
Effect of Large Buffers on TCP Queueing Behavior
Jinsheng Sun∗, Moshe Zukerman†, King-Tim Ko‡, Guanrong Chen‡ and Sammy Chan‡

∗ Department of Automation
Nanjing University of Science and Technology, Nanjing, 210094, China

Email: sunjs@mail.njust.edu.cn
† the ARC Special Research Centre for Ultra-Broadband Information Networks

Electrical and Electronic Engineering Department, The University of Melbourne, Vic. 3010, Australia
Email:m.zukerman@ee.mu.oz.au

M. Zukerman worked on this paper mainly during his visit in the Department of Electronic Engineering,
City University of Hong Kong, Hong Kong SAR, China, between November 2002 and July 2003.

‡ Department of Electronic Engineering
City University of Hong Kong, Hong Kong SAR, China

Emails: {eektko,eegchen,schan}@cityu.edu.hk }

Abstract— Using a simple model of saturated, synchronized
and homogeneous sources of TCP Reno with drop-tail queue
management and a discrete-time framework, we derive for-
mulae for stationary as well as transient queueing behavior
that shed light on the relationship between large buffers and
work conservation (queue never empties). Using simulations, the
relevance of the results for the case of non-synchronized sources
is demonstrated. In particular, we demonstrate that a certain
simple lower bound for the stationary queue length applies also
to the case where the sources are non-stationary.

I. INTRODUCTION

An important Internet router design question is how large
a buffer should be. If buffers are too large, it may lead to
excessive packet delay. Buffers being too small may cause
excessive packet loss and inefficiencies. The latter is espe-
cially relevant if the traffic is composed mostly of data flow
supported by the transmission control protocol (TCP). The
popular TCP Reno [9] congestion control mechanism [18]
reacts to congestion (packet loss) by halving its congestion
window (cwnd). If buffers are too small, such reaction to
congestion often empties the queue and creates a situation
whereby the system is not work conserving, i.e., there is
work in the system but the server (transmission link) is idle.
This means under-utilization of resources. To overcome this
problem, Internet routers nowadays are designed with large
buffers. To be specific, these buffers are designed to be
larger than the bandwidth-delay product [8], [19]. This paper
provides fundamental justification for this design approach. By
analyzing a simple model of TCP with drop-tail, we show that
designing buffers larger than the bandwidth-delay product does
indeed make the queueing system work conserving. In other
words, during congestion, a buffer at the congested router will
maintain the so-called “queue never empties” [4] condition.

Our focus of TCP with drop-tail is motivated by: (1) most
data traffic nowadays is TCP based, and (2) despite many
proposals for sophisticated active queue management (AQM)
schemes [3], [12], [13], [14], [15], [16], [25], [29], [30], [32],
[33], drop-tail is still the most popular AQM.

The TCP protocol has been extensively studied [1], [2],
[4], [7], [10], [17], [20], [21], [22], [24], [26], [27]. Unlike
previous analyzes that investigated the queueing behavior of
TCP, and usually used the fluid flow modelling approach, here
we consider a discrete-time model of TCP Reno with drop-tail
queue management involving many saturated, homogeneous
and synchronized sources. We also consider a simple dog-
bone architecture, in which the common buffer is larger than
the bandwidth-delay product. Then, based on this model, we
analyze the steady-state behavior of TCP congestion control
mechanism and obtain analytical results for various stationary
variables related to the queue length, cwnd and cwnd cycle.
We derive a simple formula for the minimum queue length,
which is independent of the number of sources and is consis-
tent with previous results.

We then investigate by simulations the applicability of the
exact result of the minimum queue length obtained for the
unrealistic case of synchronized sources to the more interesting
case of non-synchronized sources. And we demonstrate that
except for very rare occasions, the result indeed applies. These
results provide evidence that having buffers larger than the
bandwidth-delay product can bring about work conservation
even in the case of different distances, where the “delay” is
taken as the average of the propagation delays. Intuitively,
this can be explained as follows. If different sources have
different propagation delays, and if packet loss occurs due
to congestion, the closer sources will react faster than distant
sources. This avoids the simultaneous reduction of traffic and
thus the drastic reduction in queue length, and leads to a
more stable (smoother) total input and a higher average queue
length.

The stationary analysis is then complemented by a transient
analysis. We use transient numerical results for the queue
length process for various cases to demonstrate the fast con-
vergence of the minimum queue length to its stationary value.
This provides further evidence for the fact that buffers larger
than the bandwidth-delay product lead to high efficiency and
queues that are almost never empty.
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Fig. 1. A system of n TCP connections through a common link

Emphasizing the minimum queue length and the “queue
never empties” condition, our focus in this paper is throughput.
We must therefore make clear that the high throughput we
achieve by keeping the queue length at high levels means,
unfortunately, high packet loss and long packet delay. The
important aspect of end-to-end packet delay evaluation taking
into consideration retransmissions of lost packets is beyond
the scope of this paper.

The remainder of the paper is organized as follows. In
Section II, we describe the model and establish the queue
length and cwnd processes. Then, in Section III we present
a discrete-time analysis which leads to stationary results for
the minimum queue length, cwnd and cwnd cycle. These
results are validated by simulation and cases where the sources
are non-synchronized are also demonstrated and discussed.
The stationary results are then complemented by a transient
behavior analysis in Section IV where we also confirm the
analytical results by simulations. In the final part of Section
IV we again study differences with cases involving non-
synchronized sources, but this time we focus on transient
behavior. Finally, we conclude in Section V.

II. THE MODEL

Consider a simple discrete system model with n TCP
connections based on the network topology shown in Figure 1.

The following assumptions are made.

1) All data traffic is transmitted from the n sources denoted
A1, A2, ... An, to the n destinations denoted D1, D2,
... Dn.

2) The unidirectional capacity of the link from Router
1 to Router 2, denoted µ, is the bottleneck for each
connection.

3) The assumption of data integrity is made, i.e., all data
losses are assumed to be caused by congestion.

4) Backlogged traffic at Router 1 is buffered there in a
single buffer of size B.

5) All sources are saturated, i.e., they always have data to
transmit.

6) When the buffer is full, all sources experience packet
loss. This requires that the number of sources is not too
high relative to µ.

7) As it is commonly assumed, only the congestion avoid-
ance phase of TCP congestion control is considered.

8) All connections are identical, homogeneous and syn-
chronized. That is, they experience packet loss and

change their cwnd synchronously, and they all have the
same round-trip propagation delay (RTPD), denoted τ .
This assumption is made for tractability. Nevertheless,
in this paper, we thoroughly study the effect of different
RTPD for different users by simulation. Also note that if
the sources have the same RTPD, but their cwnd values
are not synchronized, then given the other assumptions
here, they will become synchronized after a while.
This is because their cwnd values are halves at any
simultaneous packet loss occurance and thus get closer,
but the differences between the cwnd values do not
change during periods without packet loss.

9) The distance from each source to Router 1 is negligible,
so τ is also the propagation delay of Router 1 congestion
notification.

10) The buffer at Router 1 is larger than the bandwidth-delay
product, namely,

B > µτ. (1)

Here is a brief description of the congestion control mecha-
nism of TCP Reno, but with consideration for the congestion
avoidance phase only. Slow-start phase is rarely entered. The
connection is in the slow-start phase when it first starts and
when a loss is detected by a timeout rather than receiving
the third duplicate acknowledgement (ACK). In the congestion
avoidance phase, whenever the source receives cwnd ACKs,
the cwnd increases by 1 and cwnd + 1 packets are then
sent. Note that the cwnd increases in a linear fashion. Upon
packet loss due to congestion, when the third duplicate ACK
is received, the TCP source decreases the cwnd by half. This
process is illustrated by Figure 2, where cwnd is depicted as
a function of time, which is discrete, where each time-slot
represents the time between consecutive changes in cwnd,
and s̄ represents the cycle. Note that the time-slots are not
necessarily equal. We can model the network as a discrete-

Fig. 2. A typical evolution of cwnd in TCP Reno congestion avoidance
phase

time system, where a time slot corresponds to one round trip
time (RTT). Note that the slot length varies as the RTT changes
due to different queueing delays. We define the cwnd value of
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source i (1 ≤ i ≤ n) at slot k as wi(k). Recalling Assumption
5, the following hold:{

wi(k + 1) = wi(k) + 1 ; if there is no packet loss
wi(k + 1) = 1

2wi(k) ; if there is packet loss

and

q(k + 1) = q(k) +
n∑

i=1

wi(k) − µ rtt(k)

where q(k) is the smallest queue length observed by a packet
transmitted during slot k and rtt(k) is defined by

rtt(k) = τ +
q(k)
µ

.

Considering the input and output per slot, we obtain

q(k + 1) = q(k) +
n∑

i=1

wi(k) − µ

(
τ +

q(k)
µ

)

=
n∑

i=1

wi(k) − µτ.

Since our AQM is drop-tail, when the buffer is full, new ar-
rivals will be dropped. By Assumption 6, all TCP connections
change their window sizes synchronously as at least one packet
is dropped out of the cwnd packets sent during one RTT.
This leads to synchronization of the congestion window for all
sources for each time slot. Letting w(k) be the window size
of any source, we obtain the following recursive equations:{

w(k + 1) = w(k) + 1; if there is no packet loss
w(k + 1) = 1

2w(k); if there is packet loss
(2)

q(k + 1) = nw(k) − µτ. (3)

III. STATIONARY BEHAVIOR

In this section, we derive steady state results for our model,
validate them by simulation, and demonstrate and discuss the
relevance of our results to the more general case of non-
synchronized sources.

A. Analysis

Due to the nature of TCP Reno’s congestion control mech-
anism, the window size of a source oscillates and never
converges to an equilibrium. As mentioned above, as each
TCP connection loses at least one packet within a RTT under
drop-tail during periods of buffer overflow due to congestion,
all connections change their cwnd synchronously.

In steady state, the size of cwnd at the sources and the queue
length at the router both change periodically. These effects
are shown in Figure 3. Let w(k), k = 1, 2, 3, · · · , be a
discrete-time process representing the cwnd value at slots k =
1, 2, 3, · · · , and similarly let q(k), k = 1, 2, 3, · · · , be
a discrete time process representing the queue length at the
router at slots k = 1, 2, 3, · · ·. We introduce the concept
of cwnd cycle as the period of time from the moment when
cwnd is in its local minimum value until it reaches its local
minimum value again. Similarly, we define queue cycle as the
period of time from the moment when the queue length is
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Fig. 3. The steady-state cwnd and queue length for n = 5

in its local minimum value until it reaches its local minimum
value again. Define W (j), j = 1, 2, 3, · · · , as a discrete-time
process associated with w(k), k = 1, 2, 3, · · ·, representing
the local minimum cwnd values reached at the beginning of
the jth cycle. Similarly, define Q(j), j = 1, 2, 3, · · · , as a
discrete-time process associated with q(k), k = 1, 2, 3, · · ·,
representing the local minimum queue length reached at the
beginning of the jth cycle. Let c(j) be the length, measured
in slots, of the jth cwnd cycle. Since the two cycles (cwnd
and queue length) have the same length (they only have a
constant phase difference of a single slot), c(j) is also the
length measured in slots of the jth queue cycle. Note that the
value of c(j) may be different for different j values.

Recalling (2) and (3), this leads to the following equations:

W (j + 1) =
1
2
(W (j) + c(j) − 1) (4)

and

Q(j + 1) =
1
2
n(W (j) + c(j) − 1) − µτ. (5)

By definition, from the slot in which the queue length is in
its jth minimum value, Q(j), the queue length will increase
and reach its maximal value B, at the time of c(j) − 1 slots
later (then, there will be a drop in the next slot). During this
period of increase, the queue length increases by n every slot
because each of the n users increases its cwnd by one every
RTT during the congestion avoidance phase when there is no
packet loss due to congestion. Therefore, the value of c(j)
should satisfy the following relation:

Q(j) + n[c(j) − 1] = B

so

c(j) =
B − Q(j)

n
+ 1. (6)

Substituting (6) in (4) and (5), we obtain

W (j + 1) =
W (j)

2
+

B − Q(j)
2n

(7)

and

Q(j + 1) =
nW (j)

2
+

B − Q(j)
2

− µτ. (8)

Let Wmin and Qmin be the equilibrium values for W (j) and
Q(j), respectively. Then, substituting Wmin and Qmin into
W (·) and Q(·) in (7) and (8), and recalling Assumption 10
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that B > µτ , we obtain the equilibrium values for Wmin and
Qmin as follows:

Wmin =
B + µτ

2n
(9)

and

Qmin =
B − µτ

2
. (10)

These results are consistent with results of other TCP analyzes
[2], [7], [17], [20]. This result has an important practical
implication. It indicates relationship between the condition of
B > µτ (the buffer is larger than the bandwidth-delay product)
and the condition Qmin > 0. Maintaining Qmin > 0 means
that the queue is non-empty in steady state which in turns
means that the link is fully utilized.

Note also that by (10), Qmin is independent of n, the
number of TCP connections. This is intuitively clear. Since the
sources are synchronized and homogeneous, the effect on the
queue at buffer of Router 1 is the same whether we consider
the model with n = 1, or with n = 100. This also explains
(9). The window size for the case n = 1 must be 100 times
bigger than the one for the case n = 100.

Denoting c∗ = c(∞), i.e., the steady-state length of cwnd
cycle, by (6) and (10), we can also obtain c∗ = (B+µτ)/2n+
1.

If we do not consider the effect of retransmissions, (10)
can provide estimations for minimum end-to-end packet delay,
and RTT to be given by τ/2 + Qmin/µ and τ + Qmin/µ,
respectively. Observing that their corresponding maximal val-
ues are given by τ/2 + B/µ and τ + B/µ, we now have
useful and simple mid-range delay estimations by averaging
their maximal and minimal values, respectively.

It is important to further discuss the convergence of the
sequences W (j) and Q(j) to the limits Wmin and Qmin,
respectively. Let us consider (4). Since c(j) varies, we have a
non-autonomous system. However, by the definition of c(j),
we can see that there always exists an upper bound of c(j):

|c(j)| ≤ β < ∞, for all j = 1, 2, 3, · · · . (11)

Observe also that the coefficient of W (j) in equation (4) is
1/2, which is less than 1, implying that the “free system”
of (4) is asymptotically stable. Thus, the “control system”
(4) is bounded-input/bound-output (BIBO) stable [6] in the
sense that both W (j) and Q(j) in system (4)-(5) are not
only uniformly bounded but they also have the tendency to
converge to their corresponding limits, provided that n is
uniformly bounded, which is true since n is the number of
active connections in the network and we do not consider the
theoretical case of n = ∞ in this paper.

All our simulation results presented below in Section IV-B
verify this BIBO stability conclusion.

B. Validation by Simulation

Our analytical results have been validated by simulations
using the network simulator ns-2 [23]. The topology in all

TABLE I

SIMULATION RESULTS FOR THE PACKET LOSS PROBABILITY,
AVERAGE QUEUE LENGTH AND THE VARIANCE OF THE QUEUE

LENGTH FOR THE CASE WHERE PROPAGATION DELAYS ARE

EQUAL FOR ALL SOURCES.

Packet Loss Probability 0.0013
Average Queue Length 535.3

Variance of Queue Length 181.1

simulations is the one presented in Figure 1. The following
parameters values were used: µ = 4, 000 packet/s (i.e., about
16Mbit/s for packet size of 500 bytes), τ = 100 ms, and
B = 800 packets.

We have made 10 independent simulation runs
with synchronized sources, each with a different
number of sources. The values chosen were: n =
5, 10, 15, 20, 25, 30, 40, 50, 60, 75.

The results are presented in Figure 4. The horizontal line
represents the Qmin value computed by (10). The simulation
results clearly agree with the analytical Qmin result. The
insensitivity of the minimum queue length to the number of
sources is clearly demonstrated by the simulation results.
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Fig. 4. A comparison of Qmin with simulation results for the case of
synchronized sources

In Table I, we present results for packet loss probability,
average queue length and the variance of the queue length
for this case with equal propagation delays. We later com-
pare these results with results obtained for cases where the
propagation delays are not equal.

C. Non-synchronized sources

In reality, sources are rarely synchronized. It is therefore
important to consider non-synchronized sources, to see if what
we have learnt about the relationship between large buffers
and work conservation, based on our model of synchronized
sources, applies also to cases where sources are not synchro-
nized.

To this aim, we again used the network simulator ns-2 with
the dog-bone topology of Figure 1 and the parameters: µ =
4, 000 packet/s (i.e., about 16Mbit/s for packet size of 500
bytes). The mean propagation delay is 100 ms, and B = 800
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packets. The number of sources is fixed at n = 25. We have
run the following three sets of simulations:

1) A set of five simulation runs of non-synchronized
sources with different propagation delays where the
propagation delays are governed by a uniform distribu-
tion with mean 100 ms within the range of 50 to 150
ms;

2) A set of five simulation runs of non-synchronized
sources with different propagation delays, where the
propagation delays are governed by an exponential dis-
tribution with mean 100 ms;

3) A set of five simulation runs of non-synchronized
sources with different propagation delays, where the
propagation delays are governed by a Pareto distribution
with mean 100 ms.

In all three sets, we consider all sources to have different
propagation delays based on various distributions. In particu-
lar, we assume uniform, exponential and Pareto distributions
for the first, second and third set, respectively. The variances
for these three distributions are (150-50)/12=25/3 for the
uniform, 1002 = 10, 000 for the exponential and infinity for
the Pareto. These represent a wide range of cases, which are
important to support conclusions of general nature.

In these simulations, we measured the queue length through-
out a period of 1000 seconds, which is 10,000 times the mean
propagation delay, and we want to examine our conjecture
that Qmin is indeed the “stationary” lower bound. In all the
runs for these three sets, the number of sources is n = 25,
and although all connections start at the same point in time
(time zero), their cycles are non-synchronized because of the
different distances.

For the first set, where the propagation delays were chosen
to be uniformly distributed between 50 and 150 ms, the results
are presented in Figure 5. We observe that, clearly, most of
the time the queue length is above Qmin, and in some rare
cases where the queue length is below Qmin, it immediately
increases again. Note that these very rare occasions of the
queue length dropping below Qmin happen in certain rare
situations where some of the connections are timeout and at
the same time the others are at their minimum value. However,
The queue length behavior is similar for all five simulation
sets, which are based on different propagation delay deviates
of the uniform (50,150) distribution.

For the second set, where the propagation delays were
chosen to be exponentially distributed with mean 100 ms,
the results are presented in Figure 6. As in the previous
case, we observe that most of the time the queue length is
above Qmin, and whenever the queue length hits Qmin, it
immediately increases again. The queue length behavior is
similar for all five simulation runs which are based on different
propagation delay deviates of the exponential (with parameter
1/100) distribution.

There is a strong evidence that Internet topology is governed
by Power Laws [5], [28], [11], therefore it is important
to also consider cases where distances between nodes and
therefore the propagation delays are governed by a heavy
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Fig. 5. Queue length process under uniform propagation delays versus Qmin

tailed distribution. To this end, in the third simulation set,
we considered the propagation delay to be a Pareto random
variable Ψ. In particular, we generated n = 25 deviates from
a Pareto distribution with parameters γ and δ defined by its
complementary distribution function given by

P (Ψ > x) =
{ (

x
δ

)−γ
, x ≥ δ

1, otherwise.

Its mean is given by

E[Ψ] =
δγ

(γ − 1)
(12)

In our simulation experiments, we chose γ = 1.2, which
implies that V ar[Ψ] = ∞. We fit the mean E[Ψ] = τ = 100
ms. Having γ and E[Ψ], the value for δ is obtained by (12)
to be δ = 50/3.

We have again repeated the simulation experiment five
times, each of which continued for 1000 seconds. In each of
the runs we have used a different set of 25 Pareto deviates for
the 25 propagation delays, and we obtained the queue length
behaviors presented in Figure 7. The picture is very similar
to our previous results based on the uniform and exponential
distributions. The Qmin value is a very good estimate for the
lower bound of the minimum length values. Even in the rare
occasions where the queue length process hits (or even slightly
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Fig. 6. Queue length process under exponential propagation delays versus
Qmin

crosses) the Qmin threshold, it immediately increases to values
above Qmin.

All these results provide evidence that having buffers larger
than the bandwidth-delay product can bring about work con-
servation even in the case of different distances, where the
“delay” is taken as the average of the propagation delays. This
can be explained as follows. If different sources have different
propagation delays, and if packet loss due to congestion
occurs, the closer sources will react faster than distant sources.
This avoids the simultaneous reduction of traffic and thus the
drastic reduction in queue length, and leads to a more stable
(smoother) total input and a higher average queue length.

We will now provide simulation results for various per-
formance measures obtained for the different scenarios of
propagation-delay distributions. In Tables II, III, and IV, we
present results for packet loss probability, average queue length
and the variance of the queue length, respectively, for all 3×5
simulation runs.

Interestingly, as seen from Table II, the loss probabilities
are very similar in all three cases. This can be explained as
follows. Although the larger variance in propagation delays
cause sources to react too late, given the fact that we have
here persistent (saturated) sources, if a source is late to react
to a particular congestion signal, it will react and help alleviate
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Fig. 7. Queue length process under Pareto propagation delays versus Qmin

a later congestion. Notice that because sources are saturated,
congestion (with packet loss) occurs frequently. The time
between consecutive congestions (with packet losses) is way
smaller than some propagation delays, so it does not matter
much if one reacts to the kth congestion (with packet loss)
and helps alleviate the k + m congestion or the k + m + n
congestion.

Notice, however, that the case of synchronized sources lead
to lower loss probability than the other cases. Having all
sources react to congestion (with packet loss) simultaneously
does indeed reduces the loss probability. However, if some
reasonable propagation-delays of more than the inter conges-
tion times are introduced, the loss probability increases, then
increasing some of these propagation delays further, even very
significantly, would not further increase the loss probability.

Not only are the loss probabilities similar, the average queue
lengths are also somewhat close in the cases of uniform,
exponential and Pareto propagation-delay distributions (see
Table III). And again, they are significantly higher than the
one obtained for the synchronized sources. This is consistent
with the results for the loss probability. If all sources react to
congestion signals simultaneously, the queue length is pushed
downwards all the way to Qmin. As we see in the next section
(on transient behavior) in Figures 17, 18 and 19, almost all
the minimum points, in the case of synchronized sources
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TABLE II

PACKET LOSS PROBABILITIES FOR THE DIFFERENT SIMULATION

RUNS FOR CASES WHERE PROPAGATION DELAYS HAVE UNIFORM,
EXPONENTIAL AND PARETO DISTRIBUTIONS

Run Number Uniform Exponential Pareto
1 0.0021 0.0020 0.0022
2 0.0023 0.0023 0.0022
3 0.0021 0.0022 0.0023
4 0.0021 0.0021 0.0024
5 0.0020 0.0022 0.0022

TABLE III

AVERAGE QUEUE LENGTH FOR THE DIFFERENT SIMULATION

RUNS FOR CASES WHERE PROPAGATION DELAYS HAVE UNIFORM,
EXPONENTIAL AND PARETO DISTRIBUTIONS

Run Number Uniform Exponential Pareto
1 636.8 635.2 658.5
2 640.0 626.9 655.8
3 640.0 637.2 658.8
4 638.9 624.9 644.6
5 635.7 623.8 647.3

from early on, hit the Qmin, while in the other cases of
non-synchronized sources the minimum points of the process
very rarely hit the Qmin value. These explain the difference
observed in the average queue length. Among the three cases
of non-synchronized sources, the Pareto gives the highest
average queue length (see Table III).

Since the maximum queue length is bounded above by the
buffer size, then the higher the average queue length, the lower
its variance. This is consistent with the results presented in
Table IV. As expected, the synchronized case gives the highest
queue length variance (see Table I).

The Pareto case gives the lowest variance, and if indeed this
is the realistic situation on the Internet, this could be good
news because predictable queueing delay is important.

All these results provide more confidence in the assertion
that if buffers are larger than the bandwidth-delay product,
Qmin is a good lower-bound estimate for the queue length
process. The non-synchronized cases give higher mean queue
length and lower queue length variance than the synchronized
case. This queue length behaviors means that the queue length
process is kept above Qmin almost all the time.

IV. TRANSIENT BEHAVIOR

So far we have focussed on stationary behavior. Here we
study the transient behavior of the queue and cwnd processes

TABLE IV

VARIANCE OF QUEUE LENGTH FOR THE DIFFERENT SIMULATION

RUNS FOR CASES WHERE PROPAGATION DELAYS HAVE UNIFORM,
EXPONENTIAL AND PARETO DISTRIBUTIONS

Run Number Uniform Exponential Pareto
1 113.1 121.2 107.4
2 113.4 124.9 104.8
3 119.7 125.0 105.9
4 116.6 124.0 120.3
5 122.7 126.6 119.9

to examine if convergence to stationary values occur fast
enough. In other words, we would like to see if work con-
servation indeed occurs from early on in the queueing process
or only in steady state.

A. Analysis

In Section III, we discussed the steady-state behavior of
TCP Reno with Drop-Tail for a fixed number of connections.
With the increased number of Web applications, the variance
of the number of active TCP connections within a link can be
very high. Here, we further study the stability and the transient
behavior of TCP Reno with Drop-Tail when the number of
TCP connections is varied.

We consider a discrete-time interval that starts from slot t,
where the process w(k) is at its jth local minimum, for a
duration of c(j), j = 1, 2, 3, · · ·. By our notation, the cwnd
and queue length values at slots t and t + 1 are W (j) and
Q(j), respectively. At the end of the time interval [t, t+ c(j)],
the cwnd value is W (j + 1). At time t, the number of active
connections is n. During this time interval, the number of
active connections may change. Let ∆n be the difference in
the number of active connections during that time interval,
so at time t + c(j) the number of active connections is n +
∆n. We assume that all connections that are active during the
interval [t, t + c(j)] are in their congestion avoidance phase
(Assumption 7). Changes in the number of connections during
[t, t+ c(j)] may occur in many ways. For simplicity, we limit
ourselves to two scenarios, which exclude active connections
being in the slow-start phase.

Scenario 1: A certain number of TCP connections complete
their data transmissions during [t, t + c(j)].

Scenario 2: A certain number of TCP connections that were
not active at time t, resume their data transmissions within
[t, t + ∆t] after a short idle period (so they do not enter the
slow-start phase).

Next, to pursue transient recursive relationship between
the key variables, we combine (9) and (10) into (7) (8).
Also, for notational convenience, let the vector x(j), for
j = 1, 2, 3, · · ·, represent the differences between their
equilibrium values and their real values:

x(j) =
[

W (j) − Wmin

Q(j) − Qmin

]
for j = 1, 2, 3, · · · .

In both Scenarios 1 and 2, there are changes occur in the
number of active TCP connections during [t, t+c(j)]. Let n(j)
be the number of active connections at the beginning of cwnd
cycle j. Thus, n(j) = n and n(j + 1) = n + ∆n. Define u(j)
by

u(j) = n(j + 1) − n(j), for j = 1, 2, 3, · · · .

Based on the congestion avoidance assumption (Assumption
7), we obtain the linear relationship

x(j + 1) = Gx(j) + Hu(j) (13)

where
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G =

[
1
2 − 1

2n

n
2 − 1

2

]
and H =

[ −(B−Qmin)
2n2

Wmin

2

]

with n = n(j), a function of j.
Now, we take a closer look at the transient behavior of the

system when the number of TCP connections changes. There
are two types of possible changes. The first is what we call
temporary change; this is typically a one-off change in the
number of active connections. This can happen as a result
of a disaster or hardware failure, for example, when many
connections stop their activities at once. The second is what
we call generic change; it typically represents a case of normal
activity where connections are turned on and off as time goes
by.

1) Temporary Change: Assume that a temporary change
occurs during a cwnd cycle i and no other change occurs
during that cycle. Let ∆n (which may be positive or negative)
represent the change in the number of active connections
during this cycle. This change can be represented by a step
function. For each cycle j, j = 1, 2, 3, · · ·, the input variable
u(j) is obtained as

u(j) = ∆nv(j − i)

v(l) =
{

1 ; if l ≥ 0
0 ; if l < 0 .

2) Generic Change: In the case of a generic change in the
number of active TCP connections, we consider an arbitrary
sequence of cwnd cycles, from the a1 cycle to the am cycle,
and we assume that the change in the number of active
connections (positive or negative) during cycle i, (a1 ≤ i ≤
am) is ∆ni. In this case, the input variable u(j) is obtained
via the convolution of multiple steps as follows:

u(j) =
∑

i

∆niv(j − i).

Knowing G, H and u(j), we can solve for the transient
behavior from (13) and obtain the numerical results to be
presented in the next section.

B. Numerical and Simulation Results

Firstly, we would like to observe, using simulation results,
from what time onwards the condition of the “queue never
empties” is maintained, and how long does it take for the queue
length process to reach a point from which it always exceeds
the Qmin value. We performed simulations by the network
simulator ns-2 [23] for the network topology presented in
Figure 1, using the following network parameters: common
link rate µ = 1, 000 packet/s (i.e., about 8Mbit/s for the
packet size of 1,000 bytes), propagation delay τ = 100 ms,
and buffer size B = 200 packets. We considered six cases,
each involves a different number of TCP connections, n. The
following n values were considered: n = 5, 10, 15, 20, 25, 50,
for which we obtained the following equilibrium (minimum)
values of cwnd Wmin = 30, 15, 10, 7.5, 6, 3, respectively. We
also obtained the equilibrium (minimum) value of the queue

length to be Qmin = 50 for all cases. Recall that Qmin is
independent of n by (10). The simulation results are presented
in Figures 8 to 13 corresponding to the six different cases of n
values. The results confirm the basic assertions of the paper.
After reasonably short convergence period the “queue never
empties” condition is reached. Then, as mentioned above,
Qmin obtained by (10) is a good estimate for the lower bound
of the queue length. We also observe that increase in the
number of connections reduces the time of convergence to
steady state as the cycle time decreases.
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Fig. 8. Transient queue length for n = 5
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Fig. 9. Transient queue length for for n = 10
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Fig. 10. Transient queue length for n = 15

So far we have tested the case where the number of TCP
connections n stays constant for the entire duration of the test.
Normally, the number of connections varies as flows start and
terminate. In the next set of simulation tests we allow n to vary
during the test to learn if this can introduce new transient effect
that will push the queue length below Qmin or even disturb
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Fig. 11. Transient queue length for n = 20
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Fig. 12. Transient queue length for n = 25

the “queue never empties” state. We also use the simulation
results to test our transient analytical results for Q(j).

In Figure 14, we present transient queue length results for
a case where the number of TCP connections n starts at 10,
then changes to n = 9 at the time point of 28.6 seconds. In
Figure 15, we present the results when the number of TCP
connections n again starts at 10, then changes to n = 9 at
the time point of 28.6 seconds and then to n = 8 at the time
point of 38.1 seconds. In Figure 16, we present the results for
the case where the number of TCP connections starts at 12,
then changes to n = 10 at the time point of 50.5 seconds,
then back to n = 12 at the time point of 63.6 seconds.
Again, there are strong agreements between the analytical and
the simulation results. In all three figures, we also observe
that the queue length drops below Qmin at some transient
time points where the number of connections decreases, and
exceeds Qmin at some transient time points where the number
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Fig. 13. Transient queue length for n = 50

of connections increases. This is intuitively expected as less
connections means less total traffic (momentarily) and more
connections means more total traffic (momentarily).
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Fig. 14. Comparison of analytical calculations of Q(j) values (the ‘*’s),
simulation results, and the Qmin horizontal line for the case where n value
starts at 10 and then changes to 9.
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Fig. 15. Comparison of analytical calculations of Q(j) values (the ‘*’s),
simulation results, and the Qmin horizontal line for the case where n value
starts at 10, then changes to 9, and then changes to 8.
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Fig. 16. Comparison of analytical calculations of Q(j) values (the ‘*’s),
simulation results, and the Qmin horizontal line for the case where n value
starts at 12, then changes to 10, and then changes back to 12.

C. Non-synchronized Sources

In Section III, we demonstrated by simulation that Qmin,
obtained by (10), provides a good lower bound estimate for
the steady state behavior of the queue length for the general
case of non-synchronized sources. We will now examine
the transient behavior of the queue length, in the case of
non-synchronized sources, to see how long it takes for the
queue length to reach the state where it is consistently and
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continuously greater than or equal to Qmin. To this end, we
consider the first (the top) simulation run presented in each
of the Figures 5, 6 and 7 based on uniform, exponential
and Pareto propagation-delay distributions, respectively. For
each of these three runs, we focus on the first 50 s, and we
plot: (1) the queue length process, (2) the equivalent queue
length process for the case of synchronized sources, and (3) a
horizontal line for the Qmin value. We do not label the curves
related to the case of synchronized and non-synchronized
sources in these figures because it is clear from the figures
which is which. The results are presented in Figures 17, 18
and 19 for the uniform, exponential and Pareto distributions,
respectively.

A consistent conclusion emerges from the three Figures.
The initial times during which the queue length process spends
below the Qmin threshold is in the order of a few seconds in
all cases.
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Fig. 17. Simulation results for the transient queue length process for the cases
of synchronized and non-synchronized sources versus the Qmin horizontal
line for the case where the propagation delays of the non-synchronized sources
follow uniform distribution.
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Fig. 18. Simulation results for the transient queue length process for the cases
of synchronized and non-synchronized sources versus the Qmin horizontal
line for the case where the propagation delays of the non-synchronized sources
follow exponential distribution.

V. CONCLUSIONS

Assuming that buffers are larger than the bandwidth-delay
product, we have derived a formula for the lower bound
of TCP-Reno queue length process in steady state using a
discrete-time model of saturated, synchronized and homoge-
neous sources. We have demonstrated by a wide range of
simulations that this lower bound (denoted Qmin) also applies
to the case where sources are not synchronized, except for

0 5 10 15 20 25 30 35 40 45 50

0

200

400

600

800

time (sec)

Q
ue

ue
 le

ng
th

 (
pa

ck
et

s)

Q
min

 

Fig. 19. Simulation results for the transient queue length process for the cases
of synchronized and non-synchronized sources versus the Qmin horizontal
line for the case where the propagation delays of the non-synchronized sources
follow Pareto distribution.

rare situations. We have also provided a transient analysis
for the queue length process for the synchronized sources
case and demonstrated also for cases with non-synchronized
sources that it does not take too long for the queue length to
exceed and stay above the Qmin threshold. This sheds light
on the important relationship between buffers larger than the
bandwidth-delay product and the “queue never empties” (work
conservation) condition.
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