity (as clarified

above), so that the field currents depended little on the composition of ions in the ECS. As for

the diffusive currents, the concentration gradients were most dramatic for K+ and Na+, and the

remaining ion species (X- and Ca2+) gave only minor contributions to ECS diffusion. A subdi-

vision of X- into different ionic species would therefore expectedly not change our qualitative

findings.

Simplified neuronalmodel system. Albeit internally consistent, the model system repre-

sented a crude simplification of the complexity of real tissue, where an intricate circuitry of

many different neuron species are likely to contribute to the ECS dynamics. The small popula-

tion of 10 pyramidal cells used in the current study will likely create a bias towards strong con-

centration gradients surrounding the soma subvolume (n = 3 in Fig 1). In addition, brain tissue

contains neuronal [83] and glial [2, 3, 6] uptake mechanisms (in particularNa+/K+-exchang-

ers), which were not included in the current model. Such uptake mechanisms work to keep

ECS concentrations close to baseline levels, and significant changes in ECS ion concentrations

are therefore likely to occur only in cases when the neuronal activity level is too intense for

such clearance mechanisms to keep up. The ionic concentration gradients predicted in Fig 5

are therefore likely to be an overestimation of the ion-concentration gradients that would real-

istically build up during the relatively moderate AP firing activity of the small neuronal popula-

tion considered here. For comments on how non-included cellular mechanisms could

influence the main findings in this work, we point to the discussion below on effects of ECS dif-

fusion currents on measured PSDs.

Volume-averaged potential. Recorded ECS potentials depend on the distances between

the recording electrode and the neuronal current sources [31]. For example, ECS signatures of

APs are only large in the vicinity of the neural membrane, while slower signals can have a lon-

ger spatial reach [33, 35]. A direct comparison betweenV as determined by the formalism pre-

sented here (averaged over a ECS subvolume), and Vmeasured by point electrodes,would

require a generalization of the model to three spatial dimension, using a relatively fine spatial

resolution. However, also in the present implementation, V was determined from current con-

servation laws, and followed the same time course as (Fig 4) the ECS signals seen in previous

studies [33, 35]. In addition, the estimates of V in the current work showed sustained ECS pro-

files (Fig 5) that were qualitatively similar to those observed experimentally [1, 3]. We thus

believe that the large scale (volume averaged) V considered in the current study represents a

useful quantity for assessing relative contributions of field currents and diffusive currents at a

tissue level.
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Correlation effects introducedwith population size and geometry. Two important

model assumptions could influence the scaling of the PSD observed in this study: the grouping

of N neurons into a joint population output IM into each ECS subvolume, and the assumption

of a 1D system geometry.

Regarding the population size, theN neurons in the current model received uncorrelated

synaptic input, but with the same (time-averaged) input statistics. This means that theN neu-

rons produced output where the fast components were uncorrelated (e.g., APs were unique for

individual neurons) and the slow components were correlated (e.g., the time averaged output

was the same for all neurons). Thus, we would expect the high-frequencypart of IM to sum as

uncorrelated noise (the amplitude scales roughly like
ffiffiffiffi

N
p

), and the low-frequency part to sum

as correlated signals (the amplitude scales roughly likeN). That is, the PSD would be depen-

dent on the system size, so that an up-scaling of the system (increasing population sizeN and

ECS volume by the same factor) would penalize the high-frequencypart of the PSD relative to

the low-frequency part. Such population effects have been demonstrated in a previous study,

where the high frequency part of the ECS potential was found to scale sublinearly with the

number of APs elicited in a volume [33].

Similarly, correlation-related effects could also be introduced with the 1D-assumption. In a

hypothetical 3D model, the population in Fig 1 would be surrounded by similar populations.

In the 1D model, the ECS currents in the lateral directions were by construction zero, which

would be equivalent to having zero gradients of the voltage and concentration in the lateral

directions. In a (hypothetical) 3D model, this would only occur in the case when neighboring

populations were perfectly correlated, which is then an implicit assumption in the 1D model.

This could be a good assumption for slow frequency components, but not for the fast compo-

nents (i.e., the neighboring populations could share input statistics, but not exact AP-spike

times). Hence, a transition to a 3D model would likely also penalize the high-frequencypart of

the PSD relative to the low-frequency part.

Diffusive currents were mainly found to influence the slow components of the PSD, and it is

unclear whether the key findings regarding these would be influenced by choice of population

size and model dimensionality. This would, however, be a natural topic for future investiga-

tions (see below).

Model predictions

In the current sectionwe discuss the predictions that we made regarding diffusion-generated

electric potentials, and to which degree these can be expected to reflect realistic experimental

scenarios. To clarify the discussion, we start by labeling the three situations that we have stud-

ied P1, P2, and P3, respectively. We refer to Fig 9B3 and 9B4, where all three situations (P1–

P3) are represented. The blue line (P1) represents ECS dynamics surrounding an active neuro-

nal population in the realistic scenario described by the full electrodiffusive formalism. The red

line (P2) represents the situation where ECS diffusionwas neglected so that the ECS potential

was given exclusively by the distribution of transmembrane sources (cf., standard volume-con-

ductor theory [32]). Finally, the black line (P3) represents the situation where the neuronal

sources had been turned off, so that the ECS potential was driven exclusively by concentration

gradients in the ECS. The concentration gradients could in principle be imposed as an initial

condition in the system, independent of the neural model, meaning that P3 and P2 were essen-

tially independent processes. As we shall see below, this independence is useful for analyzing

our results, and for comparing them to previous studies.

Magnitude of diffusion-generatedpotential (P3). Figs 6 and 9 showed that the diffusion-

generated potential shifts in the ECS developed on a slow time scale. Slowly varying ECS
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potentials have also been reported in several experimental studies, and may be of the order of

several millivolts [1, 3, 13, 23–26]. Generally, the main source of these slow potentials is not

believed to be ECS diffusion, but rather glial buffering currents triggered by increases in ECS

K+ concentrations [3], i.e., on transmembrane current sources that were not included in the

computational model studied here. However, based on recorded concentrations differences

between different cortical layers during neuronal hyperactivity, Dietzel et al. [3] estimated

(using the Henderson equation [84]) that ECS diffusion could contribute to such shifts by max-

imally 0.4 mV, a finding that they also verified experimentally in a simplified setup. These esti-

mates depended solely on differences in ion-concentration compositions between different

cortical regions, and could thus be compared to our scenario P3. For the concentration gradi-

ents built up at the time when the neuronal currents were turned off (t = 42 s), we predicted a

diffusion generated potential of about 0.17 mV (Fig 9). This was smaller than, but of the same

order of magnitude as the maximal shifts estimated in [3].

The magnitude of diffusion potentials depends on spatial variations of ion concentrations,

and may be large in non-biological systems (see e.g., [85]). In brain tissue, however, concentra-

tion differences are likely more moderate, and diffusion potentials larger than a few tens of a

millivolt will probably be rare.

Power spectrumof diffusion-generatedpotential (P3). While the magnitude of slow dif-

fusion potentials finds support in previous experimental studies, no previous study has to our

knowledge systematically investigated the PSD associated with their temporal development. In

the current study we found that diffusion could have an effect on the PSD for frequencies as

high as*10 Hz. In the discussion following Fig 9B3, we suggested that we could approximate

the frequency range where diffusion had an effect with the frequency range where the PDS of

the diffusive process alone (P3) had a magnitude that was similar to, or higher than, the PSD

predicted from the transmembrane sources alone using volume-conductor theory (P2). We

note that this is only an approximation, i.e., without neuronal sources as in process P3, the ion-

concentration dynamics and thus ECS diffusionwere not identical to that in the full model

(P1). The approximation was useful as it allowed us to compare two independent processes (P2

and P3). Whether the predicted frequency range was realistic, can then be boiled down to a

question regarding the realism of the PSDs obtained separately for the neuronal model (P2)

and with pure ECS diffusion (P3).

The analysis of P3 led to the clear observation that the (undisturbed) diffusion potential fol-

lowed a 1/f 2 power law, as we also predicted analytically (see S1 Appendix). The realism of the

diffusion-generatedECS potentials (P3) depend predominantly on whether the ion-concentra-

tion gradients as such were physiologically realistic, i.e., independently of which underlying

neuronal process gave rise to them. Regarding ECS concentrations, most experimental data are

available for K+, and the simulated K+ concentrations were within the range reported experi-

mentally in different systems [1, 3, 4, 6, 8, 24, 86, 87]. For example, the simulated K+ gradients

in Fig 5B bear some resemblance to K+ concentration gradients seen in the experiments by

Cordingley and Somjen, where the K+ concentration varied with about 4 mM over the depth of

cortex (see Fig. 5 in [1]). In line with previous estimates, the simulated shifts in the concentra-

tions of other included ion species were smaller or of the same order of magnitude as for K+ [3,

88], and should also be physiologically realistic.

As for the temporal aspect, the simulated ion-concentration variations occurred at a time-

scale of tens of seconds, which is also similar to what has been seen in experiments (see e.g.,

[3]), although faster shifts can be induced under specific stimulus conditions [1]. We thus

believe that the PSD obtained with the diffusive currents simulated here should be a realistic

prediction of what one could observe experimentally under physiological conditions with large

ECS concentration gradients.
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In the current work, diffusive potentials arose due to large scale concentration gradients in

the ECS bulk solutions. We note that these diffusive effects relate to a different phenomenon

than the diffusion-evoked1/f-filtering effects proposed by Bedard and Destexhe (with co-

workers). These authors developed a mean-field description of neuronal tissue (comprising

both membranes and ECS), and incorporated diffusion-evoked frequency-filteringeffects in

terms of a complexWarburg impedance [41–43, 89–91]. They argued that the Warburg effects

arises due to highly localized diffusion processes in the membrane-near Debye-layers when

charge is transferred from the intracellular to extracellular space [90, 91]. Traditionally, the

Warburg impedance has been derived for complex interactions at interfaces between elec-

trodes and electrolytes, where the chemical reactions necessary for transferring charge

between the electrode surface and electrolyte requires a continuous, diffusion-dependent,

reshuffling of local ions [92, 93]. The physical argument to why similar effects should take

place close to neuronal membranes is presently unclear, and a complex conductivity, account-

ing for such possible effects of membrane-near filtering, was not included in the present

model. In any case, such putative Warburg-type effects arising close to the membrane and the

diffusion potentials evoked by large scale ECS concentration gradients describe different and

complementary effects that ionic diffusion could have on the LFP, and are not a priori in

contradiction.

Power spectrumof membrane source-generatedpotential (P2). The realism of the

membrane-current generated ECS potentials (P2), on the other hand, depend on whether neu-

ral population model was sufficiently detailed to generate ECS potentials that one would expect

under realistic experimental conditions.

It is generally not trivial to constructmodels that reproduce experimentally recorded PSDs

[17]. Previous studies have shown these to be sensitive to the distribution and balance between

excitatory and inhibitory synapses on the neuronal membranes [33, 36]. Furthermore, the LFP

is also likely to receive contributions from a large fraction of neurons that are not firing APs,

but receiving synaptic input, so that they still participate in generating the low powers of the

PSD [33]. In addition, different aspects of the LFP has been found to depend on neuronal mor-

phology, subcellular distributions of membrane mechanisms, and the level of synchrony

between neighboring neurons [18, 19, 33, 35, 94–96].

In the case of large deviances from baseline ECS concentrations, also glial bufferingmecha-

nisms [3, 16] and neuronal uptake mechanisms such as Na+/K+-exchangers [83] could consti-

tute additional slow membrane currents that could influence the low frequencies of the LFP.

Generally, such mechanisms also act to reduce concentration gradients in the ECS.Whereas

the concentration gradients seen in the current simulations (not including uptake mechanisms)

were realistic, such gradients would probably under most conditions require a higher neural

activity level (P2) than in the current model, since the neuronal output would need to out-com-

pete uptake mechanisms in order to generate ECS gradients.

Inhibitory synapses, inactive neurons, ion pumps and glial bufferingmechanisms were

not included in the model considered here. In a realistic scenario, it is likely that these mech-

anisms could enhance the membrane-current induced (P2) contribution to the lowest fre-

quencies in the PSD compared to what we predicted in the current model (see below for

further discussion on this).

Power spectrumof the full electrodiffusivemodel (P1). The PSDs seen in ECS record-

ings is a highly complex topic. Generally, the frequency scaling is multifactorial, dependent on

state (sleep/wake) [97], neural correlation/decorrelation [35, 95], size of active populations

[35], morphology of nearby, active neurons [34, 98], specific activity (spiking frequency/synap-

tic input) of nearby neurons [33], and possibly by frequency filtering within the extracellular

medium [41, 97] and diffusion along extracellular concentration gradients, as seen here.
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If different causes for frequency scaling are linearly dependent (mathematically, this

means that two processes can be expressed as a convolution), it leads to addition of the indi-

vidual powers (exponents). For example, if an incoming spike train triggers synaptic currents,

and both the underlying processes have a 1/f 2 frequency scaling, the net scaling will be 1/f 4.

As indicated in Fig 9, the large-scale diffusion process considered in the current work is quite

independent of other processes, and the power (exponent) from diffusion does not add to the

powers (exponents) of the transmembrane sources. In this regard, the large-scale diffusion

effects differ from theWarburg-type filtering effects hypothesized in some other works to

take place in thin sheaths surrounding neuronal membranes [90, 91]. This implies that large-

scale diffusionwill will exhibit its characteristic 1/f 2 frequency scaling, and will be visible in

the PSD only in the frequency range where diffusion is the dominant process (when such a

range exists). It also means that the presence of diffusion is not in conflict with observing an

undisturbed power law generated by other processes (this would only imply that the other

process dominates).

As we have argued above, the PSD predicted for the diffusive process (P3) should be physio-

logically realistic (for large concentration gradients), while the low-frequency components of

the membrane-current induced PSD in our model (P2) may be an underestimation of what

would be expected in a real system. If additional (slow) membrane mechanisms were included,

we would expect the range of frequencies where diffusion dominated the PSD (and the crossing

point between the red line (P2) and black line (P3) in Fig 9B3) to be shifted towards lower fre-

quencies (i.e. lower that the 1–10 Hz found here, and in many cases, possibly to frequencies

below the cut-off frequency used in LFP recordings). However, given the steepness (1/f 2) of the

diffusion-generatedPSD, a cross-over frequency below which diffusion dominates the PSD, is

still likely to occur, especially under conditions where we can expect large extracellular concen-

tration gradients. By prediction, we would then expect to observe a diffusion evoked 1/f 2 scal-

ing for some low-frequency range of the PSD.

A 1/f 2 scaling for low frequencies has indeed been observed in cerebral areas of human

patients with epilepsy [99, 100], a pathological condition which is strongly associated with dra-

matic changes in ECS concentrations [101]. A similar scaling was found in slices from rat hip-

pocampus when epileptic-seizure-like events were induced [102]. It should be noted, however,

that also processes other than diffusion can give rise to a 1/f 2 scaling of the PSD [41, 99], and

that the 1/f 2 scaling in one of the cited studies was originally explained by slow-wave state tran-

sitions between up/down states [99].

Implication for current source density estimates

A common starting point for the estimation of the current-source density CSD(x, y, x) from

the ECS potentialV(x, y, z) is [37, 39]:

rðsrVÞ ¼ �CSD ð1Þ

The left hand side is the divergence of the ECS currents, and an implicit assumption in this

equation is that only electric currents driven by the electrical field is present in the ECS, i.e.,

solely Ohmic current densities given by if = −σrV. If also diffusive ECS currents were

accounted for, the corresponding equation would be:

rðsrVÞ � rid ¼ �CSD; ð2Þ

where the diffusive current density is a function of ionic concentrations in the ECS (seeMeth-

ods, Eq 9). The use of Eq 1 for predicting the CSD could thus lead to a misinterpretation of dif-

fusive ECS currents (if present in the real system) as neuronal current sources.
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An example where experimental recordings seems to disagree with the standard CSD theory

(Eq 1) was reported recently by Riera et al. [30] who found that the estimated instantaneous

current-source density (CSD) from recorded ECS potentials did not sum to zero over the vol-

ume of the barrel column. According to the standard CSD-theory, this would indicate the pres-

ence of a non-zero current-sourcemonopole on a mesoscopic (cell population) scale. The

possible origin of these apparent current monopoles was later debated [30, 103–106]. A non-

negligible diffusive source term, cf. Eq 2 could be one (of several) possible explanations of this

discrepancy between experiments and original CSD-theory.

Outlook

The model presented here was a simplified one, both in terms of using a 1D geometry and in

terms of neglecting several neuronal and glial mechanisms that would likely contribute to the

generation of the LFP. A future ambition is to expand this framework to a 3D model that also

accounts for more of the complexity of neuronal tissue, and includes effects of neuronal and

glial ionic uptake mechanisms (ion pumps). A 3D version of the KNP framework could ideally

be combined with existing, comprehensive simulators of large neuronal networks such as the

Blue Brain simulator [69]. We believe that such a framework would be very important for the

field of neuroscience as it not only would be useful for exploring how diffusive currents can

have an impact on ECS potentials, but also to simulate various pathological conditions related

to ion-concentration dynamics in neural tissue [9, 13–15, 101, 107].

Materials and Methods

From a method-development point of view, the main contribution of this work was the devel-

opment of a hybrid scheme (Fig 1) for combining the NEURON-simulator [60] (used to simu-

late the dynamics of a neuronal population), with the KNP formalism [28, 57] (used to

compute the dynamics of ion concentrations and the electrical potential in the ECS surround-

ing the neuron population). The two components used in this scheme are presented in further

detail below.

Kirchhoff-Nernst-Planck formalism for extracellular dynamics

What we have here coined the Kirchhoff-Nernst-Planck formalism, was originally developed for

computing the intra- and extracellular dynamics of ion concentrations and the electrical poten-

tial during astrocytic K+ buffering [28]. In the current application, it was only applied in the

ECS (the intracellular space was handled with the NEURON-simulator). For simplicity, we

assumed that spatial variation only occurred in one spatial direction (z-direction), and thus

that we had lateral homogeneity of all state variables.

Continuity equation. The KNP formalism represents a way of solving the continuity

equation for the ionic concentrations (ckn (mol/m3)), and is here derived for the system sketched

in Fig 1B. The ECS is subdivided into a number ofN = 15 subvolumes of length lc and cross sec-

tion area Ac. Using data from cortex (as in [35]), we assume that the average surface area per

neuron is about 300 μm2, so that the ten neurons used in our simulations occupy a surface area

Ac = 3000 μm2. The vertical length of a subcompartments is set to lc = 100 μm, so that the neu-

ron (having a vertical extension of slightly below 1300 μm) occupy the interior 13 subvolumes.

In each subvolume n, the concentrations of all present ion species k are assumed to be

known. Ions may enter the subvolume either via (i) transmembrane fluxes from neurons that

exchange ions with the subvolume (JkM), (ii) diffusive fluxes between neighboring subvolumes

(Jkd), or (iii) field fluxes between neighboring subvolumes (Jkf). The formalism computes the

ECS fluxes (in mol/s), and can be applied together with any selection of neuronal sources. For
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now, we assume that the transmembrane fluxes JkM for all ion species as well as the transmem-

brane capacitive current (which will be relevant below) are known (e.g., determined from a sep-

arate simulation using, e.g., the NEURON simulator [60], as we shall return to later). The

continuity equation is (in discretized form):

aAclc
@ckn
@t

¼ JkMn þ Jkdn�1;n � Jkdn;nþ1
þ J

kf
n�1;n � J

kf
n;nþ1

ð3Þ

where we have used the notation that Jn−1,n denotes the flux from subvolume n − 1 to subvo-

lume n. The extracellular fluxes are describedby the Nernst-Planck equations [108]:

Jkdn�1;n ¼ � aAc
lc

Dk

l
2
ðckn � ckn�1

Þ; ð4Þ

and

J
kf
n�1;n ¼ � aAc

clc

zkDk

l
2

ckn�1
þ ckn
2

ðVn � Vn�1
Þ; ð5Þ

where the factor ψ = RT/F is defined in terms of the gas constant (R = 8.314 J/(mol K)), the

absolute temperature (T), and Faraday’s constant (F = 96,485 C/mol).

We have used the porous medium approximation, characterized by the parameters α and λ
[74]. The parameter α represents the fraction of the tissue volume being ECS, and we used the

value α = 0.2 [4, 74]. The prefactor αAclc in eq 3 then equals the ECS volume of a subvolume n.

The extracellular tortuosity λ represents miscellaneous hindrances to motion through neuronal

tissue [4, 74, 109], and gives rise to a reduced effective diffusion constant ~Dk ¼ Dk=l2 whereDk

is the diffusion constant for ion species k in dilute solvents. We used the value λ = 1.6 [4], and

standard values for the diffusion constants [110]: ~DK ¼ 1:96� 10
�9m2=s,

~DNa ¼ 1:33� 10
�9m2=s, ~DCa = 0.71 × 10−9m2/s and ~DX ¼ 2:03� 10

�9m2=s (Here, X is an

unspecified ion species (see below), for which we used the diffusion constant for Cl-).

We assume that the edge subvolumes (n = 1 and n = N) represent a backgroundwhere ion

concentrations remain constant. The continuity equation then governs the ion-concentration

dynamics in all theN − 2 interior subvolumes. If we include a number K of different ion spe-

cies, the continuity equation (Eq 3) for n = 2, 3, . . .,N − 1 and k = 1, 2, . . ., K gives us K(N − 2)

conditions for the K(N − 2) ion concentrations ckn in theN − 2 subvolumes where ion concen-

trations are dynamically changing. However, the continuity equation also includesN state vari-

ables for the potentialVn in all subvolumes (including the edges).We thus needN additional

constraints to fully specify the system.

Derivation of extracellularpotential. In the following, we derive expressions for the ECS

potential (Vn) based on the principle of Kirchhoff ’s current law, and the assumption that the

bulk solution is electroneutral [28]. To do this, we multiply the continuity equation (Eq 3) by

Fzk, take the sum over all ion species k, and obtain the continuity equation for electrical charge:

@qn
@t

¼ IMn þ Idn�1;1 � Idn;nþ1
þ I

f
n�1;n � I

f
n;nþ1

ð6Þ

Here, we have transformed fluxes/concentrations into electrical currents/charge densities by
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use of the general relations [108]:

IMn ¼ F
X

k

zkJkMn
� �

; ð7Þ

qn=ðaAclcÞ ¼ rn ¼ FSk z
kckn

� �

; ð8Þ

Idn�1;n ¼ FSk z
kJkdn�1;n

� �

¼ � FaAc
lc

Sk

zkDk

l
2
ðckn � ckn�1

ÞÞ
� �

ð9Þ

and

I
f
n�1;n ¼ F

X

k

zkJ
kf
n�1;n

� �

¼ � aAc
lc

sn�1;nðVn � Vn�1
Þ; ð10Þ

where zk is the valence of ion species k and F is Faraday’s constant. In Eq 10, we also defined

the conductivity (units (Om)−1)for currents between two subvolumes n − 1 and n as:

sðn� 1; nÞ ¼ F
X

k

DkðzkÞ2

l
2
c

ckn�1
þ ckn
2

� �

ð11Þ

At time scales larger than nanoseconds, bulk solutions can be assumed to be electroneutral

[111]. In our scheme, bulk electroneutrality implies that any net ionic charge entering an ECS

subvolume must be identical to the charge that enters a capacitive neural membrane within

this subvolume. This is also an implicit assumption in the cable equation (see, e.g., [28, 64, 108,

112]) upon which the NEURON simulator is based.With this assumption at hand, the conti-

nuity equation for charge (Eq 6) becomes useful for us, as it is governed by a constraint that we

did not have at the level of ion concentrations (Eq 3). Electroneutrality in the bulk solution

implies that the net charge entering an ECS subvolume (the time derivative of qn in Eq 6) must

be identical to the charge which accumulates at the neuronal membrane and gives rise to the

neurodynamics. This means that the time derivative of qnmust be equal to the capacitive cur-

rent that we know from the NEURON simulator:

@qn
@t

¼ �Icapn ð12Þ

Thus, qn (in Eq 6) is not an independent state variable, but an entity given from the NEURON

simulation (i.e., an input condition to the ECS).With this at hand, we can rewrite Eq 6) on the

form:

�Icapn � IMn ¼ Idn�1;1 � Idn;nþ1
þ I

f
n�1;n � I

f
n;nþ1

ð13Þ

We now see that Eq 13 is simply Kirchhoff ’s current law, and states that the net current into an

ECS volume n is zero, cf. Fig 1C. If we insert Eq 10 for If, Eq 13 becomes:

sn�1;nVn�1
� ðsn�1;n þ sn;nþ1

ÞVn þ sn;nþ1
Vnþ1

¼ lc
aAc

�Icapn � IMn � Idn�1;1 þ Idn;nþ1

� �

ð14Þ

We note that IMn was defined as the net ionic transmembrane current (Eq 7), and that it does

not include the capacitive current.We further note that Eq 14 for a subvolume (n) depends on

the voltage levels in the two neighbouring subvolumes (n − 1 and n + 1), and thus only gives us

N − 2 conditions, i.e., one for theN − 2 inferior volumes. We need two additional criteria for

the edge subvolumes (n = 1 and n = N). As we may chose an arbitrary reference point for the
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voltage, we may take the first criterion to be:

V
1
¼ 0 ð15Þ

As the second criterion, we impose a boundary condition stating that no net electrical cur-

rent is allowed to pass between the subvolumes n = N − 1 and n =N (i.e. no net electrical cur-

rent enters/leaves the system from/to the constant background). Since there may be a diffusive

current between these two subvolumes (ckN�1
is not constant), this criterion implies that we

must defineVN so that the field current is opposite from the diffusive current

(IdN�1;N þ I
f
N�1;N ¼ 0). If we insert for If (cf., Eq 10), this condition becomes:

sN�1;NðVN�1
� VNÞ ¼

lc
aAc

IdN�1;1 ð16Þ

The conductivity (σ) and the diffusive currents (Id) are defined by ionic concentrations in

the ECS, whereas we assumed that the neuronal output (Icap and IM) was known. Eqs 14–16

thus give usN equations for theN voltage variablesVn. In matrix form, we can write the system

of equations (Eqs 14–16) as:

AV ¼ b; ð17Þ

whereV is a vector containing the potentialVn in allN subvolumes, and b is a vector withN

elements given by:

bn ¼

0 for n ¼ 1

lc
aAc

�Icapn � IMn � Idn�1;1 þ Idn;nþ1

� �

for n ¼ 1; 2; :::;N � 1

lc
aAc

IdN�1;1

� �

for n ¼ N

8

>

>

>

>

>

<

>

>

>

>

>

:

ð18Þ

TheN × Nmatrix A:

A ¼

a
1;1 a

1;2 0 0 � � � 0

a
2;1 a

2;2 a
2;3 0 � � � 0

0 a
3;2 a

3;3 a
3;4 � � � 0

.

.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.
.

0 0 � � � aN�1;N�2
aN�1;N�1

aN�1;N

0 0 � � � 0 aN;N�1
aN;N

0

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

A

ð19Þ

is a tridiagonalmatrix. The diagonal above the main diagonal is given by:

an;nþ1
¼

0 for n ¼ 1

sn;nþ1
for n ¼ 2; 3; :::;N � 1

(

ð20Þ

The diagonal below the main diagonal is given by:

an;n�1
¼ sn;nþ1

for n ¼ 2; 3; :::;N
�

ð21Þ
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The main diagonal is given by:

an;n ¼
1 for n ¼ 1

� sðn� 1; nÞ þ sðn; nþ 1Þð Þ for n ¼ 2; 3; :::;N � 1

�sðN � 1;NÞ for n ¼ N

8

>

<

>

:

ð22Þ

For each time step in the simulation, we can determineVn by solving the algebraic equation

set:

V ¼ A�1b; ð23Þ

whereA−1 is the inverse of the matrix A.

When we ran simulations where diffusionwas not included, Jd was simply set to zero in the

continuity equation (Eq 3), and Id was set to zero in the equation where the ECS potential is

derived (Eq 18).

Initial conditions. As initial conditions, we assumed that all ECS volumes were at poten-

tialVn = 0. The initial ion concentrations were also identical in all ECS subvolumes. We used

cK0 = 3 mM, cNa0 = 150 mM, cCa0 = 1.4 mM. These ion concentrations are quite typical for cere-

brospinal fluid [113]. To obtain an initial charge density of zero in the bulk solution, we com-

puted that the initial concentration for the unspecified anion should be cX0 = 155.8 mM:With

this value, we get that local charge density ρ/F = ∑zk ck0 = (1 × 3 + 1 × 150 + 2×1.4 − 1 × 155.8)

mM = 0. This value for cX0 is close to typical ECS concentrations for Cl- [113], and the unspeci-

fied ion X- can be seen as essentially taking the role that Cl- has in real systems.

Power spectrumanalysis. The power spectra (Fig 8) were computed with the fast Fourier-

transform in MATLAB (http://se.mathworks.com/) and filtered to give one value per 0.1 log

unit of the frequency.

Neuronal population dynamics

In the current work, the KNP formalism was used to predict the extracellular ion-concentra-

tion dynamics and electrical potential surrounding a small population of ten pyramidal cells.

The neural simulation used in this study was briefly introduced in the Results section, but is

presented in further detail here.

Pyramidalcell model. As neural model, we used the thick-tufted layer 5 pyramidal cell

model by Hay et al. [62], which was implemented in the NEURON simulation environment

[60]. The model was morphologically detailed (it had 196 sections, each of which we divided

into 20 segments), and had a vertical extension of slightly less than 1300 μm from the tip of the

basal dendrite to the tip of the apical dendrites. It contained ten active ion channels with differ-

ent distributions over the somatodendriticmembrane, including two Ca2+-channels (iCaT,

iCaL), five K+-channels (iKT, iKP, iSK, iKv3.1, iM) and two Na2+-channels (iNaT, iNaS). In addition,

it included a non-specific ion channel (ih) and the non specific leakage current ileak. The neuron

had a membrane capacitance of 1 μF/cm2 in the soma, and 2 μF/cm2 in the dendrites, and leak

conductances ranging between 0.0325 and 0.0589 mS/cm2 over the somatodendriticmem-

brane. We refer to the original publication for furthermodel details [62].

Synapsemodel. The neurons received Poissonian input trains through 10,000 synapses

per neuron, a typical number for cortical neurons [114]. Each synapse had a mean input spike

rate of 5 Hz. The synapses were uniformly distributed across the membrane so that the

expected number of synapses in a segment was proportional to its membrane area. A popula-

tion of ten neurons was simulated by running 10 independent simulations with the same neural

model. The synapse distribution and spike trains were regenerated for each of the independent

simulations (but with the same statistics in each case).
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The synapses were modelled as α-shaped synaptic conductances:

IðtÞ ¼
gmaxðt � t

0
Þ=t exp½1� ðt � t

0
Þ=t�; when t � t

0

0; when t < t
0

(

; ð24Þ

where t0 represents the time of onset. The time constant was set to τ = 2.0 ms. The maximal

conductances of the synapses were set to gmax = 0.042 nS. For this value, the input evoked an

average single-neuron action-potential (AP) firing rate of about 5 APs per second, which is a

typical firing rate for cortical neurons [35, 63].

Population output to ECS. The spatial extension of the cell morphology [62] was such

that the maximal spatial distance between two segments (from tip of basal dendrite to tip of

apical dendrite) was less than 1300 μm.We therefore considered a tissue depth of 1500 μm,

and subdivided it into N = 15 ECS subvolumes (depth intervals) of length lc = 100 μm, so that

the neurons occupied the interior 13 subvolumes. Each neural segment was assigned as belong-

ing to a particular subvolume n, determined by the spatial location of the segment midpoint. In

the setup, the soma was placed in subvolume n = 3, the basal dendrites were in subvolumes

n = 2, 3 and 4, and the apical dendrites were in subvolumes n = 3, . . ., 14. The multicompart-

mental model also included a short axon, which was, however, not based on the reconstruction

and hence had no fixed coordinates. We assigned the axonal segments into the same subvo-

lume as the soma, n = 3. The boundary subvolumes 1 and 15 contained no neural segments

(see Fig 1A).

The transmembrane current density (ikMseg ) of ion species k is available in the NEURON simu-

lation environment. It was multiplied by the surface area of the segment (Aseg) to get the net

current, and divided by Faraday’s constant (F) to get a net ion flux with units mol/s. During the

neural simulation, we grouped all currents that were carried by a specific ion species into the

net transmembrane influx/efflux of this ion species.We assumed that all non-specific currents,

including the synaptic currents (ileak, ih, isyn) were carried by a non-specific anion that we

denoted X-. In this way we could compute the net efflux of each ion species into a subvolume n:

JCaMn ¼ 1

2F

X

seg

ðiCaTseg þ iCaLseg ÞAseg

JNaMn ¼ 1

F

X

seg

ðiNaTseg þ iNaSseg ÞAseg

JKMn ¼ 1

F

X

seg

ðiKTseg þ iKPseg þ iSKseg þ iKv3:1seg þ iMsegÞAseg

JXMn ¼ � 1

F

X

seg

ðileakseg þ ihseg þ isynseg ÞAseg

ð25Þ

Here, the sum was taken over all neural segments (seg) of all 10 neurons contained in subvo-

lume n. The factor 2 in the denominator in the expression for JCaMn was due to Ca2+ having

valence 2, and the negative sign in the expression for JXMn was due to X− having valence -1. We

also kept track of the (non-ionic) capacitive currents, as required by the electrodiffusive formal-

ism (Eq 14):

Icapn ¼
X

seg

icapsegAseg ð26Þ

The intracellular dynamics was directly adopted from the originalmodel [62]. Transmembrane
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currents there had no effect on intracellular ion concentrations, except for Ca2+ concentration,

which was modelled to account for Ca2+ dependent K+ channels.

For technical reasons (concerningmemory usage), 84 s of output from a single neuron was

generated in the following way: First, we ran ten simulations, each producing 10 s of activity.

Next, we removed the initial 1.6 s of all the ten simulations, to remove the transient neuronal

activity observed initially in the simulations, leaving us with ten 8.4 s time series. Finally, these

were used as successive output periods from a single neuron, and combined into a total 84 s

time series.

Implementation

Simulations on the pyramidal cell model by [62] was run the NEURON/Python simulation

environment [60]. The ECS dynamics was computed separately with the KNP formalism,

using the neuronal output/input as an external input time series. The KNPmodel was imple-

mented in MATLAB (http://se.mathworks.com/). The MATLAB code (along with the neuro-

nal input time series) will be made publicly available at ModelDB (http://senselab.med.yale.

edu/modeldb).

Supporting Information

S1 Appendix. The diffusion-evoked1/f 2 power law in V.

(PDF)
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16. Buzsáki G, Anastassiou CA, Koch C. The origin of extracellular fields and currents–EEG, ECoG, LFP
and spikes. Nature reviews Neuroscience. 2012 Jun; 13(6):407–20. Available from: http://www.ncbi.
nlm.nih.gov/pubmed/22595786. doi: 10.1038/nrn3241 PMID: 22595786

Effect of Ionic Diffusion on Extracellular Potentials

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005193 November 7, 2016 32 / 38

http://www.sciencedirect.com/science/article/pii/0006899378908867
http://www.sciencedirect.com/science/article/pii/0006899378908867
http://dx.doi.org/10.1016/0006-8993(78)90886-7
http://www.ncbi.nlm.nih.gov/pubmed/209864
http://jp.physoc.org/content/335/1/393.short
http://dx.doi.org/10.1113/jphysiol.1983.sp014541
http://dx.doi.org/10.1113/jphysiol.1983.sp014541
http://www.ncbi.nlm.nih.gov/pubmed/6875885
http://onlinelibrary.wiley.com/doi/10.1002/glia.440020104/full
http://dx.doi.org/10.1002/glia.440020104
http://www.ncbi.nlm.nih.gov/pubmed/2523337
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1300867&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1300867&amp;tool=pmcentrez&amp;rendertype=abstract
http://dx.doi.org/10.1016/S0006-3495(00)76822-6
http://www.ncbi.nlm.nih.gov/pubmed/10827962
http://www.ncbi.nlm.nih.gov/pubmed/24744149
http://dx.doi.org/10.1007/s00429-014-0767-z
http://www.ncbi.nlm.nih.gov/pubmed/24744149
http://www.ncbi.nlm.nih.gov/pubmed/8340811
http://www.ncbi.nlm.nih.gov/pubmed/8340811
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2322935&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2322935&amp;tool=pmcentrez&amp;rendertype=abstract
http://dx.doi.org/10.1016/j.neuroscience.2004.06.008
http://www.ncbi.nlm.nih.gov/pubmed/15561419
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3749512&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3749512&amp;tool=pmcentrez&amp;rendertype=abstract
http://dx.doi.org/10.3389/fncom.2013.00114
http://www.ncbi.nlm.nih.gov/pubmed/23986689
http://www.ncbi.nlm.nih.gov/pubmed/16085109
http://www.ncbi.nlm.nih.gov/pubmed/16085109
http://dx.doi.org/10.1016/j.jtbi.2005.06.015
http://www.ncbi.nlm.nih.gov/pubmed/16085109
http://www.sciencedirect.com/science/article/pii/S030645220700855X
http://dx.doi.org/10.1016/j.neuroscience.2007.06.055
http://www.ncbi.nlm.nih.gov/pubmed/17826920
http://www.ncbi.nlm.nih.gov/pubmed/18297383
http://www.ncbi.nlm.nih.gov/pubmed/18297383
http://dx.doi.org/10.1007/s10827-008-0083-9
http://www.ncbi.nlm.nih.gov/pubmed/18297383
http://www.ncbi.nlm.nih.gov/pubmed/21667153
http://www.ncbi.nlm.nih.gov/pubmed/21667153
http://dx.doi.org/10.1007/s10827-011-0345-9
http://www.ncbi.nlm.nih.gov/pubmed/21667153
http://dx.doi.org/10.1152/physrev.00027.2007
http://www.ncbi.nlm.nih.gov/pubmed/18923183
http://www.ncbi.nlm.nih.gov/pubmed/19490858
http://www.ncbi.nlm.nih.gov/pubmed/19490858
http://dx.doi.org/10.1016/j.jtbi.2009.01.032
http://www.ncbi.nlm.nih.gov/pubmed/19490858
http://www.ncbi.nlm.nih.gov/pubmed/25840424
http://dx.doi.org/10.1093/cercor/bhv054
http://www.ncbi.nlm.nih.gov/pubmed/25840424
http://www.ncbi.nlm.nih.gov/pubmed/22595786
http://www.ncbi.nlm.nih.gov/pubmed/22595786
http://dx.doi.org/10.1038/nrn3241
http://www.ncbi.nlm.nih.gov/pubmed/22595786


17. Einevoll GT, Kayser C, Logothetis NK, Panzeri S. Modelling and analysis of local field potentials for
studying the function of cortical circuits. Nature Reviews Neuroscience. 2013; 14:770–785. doi: 10.
1038/nrn3599 PMID: 24135696

18. Reimann MW, Anastassiou CA, Perin R, Hill SL, Markram H, Koch C. A biophysically detailed model
of neocortical local field potentials predicts the critical role of active membrane currents. Neuron.
2013 Jul; 79(2):375–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23889937. doi: 10.
1016/j.neuron.2013.05.023 PMID: 23889937

19. Herreras O, Makarova J, Makarov Va. New uses of LFPs: Pathway-specific threads obtained through
spatial discrimination. Neuroscience. 2015 Dec; 310:486–503. Available from: http://linkinghub.
elsevier.com/retrieve/pii/S0306452215008817. doi: 10.1016/j.neuroscience.2015.09.054 PMID:
26415769

20. van Egeraat JM, Wikswo JP. A model for axonal propagation incorporating both radial and axial ionic
transport. Biophysical journal. 1993 May; 64(4):1287–98. Available from: http://www.pubmedcentral.
nih.gov/articlerender.fcgi?artid=1262447&tool=pmcentrez&rendertype=abstract. doi: 10.1016/
S0006-3495(93)81495-4 PMID: 8388269

21. Sokalski T, Lewenstam A. Application of Nernst-Planck and Poisson equations for interpretation of
liquid-junction and membrane potentials in real-time and space domains. Electrochemistry Communi-
cations. 2001 Mar; 3(3):107–112. Available from: http://linkinghub.elsevier.com/retrieve/pii/
S1388248101001102. doi: 10.1016/S1388-2481(01)00110-2

22. Perram JW, Stiles PJ. On the nature of liquid junction and membrane potentials. Physical chemistry
chemical physics: PCCP. 2006 Sep; 8(36):4200–13. Available from: http://www.ncbi.nlm.nih.gov/
pubmed/16971988. doi: 10.1039/b601668e PMID: 16971988
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61. Lindén H, Hagen E, Łȩski S. LFPy: a tool for biophysical simulation of extracellular potentials gener-
ated by detailed model neurons. Frontiers in neuroinformatics. 2014; 7(41). Available from: http://
www.ncbi.nlm.nih.gov/pmc/articles/PMC3893572/. doi: 10.3389/fninf.2013.00041 PMID: 24474916
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Annalen der Physik. 1890; 276(8):561–576. doi: 10.1002/andp.18902760802

Effect of Ionic Diffusion on Extracellular Potentials

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005193 November 7, 2016 35 / 38

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2359793&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2359793&amp;tool=pmcentrez&amp;rendertype=abstract
http://dx.doi.org/10.1073/pnas.0801089105
http://www.ncbi.nlm.nih.gov/pubmed/18434544
http://arxiv.org/abs/0901.3914
http://msp.org/camcos/2009/4-1/p04.xhtml
http://msp.org/camcos/2009/4-1/p04.xhtml
http://dx.doi.org/10.2140/camcos.2009.4.85
http://link.springer.com/chapter/10.1007/978-94-017-9548-7_50
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3618345&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3618345&amp;tool=pmcentrez&amp;rendertype=abstract
http://dx.doi.org/10.1371/journal.pone.0060323
http://dx.doi.org/10.1371/journal.pone.0060323
http://www.ncbi.nlm.nih.gov/pubmed/23577101
http://dx.doi.org/10.1017/CBO9780511541612
http://dx.doi.org/10.1017/CBO9780511541612
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2636686&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2636686&amp;tool=pmcentrez&amp;rendertype=abstract
http://dx.doi.org/10.3389/neuro.11.001.2009
http://www.ncbi.nlm.nih.gov/pubmed/19198661
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3893572/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3893572/
http://dx.doi.org/10.3389/fninf.2013.00041
http://www.ncbi.nlm.nih.gov/pubmed/24474916
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3145650&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3145650&amp;tool=pmcentrez&amp;rendertype=abstract
http://dx.doi.org/10.1371/journal.pcbi.1002107
http://www.ncbi.nlm.nih.gov/pubmed/21829333
http://dx.doi.org/10.1073/pnas.0904143106
http://www.ncbi.nlm.nih.gov/pubmed/19805318
http://link.springer.com/article/10.1007/BF00217656
http://dx.doi.org/10.1007/BF00217656
http://dx.doi.org/10.1007/BF00961734
http://www.ncbi.nlm.nih.gov/pubmed/8792231
http://dx.doi.org/10.1371/journal.pcbi.1002160
http://www.ncbi.nlm.nih.gov/pubmed/21980270
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4182431&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4182431&amp;tool=pmcentrez&amp;rendertype=abstract
http://dx.doi.org/10.1371/journal.pone.0107780
http://www.ncbi.nlm.nih.gov/pubmed/25268996
http://dx.doi.org/10.1016/j.cell.2015.09.029
http://dx.doi.org/10.1016/j.cell.2015.09.029
http://www.ncbi.nlm.nih.gov/pubmed/26451489
http://dx.doi.org/10.1002/andp.18902760802


71. Feldberg S. On the dilemma of the use of the electroneutrality constraint in electrochemical calcula-
tions. Electrochemistry Communications. 2000 Jul; 2(7):453–456. Available from: http://linkinghub.
elsevier.com/retrieve/pii/S1388248100000552. doi: 10.1016/S1388-2481(00)00055-2
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