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Effect of lateral walls on peristaltic flow

through an asymmetric rectangular duct
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Abstract. Peristaltic transport of an incompressible viscous fluid due to an asymmetric waves propagating on the horizontal

sidewalls of a rectangular duct is studied under long-wavelength and low-Reynolds number assumptions. The peristaltic wave

train on the walls have different amplitudes and phase. The flow is investigated in a wave frame of reference moving with

velocity of the wave. The effect of aspect ratio, phase difference, varying channel width and wave amplitudes on the pumping

characteristics and trapping phenomena are discussed in detail. The results are compared to with those corresponding to Poiseuille

flow.
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1. Introduction

It is well known that peristalsis is an important

mechanism for mixing and transporting fluids, which

is induced by a progressive wave of contraction or

expansion moving on the wall of a channel/tube. Such

mechanism occurs in the urine transport from kidney

to the bladder, food mixing and chyme movement in

the intestine, lymph transport in the lymphatic vessel

and in vasomotion of small blood vessels, transport

of spermatozoa in cervical canal, movement of eggs

in the female fallopian tube and many others. Sev-

eral investigators are engaged to discuss the peristaltic

mechanism theoretically under various approxima-

tions [1–20]. Recently, physiologists observed that the
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intra-uterine fluid flow due to myometrical contrac-

tions is peristaltic type motion and the myometrical

contractions may occur in both symmetric and asym-

metric directions, De Vries et al. [21]. In view of this,

Eytan and Elad [22] have developed a mathematical

model of wall-induced peristaltic fluid flow in a two-

dimensional channel with wave trains having a phase

difference moving independently on the upper and

lower walls to simulate intrauterine fluid motion in a

sagittal cross-section of the uterus. They have obtained

a time dependent flow solution in a fixed frame by

using lubrication approach. These results have been

used to evaluate fluid flow pattern in a non-pregnant

uterus. They have also calculated the possible parti-

cle trajectories to understand the transport of embryo

before it gets implanted at the uterine wall. More-

over, Mishra and Rao [23] investigated fluid mechanics

effects of peristaltic transport in a two-dimensional

asymmetric channel under the assumptions of long
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wavelength and low Reynolds number in a wave frame

of reference. The channel asymmetry is produced by

choosing the peristaltic wave train on the walls to

have different amplitude and phase due to the vari-

ation of channel width, wave amplitudes and phase

differences. More recently Kothandapani and Srinivas

[24] investigated the peristaltic pumping of incom-

pressible Newtonian fluid in an inclined asymmetric

channel through a porous medium. Also, Ali and Hayat

[25] investigated the peristaltic motion of an incom-

pressible micropolar fluid in an asymmetric channel.

In fact, the sagittal cross section of the uterus may

be better approximated by a tube of rectangular cross

section than a two-dimensional channel. The effects

of the side walls on the flows in ducts with suction

and injection are examined by Erdogan [26]. Tsan-

garis and Vlachakis [27] obtained an exact solution

of the Navier-Stokes equations for a pulsating flow

in a rectangular duct in order to explain the blood

flow in fiber membranes used for the artificial kid-

ney. Recently, Reddy et al. [28] studied the flow of a

viscous fluid due to symmetric peristaltic waves prop-

agating on the horizontal side walls of a rectangular

duct under the assumptions of long wavelength and

low Reynolds number and only studied the pump-

ing characteristic. Literature survey indicates that such

attempt is the only one for a symmetric peristaltic

waves. Therefore, the present analysis is fundamen-

tal and is a second attempt in this direction. Keeping

in view of the studies mentioned above, the aim of this

paper is to investigate the fluid mechanics effects of

peristaltic transport in a rectangular duct with asym-

metric waves propagating on the horizontal side walls

(lateral walls) under the assumptions of long wave-

length and low Reynolds number in a wave frame

of reference. The asymmetry waves are produced by

choosing the peristaltic wave train on the walls to

have different amplitude and phase due to the vari-

ation of channel width, wave amplitudes and phase

differences.

All previous scientific investigations of transport

within the biological systems they assume. The peri-

staltic flow in an asymmetric two-dimensional channel

Explain the motion of intrauterine fluid in a sagittal

cross section of the uterus. In fact, the sagittal cross sec-

tion of the uterus may be better approximated by a tube

of rectangular cross section than a two-dimensional

channel. And the use of this method of treatment will

help to improve the overall performance of the artificial

heart and blood vessel.

2. Formulation of the problem

Consider the motion of an incompressible viscous

fluid in a duct of rectangular cross section with width

2 d3 and height d1 + d2 as shown in Fig. 1. Cartesian

coordinate system (X, Y, Z) is with X, Y and Z axes

corresponding to axial, lateral, and vertical directions,

respectively, of a rectangular duct. The duct walls are

flexible, and an infinite train of sinusoidal waves prop-

agate with constant velocity c only along the walls

parallel to the XY plane in the axial direction. The

peristaltic waves on the walls are given by

Z=H1=d1 + a1 cos
2π

λ
(X − ct) upper wall

Z=H1=−d2 −b1 cos

(

2π

λ
(X−ct)

)

+φ) lower wall

(1)

where a1, b1 are the amplitudes of the waves, λ is

the wave length, d1 + d2 is the width of the channel,

the phase difference, φ varies in the range 0 � φ � π,

φ = 0 corresponds to symmetric channel with waves

out of phase and φ = π the waves are in phase, and

further a1, b1, d1, d2 and φ satisfies the condition a2
1 +

b2
1 + 2a1b1 cos(d1 + d2)2. Introducing a wave frame

(x, y, z) moving with velocity c away from the fixed

frame (X, Y, Z) by the transformation between the two

frames is given by

x = X − ct, y = Y, z = Z, u = U − c,

w = W, v = V, p(x, z) = P(X, Z, t) (2)

where (u, v, w) and (U, V, W) are the velocity com-

ponents, and p and P are the pressures in wave and

fixed frames of reference, respectively. Using the non-

dimensional quantities

x =
x

λ
, y =

y

d3
, z =

z

d1
, u =

u

c
, w =

w

cδ
, v =

d3

cλδ3
v

t =
ct

λ
, h1 =

H1

d1
, h2 =

H2

d1
, d =

d2

d1
, a =

a1

d1
, b =

b1

d1
,

Re =
cd1

ν
, β =

d1

d3
, p =

d2
1p

µcλ
. (3)

in the Navier-Stokes equations and equation of con-

tinuity, which governs the flow, we get (dropping the

bars)
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Fig. 1. Geometry of the problem

Reδ

[

u
∂u

∂x
+ δβ2v

∂u

∂y
+ w

∂u

∂z

]

= −
∂p

∂x
+ δ2 ∂2u

∂x2
+ β2 ∂2u

∂y2
+

∂2u

∂z2
(4)

Reδ
4

[

u
∂v

∂x
+ δβ2v

∂v

∂y
+ w

∂v

∂z

]

= −
∂p

∂y
+ δ3

(

δ2 ∂2v

∂x2
+ β2 ∂2v

∂y2
+

∂2v

∂z2

)

(5)

Reδ
3

[

u
∂w

∂x
+ δβ2v

∂w

∂y
+ w

∂w

∂z

]

= −
∂p

∂z
+ δ4 ∂2w

∂x2
+ δ2

(

β2 ∂2w

∂y2
+

∂2w

∂z2

)

(6)

∂u

∂x
+ δβ2 ∂v

∂y
+

∂w

∂z
= 0 (7)

where β is an aspect ratio and Re is a Reynolds num-

ber, the aspect ratio β < 1 means that height is less

compared to width, and β = 0 corresponds to a two

dimensional channel. When β = 1, the rectangular

duct becomes a square duct and for β > 1, the height is

more compared to width. Under lubrication approach

(negligible inertia Re → 0 and long wavelength δ ≪ 1)

the Eqs. (4)–(7) reduce to

β2 ∂2u

∂y2
+

∂2u

∂z2
=

dp

dx
(8)

∂u

∂x
+

∂w

∂z
= 0 (9)

The corresponding no-slip boundary conditions are

u = −1 at y = ±1 (10)
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u = −1 at z = h1, z = h2, (11)

where h1=1+a cos(2πx), h2 =−d−b cos(2πx+ φ),

0 ≤ a ≤ 1, a = 0 for straight duct and a = 1 corre-

sponds to total occlusion. Introducing x = x́, y = βý,

z = ź in Eqn .(8), we get

∂2u

∂ý2
+

∂2u

∂ź2
=

dp

dx́
(12)

Substituting u = ú − 1 + 1 1
2

dp
dx

(h1 − ź)(h2 − ź), in

(12), we get

∂2ú

∂ý2
+

∂2ú

∂ź2
= 0 (13)

The corresponding boundary conditions are

ú = −
1

2

dp

dx
(h1 − ź)(h2 − ź) at ý = ±

1

β
(14)

ú = 0 at ź=h1, ź=h2 (15)

The solution of (8) using Eqs. (12)–(15), valid in

−1 ≤ y ≤ 1, h2 ≤ z ≤ h1, satisfying the correspond-

ing boundary conditions (10) and (11) is given by

u=−1 +
dp

dx

(

(h1 − z)(h2 − z)

2
−

2

(h1 − h2)

×

∞
∑

n=1

((−1)n−1) cosh
(

αn

β
y
)

sin αn(z−h2)

α3
n cosh

(

αn

β

)

⎞

⎠ (16)

where αn = (nπ)/(h1 − h2) The volumetric flow rate

in the rectangular duct in the wave Frame (in vertical

half) is given by

q=

∫ h1

h2

∫ 1

0

(u) dy dz=−(h1−h2)+
dp

dx

(

−(h1−h2)3

12

+
4β

(h1 − h2)

∞
∑

n=1

(1 − (−1)n) tanh αn

β

α5
n

)

(17)

The instantaneous flux in the laboratory frame is

Q =

∫ h1

h2

∫ 1

0

(u + 1)dy dz = q + (h1 − h2) (18)

The average flux Q(x, t) over one period (T = α/c)

of the peristaltic wave is

Q =
1

T

∫ h1

h2

∫ 1

0

(Q)dy dz = q + 1 + d (19)

From Eqs (17) and (19), the pressure gradient is

obtained as

dp

dx
=

(Q − 1 − d) + (h1 − h2)

−
(h1−h2)3

12 +
∑∞

n=1

4β(1−(−1)n) tanh αn
β

(h1−h2)α5
n

(20)

Integrating Eq. (20) with respect to x over one wave-

length, we get the pressure rise (drop) over one cycle

of the wave as

	p = (Q − 1 − d)I1 + I2

where

I1=

∫ 1

0

1

−(h1−h2)3

12 +
4β

(h1−h2)

∑∞
n=1

(1−(−1)n) tanh αn
β

α5
n

dx

I2 =

∫ 1

0

(h1 − h2)

−(h1−h2)3

12 +
4β

(h1−h2)

∑∞
n=1

(1−(−1)n) tanh αn
β

α5
n

dx

(21)

The stream function associated with the flow

depends on all the three coordinates. We can find the

streamlines in xz plane (fixing a lateral station y)and

with the condition. ψ = 0 at z = 1/2(h1 + h2) will

take the form

ψ(x, y) =
1

2
(h1 + h2) − z +

dp

dx

{

1

24
(h1 + h2 − 2z)(h2

1 − 4h1h2 + h2
2 + 2(h1 + h2)z − 2z2)

+

∞
∑

n=1

(1 − (−1)n) cosh
(

αn

β
y
)

α4
n cosh

(

αn

β

)

(

√

1

2
((−1)n + 1) cos (αn(z − h2))

)

}

(22)

In the limit β → 0 (keeping a fixed and d → ∞), the

rectangular duct reduces to a two-dimensional chan-

nel and our results reduce to those given by Mishra

and Rao [23], also when (d1 = d2, a1 = b1) and φ = 0

(symmetric walls) our results reduce to those given

by Reddy, et al. [28]. Finally, for the symmetric walls

and β → 0 our results are the same as those given by

Shapiro et al. [1].
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3. Discussion

This section describes the influence of various

emerging parameters of the problem on dp/dx, 	p, Q

and trapping phenomena. Moreover, to understand the

effect of lateral asymmetric walls on the pumping char-

acteristic one have to analyze the pressure-flux relation

given in Eq. (21) for different values of the aspect

ratio β and the dimensional phase shift φ. Due to the

complexity of expression (21), the integrations and the

series involved are not integrable in closed form, so

numerical integrations are performed and the graph-

ical results are presented. Physically, as β increases

from small value to a value greater than one, a transi-

tion takes place from rectangular duct with domination

of width to the one with height passing through a cross-

section of square duct. In Fig. 2(i) the variation ofdp/dx

within a wavelength for different values of the phase

different φ and the aspect ratio β is presented. It is

shown that as φ increases, i.e moves from symmet-

ric to an asymmetric wall waves, the pressure gradient

decreases, while as β increases the pressure gradient

increases. Figure 2(ii) and (3) depicts the pumping

curves with a fixed value of a = b = 0.6 and for differ-

ent values of β and φ. For small values of β, any two

pumping curves intersect at a point in the first quad-

rant as seen in Fig. 3(i). As long as this point remain

in the first quadrant, to the left of this point pumping

increases and to the right both pumping and free pump-

ing 	p = 0 decreases with increasing β, i.e. vertical

dimension a is large compared to horizontal dimension

d. This point of intersection will stay at the first quad-

rant as φ increases but with less pressure rise, while this

point move to the fourth quadrant for large values of β

as shown in Fig. 3(ii) and so, both pumping and free

pumping increases with increasing β while it decreases

as φ increases. Our results for the pumping characteris-

tics (	p versus Q)are comparing to those of Poiseuille

(without peristaltic a = b = 0) flow in dot lines in

Fig. 3(i), (ii). The variation of	p with β for different

values of Q is illustrated in Fig. 4(i), (ii). It is observed

that 	p increases for small values of Q. Fig. 4(ii) is an

enlargement of Fig. 4(i), showing that the curves for

various Q do not meet at a single point near β = 0.0.

Figure 5 depicts the variation of	p with β and for dif-

ferent values of φ. This figure shows that 	p decreases

as φ increases while it increases as β increases for small

values ofφ. The variation of Q with β for different val-

ues of 	p and a, b (amplitudes of peristaltic waves on

the upper and lower walls) is depicted in Fig. 6, where

the flow rate Q decreases for 	p = -1 and increases for

	p = 4 only for small values of β. Also, Fig.6(i), (ii)

shows that the free pumping flux rate Q attain a min-

imum around β ≃ 0.25 and then have approximately



Kh.S. Mekheimer et al. / Effect of lateral walls on peristaltic flow through an asymmetric rectangular duct 303

2.0

∆p = -1

∆p = 0

∆p = 2

∆p = 4

a = b = 0.9

a = b = 0.6

a = b = 0.3

1.5

1.0

0.5

0.0

–0.5

–1.0

–1.5

–2.0

–2.5

–3.0

–3.5

–4.0

–4.5

–5.0

–5.5

–6.0

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 25 50

Q

75
β

β

100 125

0 1 2 3 4

Q

(i)

(ii)

Fig. 6. (i) Variation of Q versus β with a = b = 0.7, d = 2 and φ = π/2 for different values of 	p, and (ii) variation of Q versus β with free

pumping (	p = 0) for different a, b at d = 1 and φ = π/5.



304 Kh.S. Mekheimer et al. / Effect of lateral walls on peristaltic flow through an asymmetric rectangular duct

1.5

(i)

(ii)

1.0

0.5

0.0

–0.5

∆p = –0.5

∆p = –0.5

∆p = –0.05

∆p = 0

∆p = 0.5

∆p = 1

∆p = 0

∆p = 0.05

∆p = 0.1

∆p = 1

–1.0

–1.5

0.0

0 1 2 3 4 5 6
d

7 8 9 10

4

3

2

1

0

–1

–2

–3

–4

–5

–6

0.2 0.4 0.6 0.8 1.0

Q

Q

Fig. 7. (i) Variation of Q with φ when d = 2, β = 0.5 for different values of 	p at a = b = 0.7 (solid lines) and a = 0.7; b = 1.2 (dot lines).

(ii) Variation of Q with d for different 	p with a = 0.7, b = 1.2 β = 0.5, and φ = π/2.



Kh.S. Mekheimer et al. / Effect of lateral walls on peristaltic flow through an asymmetric rectangular duct 305

0.5

0.0

–0.5

–1.0

–1.5
β = 0.01

β = 1

β = 2

β = 3

–2.0

–2.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Q

Fig. 8. Variation of Q versus φ with a = b = 0.7, d = 2 and 	p = 1 for different β.

constant value and this flow rate decrease as the ampli-

tudes of peristaltic waves increases. The variation of

the time – average flux Q as a function φ and d (width

of the channel) for different values of	p is presented in

Fig. 7(i), (ii) respectively. We observe that when φ = 0,

the time - average flux Q is maximum and decreases

as φ increases then vanishes for certain value of φ and

remains negative until φ becomes 1. When 	p = 0 ,for

free pumping case, we observe Q is zero for φ = 1

(i.e. when peristaltic waves are in phase, the cross sec-

tion of the channel remains same through out) and is

positive for all 0 ≤ φ < 1.1. Also, Q remains always

positive for 	p < 0 (copumping region) as pressure

assists the flow due to peristalsis on the walls. Fig.7(ii)

shows that for 	p ≥ 0 the flux rate decreases as the

distance d between the walls increases due to the reduc-

tion in the peristalsis effects. From the curve 	p = -0.5

(	p < 0),Q decreases for some d (small) in the begin-

ning, but it start increasing for d large as the Poiseuille

flow due to the pressure loss dominates the peristaltic

flow. Figure 8 show the variation of Q with φ for dif-

ferent values of β. It is observed that as φ increases the

flow rate flux decreases (more rapidly for small values

of β), and the change in Q is small for large values

of β.

4. Trapping

In the wave frame the streamlines in general have

a shape similar to the walls as the walls are station-

ary. But under certain conditions some streamlines split

(due to the existence of a stagnation point) to enclose

a bolus of fluid particles in closed streamlines. In the

fixed frame the bolus moves as a whole at the wave

speed as if trapped by the wave to see the effects

of lateral station y, aspect ratio β and phase differ-

ence φ on the trappings, we prepared Figures 9–11.

Figure 9 reveals that in the symmetric (φ = 0) chan-

nel the trapping is about the center line and trapped

bolus decrease in size as the lateral state y increases.

The effect of the aspect ratio β on the trapping is

observed in Fig. 10, where as β increases the bolus

size increases and for β = 1, the bolus will move as

the wave wall. The effect of phase shift φ on trap-

ping with same amplitudes a = b = 0.5 for ¯Q = 1.4

(within the centerline trapping limits) is illustrated

in Fig. 11. It is observed that the bolus appearing in

the center region for φ = 0 then moves towards left

and decreases in size as φ increases. For φ = π the

bolus disappears and the streamlines are parallel to

the boundary walls [21, 23] and here Q > 0 is pos-
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Fig. 10. Streamlines for a = 0.5, b = 0.5, d = 1; Q = 1.4 and for dif-

ferent β (i) β = 0.01, (ii) β = 0.1, (iii) β = 1.
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Fig. 11. Streamlines for a = b = 0.5; d = 1. Q = 1.4 and β = 0.3 for

different γ (i) γ = 0, (ii) γ = π/2, (iii) γ = π.

sible only when 	p < 0 corresponding to Poiseuille

flow.

5. Concluding remarks

Peristaltic transport of an incompressible viscous

fluid due to an asymmetric waves propagating on

the horizontal sidewalls of a rectangular duct is stud-

ied under long-wavelength and low-Reynolds number

approximations. The expressions of the axial veloc-

ity, axial pressure gradient and stream function are

developed. Numerical integration is used to analyze

the pumping characteristics. Stream lines are plotted

to discuss the phenomena of trapping. Such a prob-

lem is important in understanding the motion of the

intrauterine fluid in a sagittal cross section of the uterus.

However, the sagittal cross section of the uterus may

be better approximated by a tube of rectangular cross

section than a two-dimensional channel. The present

study discloses some important finding. These are

• The pressure gradient is higher for a square duct

(β = 1) than that for a two dimensional channel.

• The pressure gradient (or the pressure rise) for a

symmetric walls is higher than that for an asym-

metric walls.

• The finite extent of the width of the duct alters the

pumping characteristics.

• The pressure rise is higher for β > 1 (a duct with

a height large compared to the width) than that for

β = 1 (a square duct) than that forβ < 1 (rectan-

gular duct) than that for β = 0 (two-dimensional

channel).

• The size of the trapped bolus increases with an

increase in the aspect ratio β, while it decreases

as the lateral station y increases.

• Symmetric channel gives bigger trapping zone.

• Future works can be done by using numerical

methods to solve the governing equations of the

problem without any approximation.
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