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Abstract: In the present work, the effects on water transport due to the orientation of the layer in
the multilayered porous graphene and the different patterns formed when the layer is oriented to
some degrees are studied for both circular and non-circular pore configurations. Interestingly, the
five-layered graphene membrane with a layer separation of 3.5 Å used in this study shows that the
water transport through multilayered porous graphene can be augmented by introducing an angle to
certain layers of the multilayered membrane system.
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1. Introduction

The demand for freshwater is increasing day by day due to the increase in population
and pollution of existing freshwater sources. Desalination, the process that removes the salt
and other heavy metals from saline water, has become the prominent technology to address
the above-mentioned issue. Researchers have perceived that the size of a substance can
influence its physiochemical properties [1,2]. This paved the way for increased subsequent
research into nanomaterials. Due to the advancement of technology, the manufacturing and
application of nanomaterials in the desalination process have become more common [3].
On the other hand, the nanomaterials show excellent physical and chemical properties [4],
which makes them ideal candidates for the desalination process. Graphene is one such
potential candidate for the desalination process [5]. Conventionally, graphene is considered
a hydrophobic material [6]. Some recent studies claim that graphene is hydrophilic and
exhibits a low water contact angle [7–10]. However, research based on the graphene
produced with the industrial standards shows that graphene is hydrophobic [11].

Nanoporous graphene is considered an ultimate inorganic material [12]. Studies have
shown that porous single-layer graphene has excellent properties that result in high water
flux and salt rejection capabilities [13–15]. Even though the application of single-layer
graphene in the desalination process shows a sensational outcome, the preparation of the
single-layer graphene membranes with a large surface area for its application process is
problematic due to the formation of cracks and overlap of graphene sheets [16–18]. The
use of multilayered graphene can be a good alternative to the above-mentioned issues
faced by single-layer graphene [19–21]. However, the performance of the multilayered
graphene is constrained by the number of graphene layers and its length [22]. Based on
theory, the nanoporous graphene can reject ions and can deliver higher water flux in orders
of magnitude 2 to 3 times than that of the membranes which are commercially available for
reverse osmosis (RO) [23].

For a nanoporous graphene system, the pore size also plays an important role.
Iwasaki et. al. [24] showed that at a pore diameter of 5.5 Å, the salt ions are rejected ef-
fectively while allowing the permeation of water molecules through the nanoporous
single-layer graphene. In a recent study, the critical diameter of the nanopore in the
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multilayered graphene membrane is estimated to be 1.36 nm below which the dynam-
ics of water confined inside the pore becomes abnormal and cannot be described by
the Stokes–Einstein relationship [25]. The study of the implementation of functionalized
graphene in the desalination process shows that effective salt rejection and water perme-
ance can be achieved [14,22,26–28]. The selective passage of ions through the nanopore of
the graphene membrane can be controlled by varying the functionalization of the nanopore,
its size, and its electrostatic interaction with the walls of the membrane [22,23,27]. The im-
provement of the ability of the graphene to reject NaCl when it is functionalized is shown in
a study using molecular dynamics (MD) simulations [13]. Graphene-based nanopores are
used to mimic biological ion channel structures for ion-selective conduction using tunable
voltage [29]. The increase in the strength of the applied electric field showed a significant
increase in ion separation in a bilayer porous graphene membrane [30]. A recent study
conducted to analyze the effect of various chemical functional groups on the performances
such as salt rejection and water flux through functionalized nanoporous graphene showed
the importance of employing a suitable arrangement of Alkyl functional groups for the
membrane to be more efficient [31].

In this study, we have analyzed how the orientation of the layer in the multilayered
porous graphene system affects the transport of water for two different pore shapes using
molecular dynamics. The results of this study give a better insight into the effects of the
orientation of the layers and the shape of the pore in multilayered porous graphene.

2. Model and Methods

The model of the multilayered nanoporous graphene system used in this study is
shown in Figure 1. The multilayer was formed by tightly stacking five graphene sheets
with a layer spacing of 3.5 Angstroms. Two reservoirs with TIP3P-EW [32] water molecules
were used, one on each side of the graphene sheets. The size of the simulation system was
30 Å × 30 Å × 140 Å. The configuration of the simulation domain is given in Figure 1. Two
different-shaped pores were used in this study. The first pore type is closer to a circular
geometry, hence it is considered a circular pore, and the other pore that closely resembles a
triangle is termed a non-circular (NC) pore in this study. The circular pore geometry had
an effective diameter of 10 Å. The effective diameter refers to the circle with the maximum
diameter that can be inscribed inside the pore. The non-circular pore used in this study
had the pore size in which an effective equilateral triangle with a length of 10.40 Å can be
inscribed inside the pore. The graphene layers with pores were modeled using SAMSON
(Software for Adaptive Modeling and Simulation of Nanosystems, SAMSON version 2022
R1) software [33] and the structure was energy minimized using the FIRE (Fast Inertial
Relaxation Engine) algorithm [34]. The molecular dynamics simulation was carried out
using LAMMPS software (Lammps version 3 March 2020) [35]. The visualization of the
simulations was carried out using used VMD (visual molecular dynamics) software (VMD
version 1.9.4a55) [36]. A pressure difference of 150 MPa was applied to simulate the water
transport. The pressure difference was achieved by applying ambient pressure to the
graphene layer (which acts as a piston) present at the end of the permeate region and the
desired pressure was applied to the graphene piston at the end of the feed region [31]. The
simulation consisted of 2138 water molecules in total, of which 1710 water molecules were
present in the feed region and 428 water molecules were present in the permeate region
at the beginning of the equilibration run. Lennard–Jones potential was used to represent
the interactions between atoms and the SHAKE algorithm [37] was used to keep the water
molecules constrained. The canonical ensemble NVT and Nosé-Hoover thermostat [38]
were used in this study. PPPM style (particle–particle particle–mesh) was used to treat the
long-range electrostatic interactions between the atoms. The setup was equilibrated for
1 nanosecond and the production run was carried out for 7 nanoseconds with a timestep of
1 femtosecond. The cut-off distance for the truncation of the potential interactions used
in this study was 10 Å. We used AIREBO (adaptive intermolecular reactive bond order)
potential [39] for the interactions between the carbon atoms for the multilayered membrane.
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The interactions between the water molecules and the graphene were calculated using the
Lorentz–Berthelot mixing rule.
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Figure 1. The computational domain.

In this study, we have determined how the angle orientation of different layers of
graphene in the nanoporous multilayered graphene system influences the transport of the
water molecules. To discard the influence of the entrance and exit effect of the membrane
system, the first and last layers of the multilayered porous membrane system were kept
unaltered. The different patterns used in the multilayered nanoporous graphene membrane
are given in Table 1 and their representations are given in Figure 2c–f. We used 15, 30, and
45-degree tilt variations for the angled graphene sheets. The base case is the one with no tilt
to any of the layers. In pattern 1, only the middle layer was tilted. In pattern 2, the 2nd and
4th layers were tilted, while in pattern 3, all layers other than the first and last layers were
tilted. As mentioned earlier, we used two different pore shapes (circular and non-circular).
As the transport of the water molecules varies based on the pore shapes [40], this is not
a direct comparison between two pore shapes; rather, this study is aimed to get a better
understanding of the variations of patterns and angles in both the circular and non-circular
pore shapes.

Table 1. Shows the different patterns of graphene multilayer used in this study (θ—represents the
angled graphene sheet).

Pattern Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

base - - - - -
1 - - θ - -
2 - θ - θ -
3 - θ θ θ -
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pattern 2; (f) representation of pattern 3. Angled graphene sheets are represented in cyan color.

3. Results and Discussion

Cumulative molecule passage (CMP) is the increase in the number of water molecules
by successive addition of those water molecules that have completely passed through the
membrane pore. Figure 3 shows the CMP of water molecules for various patterns and
angles compared with the base case. At the end of the 7 ns simulation time, the membrane
with a circular pore without any variation of the angle of the pore resulted in the transport
of 792 water molecules. Pattern 1 membrane with a 45◦ showed a net increase of 16% higher
water molecules with the total number of water molecules transported being 919 water
molecules. This pattern is the highest performing pattern. A similar kind increase in the
number of molecules being transported was also noticed in pattern 1 of the non-circular
pore. The base case of the non-circular pore resulted in the transport of 404 water molecules.
The non-circular pattern 1 pore membrane with 15◦ transported around 42% more water
molecules with the total number of water molecules transported through the pore being
575. Interpreting the graphs in Figure 3, we can see that there is a significant impact on the
number of water molecules transported by both the angle at which the graphene layer is
oriented and also the pattern. In the circular pore case, pattern 1 with 15◦ and 45◦ degrees
showed an increase in the number of water molecules transported. For the non-circular
pore considered in this study, pattern 1 with 15◦ showed better water molecules transport.
Pattern 1 has performed well in general, in which only the middle layer is oriented to
some angle. Pattern 1 closely resembles an hourglass shape. In earlier studies, researchers
have proved that the hourglass-shaped nanopore CNT (carbon nanotube) has better water
molecule transport capabilities when compared to a normal CNT [41,42]. The key aspects
for most of the configurations other than pattern 1 are less effective performance due to
the reduction of the pore volume and the formation of a large energy barrier inside the
pore due to its pore morphology. In patterns 2 and 3, for the circular pore configuration
and for most of the non-circular pore configuration, we can see the significant presence
of an empty state (no water molecule inside the pore). This can be easily visualized in
Figure 3b–f showing that the increase of CMP stops and becomes constant. We can also see
that there is a large difference between the CMP of circular and non-circular shaped pores,
largely due to the pore morphology. The non-circular pore has a relatively lower accessible
pore area than that of the circular pore configurations.
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Figure 4 shows the free energy of occupancy fluctuations of the molecules inside the
nanopore for different patterns and angles. Detailed discussions regarding the free energy
of occupancy fluctuations have been carried out in many previous studies [43–45]. The
free energy of occupancy fluctuations can be calculated using the formula –ln[P(N)], where
P(N) is the probability of finding the exact number of water molecules inside the nanopore
at a given time. The water occupancy inside the nanopore is determined by the local
excess chemical potential, which is the negative free energy of removing a water molecule
from the nanopore [45]. From Figure 4, we can notice that the most favorable number of
water molecules for the base case of the circular pore is 18 with 115 occurrences and the
most favorable number of water molecule occurrences for pattern 1 with 45◦ is 19 with
134 occurrences. Also, we can see that pattern 1 with 45◦ never had an empty state (an
empty pore without any water molecules). The pore is either partially filled or in a filled
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state throughout the 7 ns simulation. The lowest number of molecules found inside this case
is 8. This shows that the energy barrier that occurs in this pore configuration is relatively
low compared to other cases. In the non-circular pore, the frequency of fluctuations and
the amplitude of fluctuations of the number of water molecules in all cases were relatively
large, which shows that the energy barrier inside the nanopore for these cases are relatively
large. One of the key contributors to this large energy barrier is the assessable pore volume.
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The radial distribution function of the oxygen atoms of water molecules with the first
shell of the carbon atoms in the pore and the mass density of the water molecules inside
the pore are given in Figure 5. Using the same force cutoff distance as in the simulation,
the RDF is computed. Two atomic layers can be distinguished inside the nanopore from
the two peaks in the radial distribution function plot [46]. The first and second distinctive
peaks occur around 4.25 Å and 7.75 Å, respectively, for circular pores. For the non-circular
pore, the peaks are not as distinctive as that of the circular pore; the first and second peaks
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are located at 4.25 Å and 8.25 Å, respectively. From the radial distribution function figure,
we can observe that pattern 1 with 45◦ for the circular pore configuration and pattern 1
with 15◦ for the non-circular pore configuration show larger interaction between the water
molecules and the carbon atoms of the pore, resulting in higher CMP. This also shows that
more water molecules are accommodated inside the pore, which is further supported by
the relevant mass density plot given adjacent to the relevant RDF plots.
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The interaction energy between the carbon atoms and the water molecules determines
the collective structure of the water molecules inside the pore [47]. They play a key role in
the transport of water molecules through the membrane. Figure 6a,b shows the plot of the
interaction energy between the carbon atoms that come in contact with the water molecules
inside the pore along with the interaction force that is being exerted on the Z-direction for
pattern 1 circular and non-circular cases. We can observe that the interaction energy in both
the circular and non-circular base cases are relatively low and they show relatively low
CMP. In addition, the cases circular pore with 45◦ orientation and non-circular pore with
15◦ orientation for pattern 1 show high interaction energy and high CMP. Similar kinds
of observations were also made in water transport through nanotubes, in which the (6,6)
nanotubes and (7,7) nanotubes had periodic arrangements starting with the hydrophobic
and ending with the hydrophilic part. The (6,6) nanotubes with larger interaction energy
performed better than the (7,7) nanotubes with relatively less interaction energy [42]. This
shows that the interaction energy along with the resulting interaction force plays a key role
in the transport of the water molecules through the pore. Furthermore, for the non-circular
case with 30◦ and 45◦, the 45◦ case shows lower interaction force than the case with 30◦

but the CMP of the 45◦ case is higher than the 30◦ case. This could be largely due to the
influence of the interaction force that acts along the Z-direction. From Figure 6a,b, we can
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observe that the interaction force along Z-direction is larger for the 45◦ case when compared
to the 30◦ case.
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molecules and the interaction force along Z−direction for the pattern 1 (a) circular porous membrane
(b) non-circular porous membrane.

4. Conclusions

In this study, we have shown the importance of the orientation angle of the graphene
layers and the pattern used in the construction of the multilayered nanoporous graphene
for efficient water transport. Among the patterns used in this study, pattern 1 performed
better when compared to the other patterns. In the circular pore configuration, pattern 1
with 15◦ and 45◦ and pattern 3 with 30◦ performed better than the base configuration (the
one without any layer orientation). In terms of the non-circular pore, pattern 1 with 15◦,
30◦, and 45◦ performed better than the base configuration. The results of performance in
terms of CMP for our study are well supported by the RDF and Interaction energy plots.
Our study suggests that water transport through porous multilayered graphene can be
augmented by altering the orientation of layers of the multilayered graphene membrane.
Circular pore pattern 1 membrane with a 45◦ showed an augmentation of 16% in the
number of water molecules transported, while the non-circular pattern 1 pore membrane
with 15◦ showed an augmentation of 42% in the number of water molecules transported.
Our findings may lead to better designs of multilayered nanoporous membranes with
ultrafast water transport. The further study of pattern 1 with functionalized graphene
multilayers could possibly lead to selective ion sieve membranes with high CMP.
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