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ABSTRACT
This paper investigates the influence of disk flexibility on

the dynamical behavior of a flexible disk/shaft rotor system

supported with squeeze film dampers. A simplified nonlinear

rotor model incorporating disk/shaft coupling dynamics is

developed for lateral vibration of a rotor system. The steady

state performance of the system is explored over a wide

range of operating conditions using numerical integration and

harmonic balance analysis. It is shown that disk flexibility

may significantly affect the dynamical behavior of the system

at high operating speed by creating an additional critical

speed. It is observed that both the SFD journal motion and

the disk motion associated with the additional critical speed

are aperiodic and of large amplitudes. It is demonstrated

that the influence of disk flexibility can be shifted out of

the operating speed range by increasing the retainer spring

stiffness.

NOMENCLATURE

AR = coefficient of radial fluid film force

AT = coefficient of tangential fluid film force

Bk = ARL3 1(C3MCar) bearing parameter of SFD

C = radial clearance of SFD

e = journal eccentricity

F1 = fluid film force in the 21 direction

F2 = fluid film force in the 22 direction

Ih = inertia of rotor hub

L = axial length of SFD

Ls = rotor shaft length

m = half of rotor mass

md = one-fourth of disk mass

m1 = 2./b/L! 4mdr2/.q m

m2 = rmdl Ls

m3 = 8mdr2 114

M20 = r/12/md

m21 = m2/mi

m31 = m3/m1

N = number of harmonics

R = bearing radius of SFD

r = disk radius

T 

=trwanr

U = PIC imbalance parameter

u = static imbalance

21, 22 = shaft degrees of freedom

23,24 = disk degrees of freedom

z2,	= physical displacements for disk mass elements

p = absolute viscosity of lubricant

A1 

=

A2 = Cad/CI
= rotor speed

= design speed of the rotor

cad = natural frequency of the non-rotating disk

cor = natural frequency of the retainer spring-rotor system

= cor/co spring parameter

= azimuth angle for ith disk mass

= damping ratio for the disk

7 =

(')= dldr

INTRODUCTION

Squeeze film dampers can provide significant attenuation

of rotor vibration amplitudes and improved rotor stability
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if appropriately designed. Great efforts have been made

over the years to investigate the effects of various system

parameters on the performance of squeeze film damper

supported rotors. A number of important studies on this

topic are available in the technical literature. Those that

have most influenced the current work are discussed below.

Mohan and Hahn (1974) and Rabinowitz and Hahn (1977a)

studied the steady state performance of squeeze film damper

supported rotors for design purposes. San Andres and

Vance (1986), Tichy (1987) and El-Shafei (1988) investigated

the effects of fluid inertia. Feng (1988) and Zeidan and

Vance (1990) examined cavitation effects. Rabinowitz and

Hahn (1977b) and Sato et al. (1991) discussed stability

characteristics.

To the authors' knowledge, all of the work related to

squeeze film damper supported rotors has either explicitly or

implicitly assumed that any disks attached to the shaft are

rigid, neglecting the coupling between the dynamics of the

disk and that of the shaft. Such an assumption is adequate

in applications where disks are designed to be very rigid

and disk flexibility is indeed negligible. However, in many

applications, especially in modern aircraft engines, flexible

disks are common due to the trend in design toward higher

speeds and lower weight (Klompas, 1974 and Chivens and

Nelson, 1975). Studies of rotor models in which the effects

of disk flexibility have been included indicate that it may

significantly alter rotordynamical behavior under certain

conditions (Vance, 1988 and Wilgen and Schlack, Jr., 1979).

Since modern aircraft engines typically utilize squeeze film

dampers in conjunction with rolling element bearings, it is

important to study what effects disk flexibility might have on

the performance of squeeze film damper supported rotors.

This paper is concerned with the dynamics of a flex-

ible disk/shaft rotor system supported with squeeze film

dampers. The steady state responses of the system are in-

vestigated using harmonic balance analysis and numerical

integration.

FIG. 1 SCHEMATIC DIAGRAM OF THE MODEL

results in responses that transmit a moment to the shaft and

thereby assures that the disk motion and the shaft motion are

coupled.) (4) 7r-film short bearing approximation is valid for

the squeeze film dampers; (5) the rotor is centrally preloaded

with retainers of constant symmetric radial stiffness; (6)

the rotor speed is constant; (7) the Reynolds equation for

constant fluid properties is applicable and the pressures at

the ends of the damper are ambient; (8) the fluid inertia

forces are neglected.

The equations of motion that result are:

11	 1 1

- m21x3 — 2m21x 4 + m31x 2

+Aix' — F1 = u cos(ilt)

X2 - M21X4 2M21X3 - M31X1

-FMX2 - F2 = — u sin()

THEORETICAL MODEL

The theoretical model in this investigation is largely based

on the work of Flowers and Wu (1992). A schematic

diagram of the model is shown in Fig. 1. The disk is

modelled as a collection of four equally spaced mass elements

connected to a central hub by linear springs. The rigid

central hub simulates the shaft/disk interconnection. The

equation development for this model is based on the following

assumptions: (1) the shaft is rigid and symmetric; (2) the

hub is restricted to have only rotational motion; (3) the

disk motion is assumed to be asymmetrical around the

circumference of the disk; (To be specific, this assumption

means that z1 = —x3 and z2 = —z4. This kind of motion

11	 11

.4M2021-FX3 8M20X2 2x4 — X3

-FA3X3 + 2024 = 0

11	 II

.41M2OX 2+z 4 + 877120X1 2X3 - X4

-FA3X4 + 2(A24 = 0

where
4

= E zicosp +
i=1

4

X4 = E	+ (Pi)

2
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A1=	

i

(	

0

m31 k

	—k? +	0

0	—k? +
For steady-state motion, it is assumed that the squeeze

film damper executes a circular centered orbit motion. Thus,

F1 and F2 can be simplified and expressed in the following

forms:

—k? + A?

—n231ki	0

M31ki )

0

-k? + A?

= (n221k?

0

0

—2m2iki

A1BkC3 (ATx2 + ARxi) 
F1=

Vx?-F

A1Bk C3 (ARx2 — ATzi) 

AR =
(C2 xi 4)2

21x 1 x2 — xix21 

where

F2=

Vx?

In the above equations, F1 and F2 are derived from the

dynamic fluid force expressions for 7r-film short bearings

given by Vance (1988).

A1./3kC3(ATx2 + ARzi) 

-Vx? + x3(C2 — x? — 4)2

A1BkC3(ARx2 — AT xi) 

Vx1 + zi(C2 — — 4 )2

A	
ir(C2	2x3)(siz; +

R =	
x2x2) 

20C2 — X? — X3)(X?

2IX;X2 — X1X121

equations (1) and the nonlinear SFD fluid forces expressed

in equations (3) are assumed to have the following forms:

x. = E[a11cos(k100+ ki1sin(k112t)]	(4.a)

i=1

(j = 1,2,3,4)

= ERgl1cos(kif2t) + kisin(kiSlt)]

i=1

F2 = E[(g21cos(k1ftt) + h21sin(k1C2t)]

1=1

Substituting equations (4) into the equations of motion

(1) and equating all the trigonometric terms, we obtain the

following nonlinear algebraic equations in matrix form:

=

F2=

where

(2.a)

7r(x1x2 — xiz2)VC2 — x? —
AT=

2\7 X? ±

—	X2X;) where

+ BiP2i — Qi — = 0

+ DiP2i =0

(5.a)

(5.h)

0	0	—2m21k1

rn2ik? 2m21k1	0

2m21k1 m2ik?

m21k?

4m2ok?	0	0	—8m20k1

=
0	4m20k? 8rn2oki	0

0	8m20k1 4m20k?	0

—8m2oki	0	0	4m20k?

7r(X1X2 Z1Z2) AT = 	
2% /z? ± X3(C2 — X? — X3)3/2

ANALYSIS

Since the current research work is primarily concerned

with periodic motions, the harmonic balance method is used

to study the dynamic responses. To apply the harmonic

balance method, the steady-state responses associated with

Di =

(A3 — 1— k? 202ki
—202k1 M — 1 — k?

0	—2ki
2ki	0

2ki	)

—2ki
- 1 - k?	2(A2k1

—2(A2k1	/1.3 — 1 — Ic?

( a3i )
631

P21 =
a4i

b41

6Fu )
0

=
0

—6 Fu
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C...41001 in.

0.4	0.6

Clko

02 0.8 10

where
6 =1	if	ki = 1

6 =0	if	k

Rearrangement of equation (5.b) yields:

P21 =

1.0

0.8

0.6

(6)	0.4

Substituting the above expression for P2i into equation

(5.a) results in the following expression:

- BiDT1Ci)Pii - Qi - = 0	= 1, ...,N) (7)

Equation (7) is a nonlinear algebraic equation in terms

of the unknown constants associated with the assumed

responses. Q is a nonlinear function of P1. In this study,

an IMSL (Version 1.1) routine based on the Levenberg-
Marquardt algorithm is used to solve equation (7) for the

unknown constants.

DISCUSSION OF RESULTS
Parametric studies were performed for varied imbalance

parameter U, retainer spring parameter C.:8, and bearing

clearance C, respectively. In order to avoid excessive clut-

tering of the figures with parametric plots, typical results

from each type will be presented and discussed. The nom-

inal parametric configration concerning the disk flexibility

and the system mass distributions is listed in Table 1. The

parameters selected for the example cases are based on cur-

rent literature in this area and are thought to be represen-

tative values. Specifically, three values, wd = 0.4, wd = 0.5

and wd = 0.6, were chosen to represent different degrees of

disk flexibility for the case of flexible disk. The SFD radial

clerance C was varied from 0.001 in. to 0.01 in. during the

analysis. The results obtained for all values of C within this

range are almost identical. The results presented in this pa-

per are for the case of C = 0.001 in.. The reason for choosing

this C value is to make it sufficiently small such that the as-

sumption that the fluid inertia force of the SFD is negligible

is valid.
Figs. 2(a)-2(b) are the predicted imbalance responses of

the SFD journal. Since synchronous responses are assumed

for the steady-state motion, the results presented here are

obtained from the first harmonic only. It is seen that the disk

flexibility can significantly affect the dynamical behavior of
the system at high operating speed. In fact, an additional

critical speed within the operating speed range can be created
by the disk flexibility. This phenomenon was also observed

in an earlier investigation (Wu and Flowers, 1992). As is

shown, this critical speed is exclusively dependent on the disk

flexibility. As the disk flexibility decreases (or wd increases),

10

tad =20.0
- - ca,d = 6.0

(dd = 5.0

- L4c1= 4.0

02
	

0.4	0.6

flico

(b)

FIG. 2 EFFECT OF DISK FLEXIBILITY ON

ROTOR RESPONSES (r.o. = 0.283)

FIG. 3 IMBALANCE RESPONSE OF SFD

JOURNAL (C4, = 0.283, cod = 5.0)

FIG. 4 IMBALANCE RESPONSE OF THE

DISK (ai, = 0.283)
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TABLE 1. NOMINAL PARAMETER VALUES

Parameter Value Parameter Value

Car 1.0 M20 0.2

wd 5.0 M21 0.1
a), 0.283 M31 0.16

( 0.01 C 0.001 in.

the additional critical speed increases. If the disk flexibility

becomes sufficiently low (that is wd becomes larger than a

certain value), the additional critical speed vanishes. On
the other hand, the whirling amplitudes corresponding to

this additional critical speed are even greater than those
corresponding to the first critical speed associated with the
natural frequency of the rotor wr. It is observed that the

disk flexibility also produces a dip on the imbalance response
curve. That is, after the operating speed has passed the

first critical speed, the journal whirling amplitude gradually

drops to zero and then increases again as the speed increases.
The cause of this dip phenomenon will be discussed in the

next paragraph. Fig. 3 shows the influence of the imbalance
parameter U on the journal responses with wd = 0.5. It is
noted that the dominant effect of disk flexibility is basically

independent of the imbalance parameter U for a certain SFD
design configuration. However, large values of imbalance can

cause multi-valued responses and, as always, large whirling
amplitudes. As is expected, the dominant influence of disk

flexibility at high operating speed is due to the resonant
motion of the disk. This can be clearly seen from Fig. 4.

To verify the results obtained from the harmonic balance

analysis, simulation studies are performed at selected points
through numerical integration of the governing differential

equations (1). Because the simulation process includes the

transient responses, the steady-state forms of the SFD fluid

forces of equations (3) are no longer valid. Therefore,

equations (2) are used instead. Figs. 5(a)-5(d) are typical
simulation results for the case of C=0.001 in. and U=0.2,

which corresponds to the curve of wd=5.0 of Fig. 2(a). It

is seen that at low operating speed, the SFD journal motion

and the disk motion are 1800 out of phase. Actually, this is
the case for all the operating speed below that corresponding
to the smallest amplitude on the response curve (C2/w <
0.71 for this example). As the speed increases, the disk
motion becomes larger, gradually approaching the resonant

amplitude. At the speed corresponding to the smallest

amplitude, the journal motion and the disk motion are 90°
out of phase. As the operating speed continues to increase,
the disk natural frequency is excited and the journal motion

and the disk motion become in phase. This kind of phase
changes were also noticed in another earlier investigation

(Flowers, 1990). More importantly, at this stage, both the
journal motion and the disk motion become aperiodic. It
should be pointed out that because of the motion is no

- Journal motion
- - - Disk motion

Ar•=0.4

:	■•••

1300.0
	

1310.0
	

1320.0
	

1330.0

(a)

Dho=0.71

1300.0
	

1310.0
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(b)

ilko=0.82
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(c)

ID/s1.0
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1310.0
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1330.0

(b)

FIG. 5 SIMULATIONS OF ROTOR RESPONSES

(wd = 5.0, (.7), = 0.283, C = 0.001in.)
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1.0

0.8

0.6

0.4

0.2
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(a)

C.40.001 in.,

1 002 0.80.4	0.6

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0
00

operating speed from completely out of phase to totally in

phase.
As a brief summary, the following results were observed in

this investigation:

1. Disk flexibility can producing an additional critical speed

within the operating speed range.

2. Both the journal motion and the disk motion associated

with the additional critical speed are aperiodic and of large

amplitudes.

3. The additional critical speed can be shifted beyond the
operating speed range by increasing the retainer spring

stiffness to a certain value.
4. At low operating speed, the journal motion and the disk

motion are 1800 out of phase. As the speed increases, the two
motions become 90° out of phase. After the operating speed

has passed the additional critical speed, the two motions

become in phase.
5. The dominant effect of disk flexibility is basically inde-

pendent of the imbalance parameter U for a certain design

configuration. However, large imbalance may result in multi-

valued responses.

(b)

FIG. 6 EFFECT OF DISK FLEXIBILITY ON

ROTOR RESPONSES (C), = 0.6)

longer periodic at high operating speed, the amplitude values
associated with high operating speeds shown in Fig. 2(a) are

not real radii of whirling orbits, but approximate radii of the
first harmonics.

Figs. 6(a)-6(b) demonstrate the benefit of increased values
of spring parameters c7.,. It is seen that the dominant range

of disk flexibility can be shifted beyond the design operating

speed by increasing Cos to a certain value. However, there is a

penalty associated with large values of cDs. As is well known,

the transmissibility T increases with increasing values of cD,

Therefore, compromises have to be made in choosing the
optimal value of a), for a certain design configuration.

CONCLUSIONS

This investigation has shown that disk flexibility may

significantly influence the dynamical behavior of a squeeze

film damper supported flexible disk/shaft rotor system if the

stiffness of the disk is below a certain value. Of particular

interests is the appearance of an additional critical speed

within the operating speed range. The phase between the
SFD journal motion and the disk motion changes with
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