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Anthocyanins are a group of plant antioxidants known for their therapeutic use. The effects of natural light, red light, and far-
red light on individual as well as total anthocyanin content in cranberry fruit (Vaccinium macrocarpon Ait) were examined in an
experimental setting designed to mimic water-harvesting conditions. The reversed-phase high-performance liquid chromatography
(HPLC) method was used to separate and analyze the anthocyanins. In contrast to the case of the control sample that was kept in the
dark, natural light increased the total anthocyanin level by 75.3% and 87.2% after 24 and 48 hours of water immersion, respectively.
Red light and far-red light increased the total anthocyanin level by 41.5% and 34.7%, respectively. The amount of each individual
anthocyanin increased differently under natural light, red light, and far-red light, suggesting that expressions of enzymes that catalyze
the anthocyanin biosynthesis are regulated differently by environments.

INTRODUCTION

The quality and commercial value of American cran-
berry fruit (Vaccinium macrocarpon Ait) are determined
by their color [1]. The red color of cranberry fruit
is due to the presence of anthocyanins. Anthocyanins
have important therapeutic values, including antitumor
[2, 3], antiulcer [4], antioxidant, and anti-inflammatory
activities [5]. Six anthocyanins have been reported in
cranberries based on the high-performance liquid chro-
matography (HPLC) analysis of acid-alcohol fruit extracts
on reversed-phase C18 column. These are cyanidin 3-
galactoside, cyanidin 3-glucoside, cyanidin 3-arabinoside,
peonidin 3-galactoside, peonidin 3-glucoside, and peoni-
din 3-arabinoside [6, 7]. The proportions of individ-
ual anthocyanins in cranberry fruit may affect the color
stability of cranberry products such as juice and sauce
[8, 9]. Yan et al [10] reported that cyanidin 3-galactoside
showed antioxidant activity superior to six other mono-
glycosides of quercetin and myricetin isolated from cran-
berry fruit as well as vitamin E by evaluating compounds
for 1,1-diphenyl-2-picrylhydrazyl radical-scavenging ac-
tivity and ability to inhibit low-density lipoprotein oxida-
tion in vitro.

Light has been shown to be the most important envi-
ronmental factor influencing anthocyanin biosynthesis in
plants [11], although in some species, such as Vitis vinifera
cv. Shiraz anthocyanin accumulation appears not to be

light-sensitive [12]. Phytochromes are among the most
extensively researched photoreceptors which sense light,
and are known to be involved in anthocyanin biosynthe-
sis [13, 14, 15]. Phytochromes respond to red (660 nm)
and far-red (730 nm) light, and direct plant gene expres-
sion by switching between the red-absorbing form (Pr)
and the far-red absorbing form (Pfr). Previously, we have
examined the effect of various wavelengths of light on
the development of the cranberry plant and anthocyanin
biosynthesis in cranberries which were still attached to the
plant. We have observed that red light stimulates flower-
ing and anthocyanin biosynthesis in cranberry plant and
fruit, respectively [16].

In general, leaves and stems decrease light exposure
for berries lower on the plant. Preharvest anthocyanin
content of cranberries at the bottom and the top of the
plant varies significantly, primarily due to the differences
in light accessibility [17].

Water-harvesting has become a common practice in
the cranberry industry, and it is accomplished by flooding
the cranberry bog with water to float the buoyant fruit for
easy collection. However, potential effects on the berries
due to the water-harvest technique have not been studied
systematically. One study did show that prolonged fruit
immersion increases fungal rot of the berries [18]. Dur-
ing the water-harvest, cranberries on the surface of the
water receive the same or more light than the fruit still
attached to the plant. In this paper, we evaluate the effects
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of natural light, red light, and far-red light on individual
as well as total anthocyanin levels in cranberry fruit under
conditions that mimic water-harvesting.

MATERIALS AND METHODS

Plants

Cranberries (Vaccinium macrocarpon Ait, cv “Early
Black”) used in this study were obtained from the bog of
the Cranberry Experiment Station, the University of Mas-
sachusetts, East Wareham, Mass, in October 1999.

Light sources

Red light, with a photon fluence rate of 12 µmole
m−2s−1, was obtained from six 40-w fluorescent tubes
(F48T12/R-660/HO, Red, General Electric Company,
USA) filtered through a red plastic sheet (Roscolux color
filter # 27, ROSCO Laboratories, Port Chester, NY). Far-
red light, with a photon fluence rate of 5 µmole m−2s−1,
was obtained from 500-w brilliant white light halogen
double-ended quartz FCL bulbs (Osram Sylvania Prod-
ucts Inc, Winchester, Ky) filtered through 3 mm far-red
plastic (type FRF700, West Lakes Plastics, Lenni, Pa).
Light sources in each case were kept at a distance of
0.8 meter from the berries. All light measurements were
made with a Model IL1400A Radiometer/Photometer (In-
ternational Light, Inc, Newburyport, Mass).

Experimental setting

Cranberries were taken from a flooded bog after the
harvest machine had knocked the fruit loose from the
vines and selected in approximate same size and color
for experiment in order to avoid variability in the an-
thocyanin content. The fruit were randomly divided into
five groups and held in beakers containing water. Two
sizes of beakers (1000 mL and 250 mL) were used. The
1000 mL beaker (diameter: 11.6 cm) contained 800 mL of
water, and approximate 34 berries forming just one layer
on the surface of the water were placed in the beaker. The
250 mL beaker (diameter: 7.5 cm) contained 200 mL of
water, and approximate 17 berries forming just one layer
on the surface of the water were placed in the beaker.
Two groups in the 1000 mL beakers were placed in a
nursery area outside the laboratory and received a cy-
cle of daylight for 24 and 48 hours, respectively. The re-
maining three groups in the 250 mL beakers were placed
in a temperature-controlled darkroom at 20◦C. One of
these 250 mL beakers was kept in the darkroom and was
used as a control sample. The other two, also kept in
the darkroom, received 30 minutes of red light or far-
red light per day, respectively, for two days. The berries
from the two groups placed outside were collected after
24 and 48 hours, respectively, and the fruit from the three
groups placed in the temperature-monitored room were
individually collected after 48 hours. Eight grams of the
berries from each group were weighed and homogenized
in 10 mL of ethanol: 1.5 N HCl (85 : 15, v/v) to extract

Table 1. Effect of light on total anthocyanin level in submerged,
harvested cranberry fruit.

Light treatment Total anthocyanin (mg)/100 g fresh fruit

Natural light (48 h)a 35.47∗ ± 2.39

Natural light (24 h)b 33.24∗ ± 1.47

Dark 18.95± 0.88

Red light 26.82∗ ± 1.6

Far-red light 25.53∗ ± 2.89

Values are expressed as mean ± SE (n = 3).

a: water immersion time was 48 hours.

b: water immersion time was 24 hours.
∗P < .02.

the anthocyanins overnight at 4◦C. The sample extracts
were filtered through 0.2 µm filters before injection into
the HPLC column.

HPLC analyses

HPLC analyses of anthocyanins were carried out on
a Waters 515 Dual Pump HPLC system, equipped with a
996-photodiode-array detector and a C18 column (4.6 ×
150 mm) with 5 µm particle size (Waters Corporation,
Milford, Mass). The software used to control the HPLC
system and data analysis was Millennium 32 (Waters Cor-
poration, Milford, Mass). Elution was carried out using
a mobile phase formed by a linear gradient of (A) H2O-
acetic acid (10 : 1) and (B) methanol-acetic acid (10 : 1),
with 100% (A) at 0 minute to 40% (A) and 60% (B) at
20 minutes. The flow rate was fixed at 0.2 mL/min. An-
thocyanin separation and elution were detected by mon-
itoring absorbance at 535 nm. Anthocyanin content was
calculated in absolute quantities using the extinction co-
efficient (ε1%

1 cm) at 535 nm as 982 [19].

RESULTS AND DISCUSSION

Composition of anthocyanins plays a role in their
therapeutic effects [20]. Although six anthocyanins have
been identified in cranberries [21, 22, 23], biosynthesis
of those individual anthocyanins in response to environ-
mental conditions such as light is not understood. In an
attempt to elucidate anthocyanin biosynthesis, we mea-
sured total as well as individual anthocyanin content in
cranberry fruit under different light conditions in an ex-
perimental setting designed to mimic water-harvesting
conditions.

Statistical analysis (Student t test) was performed to
detect the statistical difference between total anthocyanin
content under natural light (48-hour and 24-hour), red
light, and far-red light conditions and that under dark
conditions. Table 1 shows that the total anthocyanin level
varied significantly (> 98% confidence level (P < .02))
when the submerged, harvested cranberries were exposed
to various light conditions. The total anthocyanin con-
tent of berries before exposure to any experimental light
conditions was 18.95 ± 0.88, and was the same as the
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Table 2. Percentage of anthocyanin increased in submerged, harvested cranberries exposed to different light conditions in comparison
with the control, which was kept in the dark.

Natural light (48 h) Natural light (24 h) Red light Far-red light

Cyanidin 3-galactoside 89.3∗ 69.0∗ 29.1∗∗∗ 17.0∗∗∗

Cyanidin 3-glucoside 53.8∗∗∗ 38.5∗∗∗ 71.8∗∗∗ 92.3∗∗∗

Cyanidin 3-arabinoside 77.5∗ 68.2∗ 30.6∗∗ 30.3∗∗

Peonidin 3-galactoside 99.6∗ 92.5∗ 43.5∗ 35.1∗

Peonidin 3-glucoside 100.0∗ 80.7∗ 54.4∗ 45.6∗

Peonidin 3-arabinoside 72.4∗ 72.4∗ 72.4∗ 69.8∗

Total anthocyanins 87.2∗ 75.3∗ 41.5∗ 34.7∗

∗P < .02; ∗∗.05 < P < .1; ∗∗∗.1 < P < .5

control that was kept in the dark. Compared to the con-
trol, cranberries exposed to one 24-hour day-night cycle
had 75.3% higher anthocyanin content, and berries ex-
posed to a 48-hour day-night cycle posted only a small
further increase (87.2%). Red and far-red light had sub-
stantially less effect on total anthocyanin biosynthesis
than natural light (75–87% vs. 35–42%). Red light in-
creased total anthocyanin content (41.5%) more than far-
red light (34.7%).

Separation of cranberry anthocyanins by reverse-
phase HPLC revealed six anthocyanins which were as-
sumed to be cyanidin 3-galactoside, cyanidin 3-glucoside,
cyanidin 3-arabinoside, peonidin 3-galactoside, peonidin
3-glucoside, and peonidin 3-arabinoside (Table 2) ac-
cording to previous reports [6, 24]. The relative amounts
of the six anthocyanins in the control samples which
were kept in the dark (Figure 1) are consistent with
earlier reports [6, 24]. Variation in different individual
anthocyanins under different light conditions was also
subjected to the statistical analysis (Student-test), which
showed significant differences except for the cyanidin
3-glucoside under each light condition, and for cyanidin
3-galactoside under red light and far-red light conditions,
as shown in Table 2. Compared with the dark conditions,
the natural light conditions enhanced all the antho-
cyanins substantially, 72%–100% (in the 48-hour cycle),
except for the cyanidin 3-glucoside, which increased
by 54% (Table 2), whereas the red and far-red light
had the most prominent effect on cyanidin 3-glucoside
and peonidin 3-arabinoside, showing 70–92% increase
(Table 2). The biosynthesis of cyanidin 3-galactoside was
least affected by red and far-red light, showing only 29
and 17% increase, respectively (Table 2).

Light-dependent anthocyanin biosynthesis signifi-
cantly depends on plant species and experimental con-
ditions [13]. Although experimental conditions in our
previous study [16] were different (30 minutes of light
treatments per day for eight days), results had shown that
red light and sunlight increased anthocyanin biosynthe-
sis more than the far-red light did, consistently with the
conclusions of the present study. However, in the above
two cases—cranberry fruit that were still attached to the
plant and cranberry fruit that were no longer attached
to the plant, the effect of far-red illumination appeared

to be close to the effect of red light, not similar to the
dark control. Exposure of etiolated normal seedlings of
Brassica rapa to red light and far-red light showed that
far-red illumination enhanced more anthocyanin synthe-
sis than red light [25]. Study of different phytochromes
in Arabidopsis photomorphogenesis has shown that phy-
tochrome A regulates plant responses to far-red light ir-
radiation, whereas phytochrome B plays a predominant
role in responses to red light irradiation [26]. Therefore,
it is considered that coactions between different photore-
ceptors involved in the effects of red light and far-red light
on anthocyanin content in cranberry fruit are as coactions
between the photoreceptors involved in flavonoid biosyn-
thesis [27].

In addition, anthocyanins contain two parts in their
structures: aglycones and sugars. The biosynthesis of an-
thocyanins was catalyzed by several enzymes from PLA
(phenylalanine ammonia-lyase), C4H (cinnamic acid 4-
hydroxylase), 4CL (4-coumarate:CoA ligase), CHS (chal-
cone synthase), CHI (chalcone isomerase), F3H (fla-
vanone 3 β-hydroxylase), DFR (dihydroflavonol 4-
reductase), AS (anthocyanin synthase) through 3GT
(UDP-glucose:flavonoid 3-O-glycosyl transferase). CHS
is the first committed enzyme of flavonoid biosynthesis.
AS is the first committed enzyme of anthocyanin biosyn-
thesis. The expressions of the above enzymes are regulated
differently by environments such as light and tempera-
ture. This results in the disproportional increase of differ-
ent anthocyanins such as peonidin 3-glucoside compared
to cyanidin 3-glucoside, due to the different aglycones al-
though same sugar; or cyanidin 3-galactoside compared
to cyanidin-3-glucoside, due to the different sugars al-
though same aglycon.

This study demonstrates that during water-harvesting
conditions, where the berries are no longer attached to the
plant, exposure of the berries to light still results in in-
creased anthocyanin levels. This study also shows that lev-
els of individual anthocyanins increase differently follow-
ing different light exposure such as natural light, red light,
and far-red light. The variation in composition of antho-
cyanin may be manipulated to obtain a more valuable an-
tioxidant product from cranberries. This study also con-
tributes to our understanding of cranberry anthocyanin
biosynthesis under water-harvesting conditions.
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Figure 1. Effect of light on individual anthocyanin levels in submerged, harvested cranberry fruit. Cranberries were exposed to
different light conditions and individual anthocyanin content was analyzed. Different light conditions, natural light (48 h), natural
light (24 h), dark, red light, and far-red light, are indicated in the bottom. Values are mean from triplets with standard error bars.
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