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Abstract

This article addresses the boundary layer flow and heat transfer in third grade fluid over an unsteady permeable stretching
sheet. The transverse magnetic and electric fields in the momentum equations are considered. Thermal boundary layer
equation includes both viscous and Ohmic dissipations. The related nonlinear partial differential system is reduced first into
ordinary differential system and then solved for the series solutions. The dependence of velocity and temperature profiles
on the various parameters are shown and discussed by sketching graphs. Expressions of skin friction coefficient and local
Nusselt number are calculated and analyzed. Numerical values of skin friction coefficient and Nusselt number are tabulated
and examined. It is observed that both velocity and temperature increases in presence of electric field. Further the
temperature is increased due to the radiation parameter. Thermal boundary layer thickness increases by increasing Eckert
number.
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Introduction

There is a substantial interest of the recent researchers in the

flows of non-Newtonian fluids. Such motivation in these fluids is

mainly because of their use in the industrial and technological

applications. Many materials like mud, pasta, personal care

products, ice cream, paints, oils, cheese, asphalt etc. are non-

Newtonian fluids. Most biological fluids with higher molecular

weight components are also non-Newtonian in nature. The usual

properties of polymer melts and solutions together with the

desirable attributes of many polymeric solids, have given rise to the

world-wide industry of polymer processing. The non-Newtonian

fluids in particular have key importance in geophysics, chemical

and nuclear industries, material processing, oil reservoir engineer-

ing, bioengineering and many others. Rheological properties of all

the non-Newtonian fluids cannot be predicted using single

constitutive equation (unlike the case of viscous fluids). Therefore

many models of non-Newtonian fluids are based either on

‘‘natural’’ modifications of established macroscopic theories or

molecular considerations. The additional rheological parameter in

the constitutive equations of non-Newtonian fluids are the main

culprit for the lack of analytical solutions. The resulting equations

are more complex and higher order than the Navier-Stokes

equations. Hence these equations have been attracted from

modelling as well as solutions point of view. The advancement

in the study of non-Newtonian fluids has been made even by the

recent investigators (See [1–10] and many studies therein).

The flow induced over a stretching surface is very well

documented problem in fluid mechanics. It is encountered in

extrusion of polymer sheet from a die, glass fiber and paper

production, continuous casting, cooling of metallic plate in a bath

etc. Such flow problem in presence of heat transfer has been

attracted by the researchers due to its applications in polymer

processing technology. The quality of end product in industry

depends upon both the stretching and cooling rates. Further, the

thermal radiation effect has pivotal role in nuclear plants, gas

turbines and devices for satellites, space vehicles, aircraft etc. The

literature on this topic is quite sizeable. Rana and Bhargava [11]

presented the numerical analysis for heat transfer of nanofluid over

a nonlinearly stretching sheet. Bhattacharyya et al. [12] analyzed

the solutions of boundary layer flow of viscoelastic fluid and heat

transfer over a stretching sheet with internal heat generation or

absorption. Makinde and Aziz [13] numerically studied the

boundary layer flow of viscous nanofluid bounded by a stretching

sheet. They considered the transport equation which includes the

effects of Brownian motion and thermophoresis. Mandal and

Mukhopadhyay [14] considered the boundary layer flow and heat

transfer towards an exponentially stretching porous sheet embed-

ded in a porous medium with variable surface heat flux. They

found that the momentum and thermal boundary layer thickness

decrease with increasing exponential parameter. Hayat et al. [15]

examined the heat transfer in flow of second grade fluid over a

stretching sheet. Thermal radiation effect in the boundary layer

flow by stretching surface has been explored by Sajid and Hayat

[16]. Bhattacharyya [17] discussed the unsteady stagnation point

flow towards a stretching surface. Effect of heat transfer in flow

over an exponentially stretching surface has been explored by

Mukhopadhyay [18]. The radiation effect in flow of micropolar

fluid towards a stretching surface is addressed by Hussain et al.

[19]. Rashidi et al. [20] developed approximate solutions for heat

transfer analysis in flow of micropolar fluid. Moreover, the interest

PLOS ONE | www.plosone.org 1 January 2014 | Volume 9 | Issue 1 | e83153



in the study of magnetohydrodynamic flow for an electrically

conducting fluid over heated surface is motivated by its great value

in a wide range of engineering problems such as plasma studies,

petroleum industries, MHD power generators, cooling of nuclear

reactors, the boundary layer control in aerodynamics and crystal

growth. Hence Turkyilmazoglu [21] found exact solution for

magnetohydrodynamic flow of viscous fluid due to a rotating disk.

Hayat and Nawaz [22] has investigated the Soret and Dufour

effects in mixed convection three dimensional boundary flow of an

electrically conducting second grade fluid over a vertical stretching

sheet. Ahmad and Nazar [23] considered the problem of unsteady

magnetohydrodynamic viscoelastic fluid flowing towards a stag-

nation point on a vertical surface. Pal and Mondal [24] discussed

the hydromagnetic flow of viscous fluid over a stretching surface in

presence of both electric and magnetic fields. Abel et al. [25]

presented MHD flow analysis for viscoelastic fluid. Both viscous

and Ohmic dissipations are presented in this attempt. More, the

analysis here is made when magnetic and electric fields are

present. Hayat and Qasim [26] considered radiation effect in

MHD flow of second grade fluid over unsteady porous stretching

surface. The effect of internal heat generation in hydromagnetic

non-Darcy flow and heat transfer over a stretching surface with

thermal radiation and Ohmic dissipation is examined by

Olanrewaju [27]. Elbashbeshy et al. [28] numerically analyzed

the problem of unsteady laminar two-dimensional MHD bound-

ary layer flow and heat transfer of an incompressible viscous fluid

over a porous surface in the presence of thermal radiation and

internal heat generation or absorption. MHD flow caused by a

rotating disk is presented by Rashidi et al. [29]. The well-known

Jeffery-Hamel problem in presence of magnetic field is examined

by Motsa et al. [30]. Most of the studies on MHD flow over a

stretching surface with heat transfer do not take into account the

effect of electric field and Ohmic dissipation. Very little exists yet

about such aspects in the stretched flows of viscous fluids. Such

consideration further narrowed down when non-Newtonian fluids

have been considered. To our knowledge there is only one such

attempt for viscoelastic fluid [25]. The fluid employed although

exhibits the normal stress effects but it cannot describe the features

of shear thinning or shear thickening. Having such in view, the

flow of third grade fluid is considered. This fluid even can capture

shear thinning/shear thickening effects for one-dimensional flow

over a rigid surface. The main objective here is to analyze the two-

dimensional flow of third grade fluid over an unsteady stretching

sheet. The effects of both electric and magnetic fields are retained

in the momentum and energy equations. Thermal radiation and

Ohmic dissipation are taken into account. The solutions for

velocity component and temperature are developed by homotopy

analysis method (HAM) [31–40]. The plots of physical quantities

of interest reflecting the novel features of embedded parameters in

the problems are given and analyzed. Tables for skin friction

Figure 1. h-curves of the functions f0(0) and h9(0) at 10th order
of approximation.
doi:10.1371/journal.pone.0083153.g001

Table 1. Convergence of homotopy solutions when
a1~0:02, b~0:05, a2~0:02, S~0:2, A~0:5, E1~0:3,
Re~0:7, R1~0:3, M~0:1, Pr~1, Ec~0:5.

Order of

approximation {f ’’ 0ð Þ {h’(0)

1 1.0419 1.0059

2 1.0720 1.0079

5 1.1210 1.0041

10 1.1442 0.99450

12 1.1458 0.99211

14 1.1458 0.99051

40 1.1458 0.99051

doi:10.1371/journal.pone.0083153.t001

Figure 2. Influence of M on f9(g).
doi:10.1371/journal.pone.0083153.g002

Figure 3. Influence of b on f9(g).
doi:10.1371/journal.pone.0083153.g003
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coefficient and local Nusselt number are made and explained

carefully.

Mathematical Formulation

We examine the two-dimensional boundary layer flow of

magnetohydrodynamic (MHD) third grade fluid over a porous

stretching surface. Here the fluid is electrically conducting in the

presence of applied magnetic ~BB~ 0,B0, 0ð Þ and electric
~EE~ 0, 0,{E0ð Þ fields. The flow is because of stretching of sheet

from a slit through two equal and opposite forces. The sheet

velocity is taken linear parallel to the flow direction. The electric

and magnetic fields obey the Ohm’s law~JJ~s ~EEz~VV|~BB
� �

. Here

~JJ is the Joule current, s is the electrical conductivity and ~VV is the

fluid velocity. The induced magnetic field and Hall current effects

are ignored subject to small magnetic Reynolds number. Both the

electric and magnetic fields contribute into the momentum and

thermal boundary layer equations. The relevant equations in the

aforestated conditions can be expressed as follows:

Lu

Lx
z

Lv

Ly
~0, ð1Þ
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zs uB0{E0ð Þ2{ Lqr
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:

ð3Þ

In above equations u and v denote the velocity components in the

x and y directions, a�1, a
�
2 and b3 are the fluid parameters, n is the

kinematic viscosity, r is the density of fluid, T is the fluid

temperature, K is the thermal conductivity of fluid, cp is the

Figure 4. Influence of a1 on f9(g).
doi:10.1371/journal.pone.0083153.g004

Figure 5. Influence of a2 on f9(g).
doi:10.1371/journal.pone.0083153.g005

Figure 6. Influence of A on f9(g).
doi:10.1371/journal.pone.0083153.g006

Figure 7. Influence of S on f9(g).
doi:10.1371/journal.pone.0083153.g007
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specific heat at constant pressure and the radiative heat flux qr is

first given by Sparrow and Cess [41] and Raptis [42]

qr~{
4s�

3k1

LT4

Ly
, ð4Þ

where s� is the Stefan-Boltzmann constant and k1 is the mean

absorption coefficient. Through expansion of T4
%4T3

?
T{3T4

?
,

Eq. (3) becomes

rcp
LT

Lt
zu

LT

Lx
zv

LT

Ly

� �

~
16s�T3

?

3k1
zK

� �

L
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� �4

zs uB0{E0ð Þ2:

ð5Þ

The subjected conditions can be mentioned as follows:

u x, 0ð Þ~Uw, v x, 0ð Þ~Vw,T(x, 0)~Tw,

u?0, T?T?, as y??, ð6Þ

with Vw defined by

Vw~{
n0

1{ctð Þ1=2
: ð7Þ

Here the mass transfer at surface with Vwv0 is for injection and

Vww0 for suction. Also the stretching velocity Uw x, tð Þ and the

surface temperature Tw x, tð Þ are taken in the forms:

Uw x, tð Þ~ ax

1{ct
, Tw x, tð Þ~T?zT0

ax

2n 1{ctð Þ2
, ð8Þ

where a and c are the constants with aw0 and c§0 (i.e ctv1).

If y is the stream function then defining

g~

ffiffiffiffiffiffiffi

Uw

xn

r

y, y~
ffiffiffiffiffiffiffiffiffiffiffi

nxUw

p

f gð Þ, h~ T{T?

Tw{T?

, ð9Þ

Figure 8. Influence of Re on f9(g).
doi:10.1371/journal.pone.0083153.g008

Figure 9. Influence of E1 on f9(g).
doi:10.1371/journal.pone.0083153.g009

Figure 10. Influence of M on h(g).
doi:10.1371/journal.pone.0083153.g010

Figure 11. Influence of b on h(g).
doi:10.1371/journal.pone.0083153.g011
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u~
Ly

Ly
, v~{

Ly

Lx
: ð10Þ

The incompressibility condition is identically satisfied and the

resulting problems for f and h are reduced into the following forms

f 000zff 00{f ’2{S f 0z
1

2
gf 00

	 


za1 2f 0f 000{ff ivð Þ
z3f ’’2
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zS 2f 000z
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2
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zM2 E1{f 0f g~0
�

,

ð11Þ
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gh0z4hf g
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za1 PrEc f 0f ’’2z
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{ff 00f 000
� �

z2bPrEcRe f ’’4zM2 PrEc f 0{E1½ �2~0,
�

ð12Þ

f 0ð Þ~A, f 0 0ð Þ~1, f 0 ?ð Þ?0, f 00 ?ð Þ?0, h(0)~1,

h(?)?0,
ð13Þ

with

Re~
ax2

n 1{ctð Þ , M2
~

sB2
0 1{ctð Þ
ra

, E1~
E0 1{ctð Þ
B0ax

,

a1~
a�1a

m 1{ctð Þ , a2~
a�2a

m 1{ctð Þ , b~
b3a

2

m 1{ctð Þ2
,

A~
n0
ffiffiffiffiffi

an
p , S~

c

a
, Rd~

4s�T3
?

k�K
, Pr~

mcp

K
,

Ec~
U2

w

cp Tw{T?ð Þ :

ð14Þ

Here Re denotes the Reynolds number, M the magnetic

parameter, E1 is the electric parameter, a1 and a2 and b are the

fluid parameters, A is the suction parameter, S is the unsteadiness

parameter, Rd is the radiation parameter, Pr is the Prandtl

number and Ec is the Eckert number.

Figure 12. Influence of a1 on h(g).
doi:10.1371/journal.pone.0083153.g012

Figure 13. Influence of a2 on h(g).
doi:10.1371/journal.pone.0083153.g013

Figure 14. Influence of A on h(g).
doi:10.1371/journal.pone.0083153.g014

Figure 15. Influence of S on h(g).
doi:10.1371/journal.pone.0083153.g015
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The local skin friction coefficient is defined as

Cf~
tw

rU2
w

~

txy
�

�

y~0

rU2
w

Re1=2x Cf~

f 00 0ð Þza1 3 S
2
f 00 0ð Þz3f 00 0ð Þ{Sf 000 0ð Þ

 �

z2bRe f ’’3 0ð Þ

" #

:

ð15Þ

The Nusselt number is given by

Nux~
xqw

K Tw{T?ð Þ~
x Kz

16s�T?
3

3k1

� �

LT

Ly

�

�

�

�

y~0

K Tw{T?ð Þ

Rex
{1=2Nux~{ 1z

4

3
Rd

� �

h0 0ð Þ, ð16Þ

in which Rex~
ax2

n 1{ctð Þ is the local Reynolds number.

Solutions

The velocity and temperature can be expressed in the set of base

functions

gk exp {ngð Þ
�

�k§0, n§0
 �

ð17Þ

can be expressed as follows

f gð Þ~a00, 0z
X

?

n~0

X

?

k~0

akm, ng
k exp {ngð Þ, ð18Þ

h gð Þ~
X

?

n~0

X

?

k~0

bkm, ng
k exp {ngð Þ, ð19Þ

where akm, n and bkm, n are the coefficients.

The initial guesses f0 and h0 in homotopy solutions are taken

through the expressions

f0(g)~Az1{exp {gð Þ, h0(g)~exp {gð Þ: ð20Þ

The auxiliary linear operators and their associated properties are

L fð Þ~ d3f

dg3
{

df

dg
, L hð Þ~ d2h

dg2
{h, ð21Þ

satisfy the following properties

Lf C1zC2 exp gð ÞzC3 exp {gð Þ½ �~0, ð22Þ

Lh C4 exp gð ÞzC5 exp {gð Þ½ �~0, ð23Þ

Where Ci(i~1{5) depict the arbitrary constants.

The zeroth order problems are

(1{p)Lf ½f̂f (g, p){f0(g)�~pBfNf f̂f (g, p)
h i

,

(1{p)Lh½ĥh(g, p){h0(g)�~pBhNh f̂f (g, p), ĥh(g, p)
h i

,

ð24Þ

Figure 16. Influence of Re on h(g).
doi:10.1371/journal.pone.0083153.g016

Figure 17. Influence of Rd on h(g).
doi:10.1371/journal.pone.0083153.g017

Figure 18. Influence of E1 on h(g).
doi:10.1371/journal.pone.0083153.g018

Ohmic Dissipation,Third Grade Fluid,Joule Heating

PLOS ONE | www.plosone.org 6 January 2014 | Volume 9 | Issue 1 | e83153



f̂f (g; p)
�

�

�

g~0
~A,

Lf̂f ’(g; p)

Lg

�

�

�

�

�

g~0

~1,
Lf̂f ’(g; p)

Lg

�

�

�

�

�

g~?

~0,
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~1, ĥh(g; p)

�

�

�

g~?

~0,

ð25Þ

with non-linear operators Nf f̂f (g, p)
h i
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defined by
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in which p[ 0, 1½ � indicates the embedding parameter and hf and

hh the nonzero auxiliary parameters.

Setting p~0 and p~1 we have

f̂f (g; 0)~f0(g), ĥh(g; 0)~h0(g),

f̂f (g; 1)~f (g), ĥh(g; 1)~h(g):
ð28Þ

When p increases from 0 to 1, f̂f (g; p) and ĥh(g; p) deforms from

the initial solutions f0(g) and h0(g) to the final solutions f (g) and

h(g), respectively. Taylor series, of f̂f (g; p) and ĥh(g; p) gives
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The auxiliary parameters are properly chosen such that the series

solutions converge at p~1. Therefore
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Figure 19. Influence of Pr on h(g).
doi:10.1371/journal.pone.0083153.g019

Figure 20. Influence of Ec on h(g).
doi:10.1371/journal.pone.0083153.g020
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The general solutions of the Eqs. (31)–(32) are

fm(g)~f �m(g)zC1zC2 exp gð ÞzC3 exp {gð Þ,
hm(g)~h�m(g)zC4 exp gð ÞzC5 exp {gð Þ,

in which f �m(g) and h�m(g) denote the special solutions.

Convergence of the Derived Solutions

We note that the series solutions (33) and (34) contain the non-

zero auxiliary parameters hf and hh. These parameters are useful

in adjusting and controlling the convergence. The hf and

hh{curves are plotted for 10th order of approximation in Fig. 1

for the suitable ranges of the auxiliary parameters. Here the

suitable values for hf and hh are {1:5ƒhfv{0:53,
{1:35ƒhhv{0:4: Furthermore, convergence of series solution

is checked and shown in Table 1. Note that the series solutions

converge at 26th order of approximation up to 6 decimal places.

Results and Discussion

This section illustrates the impact of physical parameters. The

results are displayed graphically in the Figs. 2–20. The conclusions

for flow field and other physical quantities of interest are drawn.

The numerical values of the skin friction coefficient and local

Table 2. Numerical values of skin friction coefficients Re1=2x Cf for different values of physical parameters.

a1 a2 b S M E1 Re {Re1=2x Cf

0.00 0.1 0.2 0.5 0.1 0.3 0.7 1.453

0.10 1.532

0.14 1.567

0.1 0.0 0.2 0.5 0.1 0.3 0.7 1.600

0.1 1.632

0.2 1.668

0.1 0.1 0.0 0.5 0.1 0.3 0.7 1.433

0.1 1.489

0.2 1.532

0.1 0.1 0.2 0.5 0.1 0.3 0.7 1.532

0.6 1.592

0.7 1.670

0.1 0.1 0.2 0.5 0.1 0.3 0.7 1.532

0.2 1.536

0.3 1.545

0.01 0.01 0.2 0.5 0.1 0.5 0.7 1.492

0.6 1.487

0.7 1.482

0.1 0.1 0.2 0.5 0.1 0.3 0.7 1.532

0.8 1.542

0.9 1.551

doi:10.1371/journal.pone.0083153.t002
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Nusselt number are presented in the Tables 2 and 3 for various

values of a1, a2, b, S, M, E1, Re, Rd , Pr and Ec. Fig. 2 displays

the effect of Hartman number M on velocity profile by keeping

other physical parameter fixed. It is of interest to note that the

velocity profile decreases with an increase in M whereas the

boundary layer thickness reduces. Clearly by increasing magnetic

force, the Lorentz force increases which cause resistance in the

fluid flow and consequently the velocity profile decreases. Fig. 3

shows the influence of third grade parameter b on the velocity

profile f ’ gð Þ. Here we noticed that the velocity increases near the

wall with an increased b whereas it vanishes away from the wall.

Figs. 4 and 5 illustrate the variation of second grade parameters a1
and a2 on the velocity profile f ’ gð Þ respectively. It is observed that

the velocity profile f ’ gð Þ is an increasing function of a1. The

velocity profile also increases when a2 is increased. Fig. 6 is plotted

for the effects of the suction parameter A on the velocity profile

f ’ gð Þ. The velocity profile decreases by increasing parameter A

and further the boundary layer is also decreasing function of A.

Fig. 7 is sketched for the influence of unsteadiness parameter S on

the velocity profile. The velocity profile and the thermal boundary

layer decreases for larger values of S. The behavior of Reynolds

number Re on velocity profile is shown in Fig. 8. It is observed

that the velocity profile decreases with an increase in Reynold

number Re. The influence of electric parameter E1 is shown in

Fig. 9. This Fig explains that as the electric parameter E1

increases, the velocity boundary layer increases near the plate with

small rate but increases away from the stretching plate more

rapidly. In fact the Lorentz force (arising due to the electric field

acts like an accelerating force) reduces the frictional resistance

which causes to shift the stream line away from the stretching

sheet. Fig. 10 portrays the effects of magnetic parameter M on the

temperature profile h gð Þ. It is depicted that temperature profile

and thermal boundary layer thickness increase with an increase in

magnetic parameter. Fig. 11 is the plot of temperature profile h gð Þ
for various values of third grade parameter b. The effect of third

grade parameter b on h gð Þ shows a decrease near the wall. The

boundary layer thickness also decreases. Figs. 12 and 13 describe

the effects of second grade parameters a1 and a2 on temperature

profile h gð Þ. Fig. 12. depicts that the effect of second grade

parameter a1 is to reduce the temperature distribution in the

boundary layer which results in thinning of the boundary layer

thickness. Same behavior is shown in Fig. 13 for various values of

Table 3. Numerical values of Nusselt number Re{1=2
x Nux for different values of physical parameters.

a1 a2 b S M E1 Re Rd Pr Ec Re{1=2
x Nux

0.0 0.2 0.2 0.5 0.1 0.3 0.7 0.3 1.0 0.5 1.668

0.1 1.689

0.2 1.706

0.1 0.0 0.2 0.5 0.1 0.3 0.7 0.3 1.0 0.5 1.660

0.1 1.674

0.2 1.689

0.1 0.2 0.0 0.5 0.1 0.3 0.7 0.3 1.0 0.5 1.683

0.3 1.691

0.4 1.731

0.1 0.2 0.2 0.5 0.1 0.3 0.7 0.3 1.0 0.5 1.689

0.6 1.805

0.7 1.920

0.1 0.2 0.2 0.5 0.1 0.3 0.7 0.3 1.0 0.5 1.689

0.5 1.669

0.8 1.638

0.1 0.2 0.2 0.5 0.5 1.0 0.7 0.3 1.0 0.5 1.938

1.5 1.889

2.0 1.780

0.1 0.2 0.2 0.5 0.1 0.3 0.7 0.3 1.0 0.5 1.689

1.0 1.668

1.5 1.652

0.1 0.2 0.2 0.7 0.1 0.5 0.5 0.3 1.0 0.5 1.920

0.4 1.991

0.5 2.060

0.1 0.2 0.2 0.7 0.1 0.5 0.5 0.4 1.0 0.5 1.991

1.1 2.109

1.2 2.223

0.1 0.2 0.2 0.7 0.1 0.5 0.5 0.4 1.0 0.5 1.991

0.6 1.938

0.7 1.886

doi:10.1371/journal.pone.0083153.t003
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a2. The influence of suction parameter A and unsteadiness

parameter S are analyzed in the Figs. 14 and 15. Here the

temperature profile decreases with the increase of unsteadiness

parameter S and the suction parameter A. Further the thermal

boundary layer also decreases by increasing both the unsteadiness

parameter S and the suction parameter A. Fig. 16 shows that the

temperature profile and thermal boundary layer is decreasing

function of Reynold number Re. The effects of thermal radiation

parameter Rd on temperature is shown in Fig. 17. It is revealed

that the radiation parameter Rd causes increase in the fluid

temperature h gð Þ. On the other hand the thermal boundary layer

thickness also increases. In Fig. 18 the influence of electric

parameter E1 on temperature profile is given. This Fig. depicts

that the temperature profile and the boundary layer thickness

Figure 21. Variation of velocity f9(g) and shear stress f0(g) with g for several values of Hartman number M.
doi:10.1371/journal.pone.0083153.g021

Figure 22. Variation of velocity f9(g) and shear stress f0(g) with g for several values of electric parameter E1.
doi:10.1371/journal.pone.0083153.g022
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increase with an increase of electric parameter E1. Fig. 19.

illustrates the effects of Prandtl number Pr on the temperature

profile h gð Þ. Both the temperature and thermal boundary layer

thickness are decreased by increasing Pr. We displayed the

temperature field for various values of Eckert number Ec in

Fig. 20. The effect of Eckert number is to increase the temperature

boundary layer thickness due to the frictional heating. Fig. 21

shows the effects of Hartman number M on velocity f ’ gð Þ and

shear stress f ’’ gð Þ. With the increase in M, the velocity field f ’ gð Þ
decreases near the wall and vanishes far away from the wall while

shear stress f ’’ gð Þ has same behavior for larger values of Hartman

number M. An opposite behavior is noted when 0ƒgƒ0:6.
Fig. 22 demonstrates the effects of electric parameter E1 on

velocity f ’ gð Þ and shear stress f ’’ gð Þ. It is worthmentioning to

point out that velocity is increasing function of electric parameter

E1 near the wall whereas opposite behavior for shear stress is

observed for 0ƒgƒ1. The numerical values of skin friction

coefficient for various physical parameters are shown in Table 2.

Here the magnitude of skin friction coefficient increases with the

increase of second grade parameters (a1, a2), third grade

parameter b, unsteadiness parameter S, Hartman number M

and Reynold number Re whereas it decreases with an increase in

electric parameter E1. Table 3 shows the effect of physical

parameters on heat transfer characteristics at the wall {h’ 0ð Þ.
From this table, we observe that for large values of second grade

parameters (a1, a2), third grade parameter b, unsteadiness

parameter S, radiation parameter Rd and Prandtl number Pr

the heat transfer coefficient at the wall {h’ 0ð Þ increases while it

decreases for Hartman number M, Reynold number Re, electric

parameter E1 and Eckert number Ec.

Concluding remarks
The flow of third grade fluid and heat transfer in the presence of

thermal radiation and Ohmic dissipation are examined. The

graphs are prepared to study the influence of the pertinent flow

parameters including the second grade parameter (a1, a2), third

grade parameter b, unsteadiness parameter S, magnetic param-

eter M, electric field parameter E1, Reynolds number Re,

radiation parameter Rd , Prandtl number Pr and Eckert number

Ec. The following observations hold:

N The effect of third grade parameter b is to increase the

boundary layer thickness.

N The maximum velocity is attained for higher values of electric

parameter E1.

N Effect of suction parameter, unsteadiness parameter and

Reynolds number on boundary layer thickness is similar in a

qualitative sense.

N Effects of E1 and Pr on temperature profile are quite opposite.

N The velocity field f ’ gð Þ is decreasing function of Hartman

number M.

N Magnitude of skin friction coefficient Re1=2x Cf is increasing

function of a1, a2, b, S, M and Re.

N Electric parameter E1 decreases the magnitude of skin friction

coefficient.
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