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Effect of localization on the stability of mutualistic
ecological networks
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The relationships between the core–periphery architecture of the species interaction network

and the mechanisms ensuring the stability in mutualistic ecological communities are still

unclear. In particular, most studies have focused their attention on asymptotic resilience or

persistence, neglecting how perturbations propagate through the system. Here we develop a

theoretical framework to evaluate the relationship between the architecture of the interaction

networks and the impact of perturbations by studying localization, a measure describing the

ability of the perturbation to propagate through the network. We show that mutualistic

ecological communities are localized, and localization reduces perturbation propagation and

attenuates its impact on species abundance. Localization depends on the topology of the

interaction networks, and it positively correlates with the variance of the weighted degree

distribution, a signature of the network topological heterogeneity. Our results provide a

different perspective on the interplay between the architecture of interaction networks in

mutualistic communities and their stability.
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E
cological networks may be viewed as a set of species (nodes)
connected by interspecific interactions (competition,
predation, parasitism and mutualism), represented by the

links. Even though interaction strengths are largely unknown, the
architecture of the ecological interaction networks has been
thoroughly investigated, showing its important role in shaping
and regulating community dynamics and in structuring diversity
patterns1–8. Several studies recognized the strong impact of the
non-random structures of empirical interaction networks on both
the resilience (time to return to the steady state after a small
perturbation) and the persistence (number of coexisting species at
equilibrium) of ecological communities9–14, and much theoretical
effort has been made to understand the relationship between
stability and complexity in ecological communities, one of
the most debated issues in ecology15–18. In mutualistic
networks, where species beneficially interact with each other, a
core–periphery structure has been observed ubiquitously19. The
network core refers to a central and densely connected set of
nodes, while the periphery denotes a sparsely connected non-
central set of nodes, which are linked to the core. It has been
posited that the architecture of mutualistic networks minimizes
competition and increases biodiversity7, community stability
(resilience) and persistence20, but other studies have
demonstrated that structured mutualistic ecological networks
may be less stable than their random counterparts14,21. It has also
been shown that community stability decreases as community
size increases, and that this result holds even for more realistic
ecological interactions with a mixing of interaction types (‘hybrid
communities’)22. Most of the aforementioned studies focused
either on the resilience of the system—measured by the
maximum real part of the eigenvalues of the community
matrix14,15,21—or on the number of species that persist when
starting from non-stationary conditions7,8. However, both
approaches have important limitations. Indeed, the maximum
real part of the community matrix eigenvalues only describes
the rate of recovery from perturbations in the long time
limit, providing no information on the transient response.
Perturbations can grow significantly before decaying, possibly
impacting species’ fate (Fig. 1a). A system at its stable stationary
state that experiences such initial amplifications of the
perturbations is called reactive23,24. On the other hand,
persistence (measured as the fraction of initial species with
positive stationary population density16) is strongly sensitive to
initial conditions, the system’s distance from stationarity and the
choice of model and parameters8,25,26. To garner a better
understanding of the effect of perturbations on ecological

communities, one should also study how the components of the
leading eigenvectors (that is, the right and left eigenvectors
associated with the eigenvalue having the largest real part) are
distributed, that is, study the localization of the system. In
condensed matter physics, localization, also known as Anderson
localization27, is the absence of diffusion of waves in a disordered
medium, and it describes the ability of waves to propagate
through the system. Other approaches (for example, Markov
chain models28, or the inverse community matrix29) can be used
to study how disturbances propagate in species interaction
networks and what their effects are on other species (that is,
how many other species do they affect and what is the magnitude
of this effect). However, it has been shown that small variations in
the interaction strengths may lead to very different model
predictions30,31. Our theoretical framework may be considered as
a complementary methodology to gain information on the
general relation patterns between the interaction network
architecture and the ability of perturbations to propagate within
the system. Our goal in this work is to determine the degree of
localization of eigenvectors in mutualistic ecological networks as a
function of the network size, structure and interaction strengths,
and to study the impact of localization on the perturbation
amplitude and spreading within the system. Here we show that
localization may be a useful mechanism that impacts on the
stability of ecological networks. In fact, localization attenuates
(asymptotically) and reduces perturbation propagation through
the network. We find that mutualistic ecological networks are
indeed localized and localization patterns are correlated with
some network topological properties; in particular, heterogeneity
in the weighted species degrees promotes localization in the
network. Furthermore, the observed localization increases with
the size of the ecological communities, highlighting a trade-off
between the asymptotic resilience of the system and the
attenuation of perturbations.

Results
Theoretical framework. The mutualistic interactions of an
ecological community can be encoded in a bipartite binary graph
represented by its adjacency matrix B containing S nodes
(species) that are partitioned into two disjoint sets, one
containing the animals (insect pollinators), the other the plants.
Each of the L (undirected) edges connects two nodes, one in the
set of animals (of size A) and the other in the set of plants (of size
P), that is, Bkl¼ 1 if insect k and plant l interact. S¼Aþ P is the
total number of species in the community. We analyse 59
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Figure 1 | Propagation of the perturbation through the network. (a) Trajectory of a perturbation through time. Reactivity (lH) measures whether

perturbations grow before decaying; asymptotic resilience l1 indicates whether perturbations eventually decay; and the asymptotic perturbation amplitude

A1 describes the intensity of the perturbation for large time. The principal right eigenvector determines which species will be affected most by the

perturbation after its propagation, while the left principal eigenvector controls which species are the most sensitive to the initial perturbation. The weighted

degree heterogeneity affects the localization pattern in the network: (b) is a regular graph where each node is connected to six other nodes, while (c) is a

power-law scale-free graph2 of the same size and with similar connectance. In both cases, edge weights are randomly extracted from a Gamma distribution.

The size and the colour of the nodes indicate the absolute values of the corresponding component of the leading right eigenvector. In b, all species are

equally perturbed. In contrast, in c, only few species are affected.
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bipartite binary networks available from the interaction web
database9, and we construct the S� S community matrix F
describing the linearized system dynamics, by assigning to each
animal–plant interaction a positive ‘weight’ (see Methods and
Supplementary Fig. 1). Let x(t) be the S-component vector
describing the abundance of the S populations at time t. The
propagation of a given small perturbation n¼ (x1,x2,...,xS) acting
on the system at stationarity will lead to small departures, dx(t),
from the stationary state x* and can be studied by the linearized
system of coupled differential equations d

dtdxðtÞ ¼ FdxðtÞ, where
dx(t)¼ x(t)� x* (with dx(0)¼ n), which in turn can be studied in
terms of the eigenvectors and eigenvalues of F, known as
community matrix (see Methods). In particular, the asymptotic
behaviour of the perturbed systems can be analysed in terms of
the largest eigenvalue l1 and corresponding left and right
eigenvectors u1 and v1, that is, dxjðtÞ � el1tA1v1;j for large t,
where A1 ¼ u1 � xð Þ= v1 � u1ð Þ is the amplitude associated with
the asymptotic propagation of the perturbation through the
ecological network (Fig. 1 and Methods).

Clearly, the relaxation of a system to its equilibrium state after
a perturbation is not uniquely controlled by the leading
eigenvalue of the community matrix. All the eigenvalues contain
information on the timescales involved in the relaxation, while
the corresponding eigenvectors determine how the perturbation
spreads and relaxes in different species. The leading right
eigenvector, in particular, sets the relative vulnerability of species
and how they are affected by perturbations in the long run. If this
eigenvector is localized, that is, if only few components/species
have non-negligible values, then a perturbation after its propaga-
tion involves only few species. On the other hand, the left leading
eigenvector indicates which species are most hit by the
perturbation before its propagation. It also plays an important
role in modulating the amplitude of the perturbation (that is
proportional to n � u1—see Methods). Consider for example a
4� 4 community matrix for which, u1 ¼ 1=

ffiffiffi
2

p
; 1=

ffiffiffi
2

p
; 0; 0

� �
and

v1 ¼ 0; 1=
ffiffiffi
2

p
; 1=

ffiffiffi
2

p
; 0

� �
. If n¼ (0,0,1,1), then u1 � x¼ 0 and the

perturbation decay time will be very fast (controlled by l2, rather
than l1—see equation (1) in the Methods section). On the other
hand, if n¼ (1,1,0,0), then the system asymptotic recovery time
will be longer (proportional to 1/l1), but only species 2 and 3 will
be affected at these timescales. As a general trend, we will show
that localization mainly depends on the heterogeneity of the
network weighted degrees (or strengths s¼ (s1,s2,...,sS)): in the
case of high variability in these strengths, the system display
localization (Fig. 1b,c). The behaviour immediately after the
perturbation (that is, in the limit t-0þ ) can be analysed by
studying its reactivity23, defined as the maximum amplification
rate over all initial perturbations, and immediately after the
perturbation. It can be shown23 that the reactivity lH can be
computed as the maximum eigenvalue of H¼ (FþFT)/2, the
symmetric part of F. If l1o0 and lH40 then the equilibrium
point is stable but reactive. Because lHZl1 (ref. 23), the reactivity
can also be used to develop an early warning signal for systems
approaching a non stable stationary state24. If the eigenvector wH

corresponding to lH, is also localized, then it means that the
perturbation magnitude on these localized species will tend to
grow (Fig. 1a), that is, in the short time, these species will be the
most affected by the perturbation.

Localization patterns. We compare localization patterns of
59 empirical mutualistic networks and two corresponding
random null models. In the first null model, we randomize
the interactions while keeping the networks connected. In the
second null model, we randomize the interactions, but we also
constrain the network degrees sequence {k1,k2,...,kS} to be as in the

corresponding empirical networks (see Methods). To measure
localization, we use the inverse participation ratio (IPR)27, the
classical way to quantify how many relevant components are
observed in the leading eigenvectors (see Methods). The degree of
localization increases as IPR increases. If IPR is one, then only
one component of the eigenvector is non-zero. We quantify the
presence of localization by computing the rIPR defined as the
ratio between the IPR of each real empirical network and the IPR
of the corresponding random null model.

As Fig. 2a,b shows, most of the empirical networks are
significantly more localized in both the right and left leading
eigenvectors with respect to null model 1, while they have the
same level of localization of null model 2 (Fig. 2d,e,i and Table 1).
These results suggest that it is the core–periphery network
structure of empirical systems (a manifestation of heterogeneous
degree distributions) that is responsible for their higher
localization: once we constrain the degree distributions to be
fixed (that in the case of mutualistic networks are most likely
approximate truncated power laws2), then null model 2 generates
localization patterns very similar to those observed in empirical
mutualistic networks (Table 1). Nodes strength si (or weighted
degrees) also play a crucial role. In fact, an adjacency
network with core–periphery structure, but having ‘anti-nested’
distributed weights13, will not be localized because, contrary to its
degree distributions, the weighted degree distribution will be
homogeneous (see also Supplementary Methods, section 5 and
Supplementary Fig. 15). The localization of wH displays the same
patterns (Fig. 2c,f), and we found that species that are the most
affected by the perturbation at short timescales are also those that
absorb most of the perturbation asymptotically—indicating a
limiting capability of the the perturbation to propagate through
the network. In fact, the position of the localized components for
wH is most likely to be the same of those for v1 and u1 (see Fig. 3
and Supplementary Methods, section 7).

Relation between localization and network properties. Locali-
zation patterns in empirical mutualistic communities depend on
both the size and the connectance of the species interaction
network (Figs 2g and 4). While the leading eigenvalue l1—the
one with the largest real part which controls the relaxation time—
increases for increasing community size15 (assuming that g0 does
not scale22 with S), we observe (Fig. 4a) an interesting strong
positive correlation between community diversity (network size)
and localization (rIPR). We also note that in empirical pollination
communities, networks size is negatively correlated with
network connectance14. Network connectance, in turn, is
negatively correlated with localization (Fig. 4b): the higher the
connectance, the higher is the ability of perturbations to
propagate through the network (a general property observed
also in financial networks32, and socio-environmental
interdependent systems33,34), and thus the lower the level of
localization. The strong positive correlation between network size
and localization leads to a trade-off between localization and
asymptotic resilience (in terms of l1—see Table 2). This result
may shed light on the celebrated complexity-diversity
paradox17,15: the less an ecological community is resilient, the
more it is localized and asymptotic perturbation is attenuated
(Fig. 5). We finally note that localization is positively correlated
with the variance of the weighted degree distribution, see Fig. 4c.
This correlation reflects the fact the localization is a manifestation
of the heterogeneity of the network topology. In the
Supplementary Tables 1–3, we also calculate the correlations
between localization (rIPR) and the topological properties of the
networks under different parametrizations and with respect to
null model 2. We found that in this latter case the correlations are

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10179 ARTICLE

NATURE COMMUNICATIONS | 6:10179 | DOI: 10.1038/ncomms10179 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


not significant. We can thus conclude that it is indeed the
heterogeneity in the weighted degree distribution, which is the
key structural aspect of ecological networks that is related to
localization.

Attenuation of perturbation propagation and amplitude. To
make analytical progress and to better understand the impact of
the localization on the amplitude of the perturbation spreading
throughout the network, we analyze the mean-field case (d¼ 0),
and we assume that the perturbation vector is a constant, that is,
n¼ x01 (a S vector of unit components) and v1Eu1. Under this
assumption, we are able to prove that A1 ¼ x0j jð

P
j v1;j
�� ��Þ2 and

thusA1 is maximum when v1;j ¼ 1=
ffiffiffi
S

p
8 j which corresponds to a

state of minimum localization of F, while A1 is minimum when
v1,j¼ dj,i for some i, which corresponds to the fully localized case.
Thus, the mean-field approximation with constant perturbation
suggests that localization in the system reduces the amplitude of
the principal mode of the perturbation wave. Indeed, our
numerical simulations (Figs 2h and 5a and Supplementary
Methods, section 4.1) confirm that a localized structure leads to
a decrease in the principal amplitude A1 of the perturbation also
beyond the mean-field case (that is, da0). Moreover, following
the localization trend, the perturbation damping increases with
the size of the system: the larger the ecological network, the
stronger is the attenuation due to the system localization

Table 1 | Statistics of localization patterns.

d¼0.5 d¼0 d¼ �0.5 NM x

IPR/hIPRrani41
u1 E86% E76% E39% 1
v1 E61% E64% E42% 1
wH E83% E72% E50% 1
u1 E20% E20% E19% 2
v1 E27% E27% E11% 2
wH E24% E20% E19% 2

A1/A1
rano1

E81% E81% E70% 1
E17% E15% E14% 2

Statistics of localization patterns for three different ecological scenarios (described by d) given by the fraction of localized empirical networks with respect to generated null models (NM) for different
parametrization (rIPR41 and P valueo0.05) and corresponding asymptotic attenuation of the perturbation (A1=Aran

1 o1 and P valueo0.05). v1, u1 and wH are the right, the left and the reactive
eigenvectors, respectively. We found that most of the empirical networks are indeed localized with respect to NM1, but not with respect to NM2.
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Figure 2 | Localization patterns and effect on the asymptotic amplitude. (a–c) Localization of the leading eigenvectors for null model 1 versus empirical

mutualistic networks (where IPR ¼
PS

i¼1 q1ðiÞ
4=ð

PS
i¼1 q1ðiÞ

2Þ2, with q1¼ v1, u1 or wH, with right eigenvector v1 in red, left eigenvector u1 in blue and reactive

eigenvector wH in green). Points represent average value of 1,000 randomizations, bars indicate the standard deviation. 1:1 line represents the value of the

empirical mutualistic networks. (d–f) Same for null model 2. (g) Number of (localized) components as a function of the community size: a significant

correlation is observed (Spearman Rank Test¼0.715). (h) Effect of the localization on the asymptotic amplitude A1 for the simulated perturbation xall on
empirical mutualistic networks with respect to null model 1 Aran. In E85% of the cases, the perturbation amplitude is significantly attenuated (P

valuer0.05). (i) P values of the observed values of localization and asymptotic amplitudes in empirical networks with respect to null model 1. Parameters

here are d¼0.5 and g0¼ 1.
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(Fig. 2d). Also the reverse is true: if a network is not significantly
more localized than its corresponding null model, then no
attenuation is observed (Fig. 5b, Table 1 and Supplementary
Methods, section 4.2).

Discussion
We have developed a comprehensive theoretical framework to
evaluate the relationship between the species interaction network
architecture and the impact of a given perturbation on ecological
mutualistic networks. Localization has thus two beneficial effects
on ecological network robustness: (a) only a very low proportion
of species in the community are significantly affected by a
perturbation spreading throughout the network, and (b)
localization leads to an attenuation of the perturbation effects
on the system. These results are robust with respect to variation
of the parameters (see Supplementary Methods, sections 1, 2 and
4, and Supplementary Figs 2–14) and thus hold for very general
parametrization of the interaction strengths (that in general are
unknown—see Supplementary Methods, section 1.1). We thus
have shown that the eigenvectors of the community matrix play a
crucial role in determining the impact and the propagation of the
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Table 2 | Correlations between network topological and spectral properties.

q(x,y) x y P value

E0.760 S rIPR[v1] o10�4

E0.754 S rIPR[u1] o10�4

E0.800 S rIPR[wH] o10�4

E�0.662 C rIPR[v1] o10�4

E�0.754 C rIPR[u1] o10�4

E�0.749 C rIPR[wH] o10�4

E�0.769 S A1 o10�4

E0.806 C A1 o10�4

E�0.477 l1 A1 o10�4

E0.578 l1 rIPR[v1] o10�4

E0.390 l1 rIPR[u1] o10�4

E0.468 l1 rIPR[wH] o10�4

E0.460 ss2 rIPR[u1] o10�4

E0.535 ss2 rIPR[v1] o10�4

E0.45 Degree [k] v1 o10�4

E0.46 Strength [s] v1 o10�4

E0.67 Degree [k] u1 o10�4

E0.61 Strength [s] u1 o10�4

E076 Page rank v1 o10�4

E0.94 Eig. centrality v1 o10�4

Correlations r(x,y) measured using Spearman Rank Test (parametrization d¼0.5) using Holling Type I model with a¼40 and b¼0.05). rIPR refers to null model 1. v1, u1 and wH are the right, the left and
the reactive eigenvectors, respectively. k and s denote the network degree and strength vectors.
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perturbation through the system. We found that the positions of
the localized components of the principal eigenvectors strongly
correlates with nodes degree centrality, species strength si,
eigenvector centrality and page-rank centrality (Table 2,
Supplementary Methods, section 7 and Supplementary Fig. 17):
the proposed framework thus allows one to identify those species
which are affected the most by a given perturbation. Interestingly,
these are species with many mutualistic interactions, and on
average with higher population abundances with respect to
specialist species14. For example, in Fig. 3 we show the
eigenvectors components of the leading eigenvectors for
the community and reactivity matrix associated with the insect-
grasslands ecological community in Norfolk35. For each of the 61
insects and the 17 plants, we can calculate the corresponding
values of v1, u1 and wH. Species within each class (pollinators and
flowers) are then sorted according to their degree (number of
interacting partners they have). We note that the flower species
Leucanthemum vulgare, the species with the highest species
degree and a high density, is the most localized species in the
community for both v1, u1 and wH, and it is the one that is likely
to absorb most of a potential perturbation affecting the whole
community.

A general emerging pattern observed for the mutualistic
communities analysed in this work is that, while these systems are
less resilient for increasing biodiversity (May’s result15),
localization and the corresponding perturbation attenuation
increase with increasing species diversity. In other words, these
mutualistic systems experience a trade-off between resilience and
localization: small communities are faster in recovering their
stable state after a perturbation, but they are less localized and the
perturbation will have an impact on most of the species. On the
other hand, large communities are less resilient (that is, need
larger time to return to a stable state), but only few species will be
affected by the perturbation, and amplitude of the perturbation
will be attenuated while spreading through the network. The
proposed theoretical analysis can be easily applied to networks
with other interaction types, and it is illustrative of the potential
of this new metric.

Methods
Data parametrization. To be able to describe different ecological scenarios, and
following recent models in the literature26,36, we parameterize the weighted

interaction matrix as Wij ¼ g0Bij=kdi for iaj and Wii¼ � di (see Supplementary
Methods, section 1), where B is the adjacency matrix of the species interaction
matrix, indicating presence (Bij¼ 1) or absence (Bij¼ 0) of interactions among
species, ki¼

P
jBij is the number of mutualistic partners of species i (species

degree), si¼
P

jWij is the species strength (or weighted degree) and g0 is a
parameter describing the basal mutualistic strength, while d a trade-off parameter
controlling the relation between mutualistic interaction strength and species
degree. Following a Holling Type I population dynamics model, we then build the
community matrix F as fij ¼ x�i �Wij , where x�i denotes the stationary population
abundance of species i, and we model it as random variable drawn from a Gamma
distribution so to have an average species population abundance hx*i¼ 1 and of
standard deviation sx� ¼ 0:158 (Supplementary Methods, section 1). By varying
the parameter d we investigate: (a) The architecture with constant interaction
strength (‘mean-field’ case7,14, d¼ 0); (b) The architecture with interaction
strength-degree trade-off (d40), for example, specialist species interact stronger
than the generalists one)37,38. (c) Architecture where generalist species interact
stronger than specialist species (do0). Using this parametrization, for a fixed d the
stability and reactivity of ecological communities can be controlled by the value of
the basal mutualistic strength g0, and the intra-specific competition di.

Null models. We generate two different random null models (NM) for F
(F� ran). (NM1) We assign the L links in the adjacency matrix at random while
keeping the network connected, and then parametrize it in the same way we do for
empirical networks. (NM2) We assign the L links at random, but constraining the
degree sequence (k1,k2,...,kS) to be the same of the corresponding adjacency matrix
B and then parametrize it in the same way we do for empirical networks. Our
results are compared with 1,000 realizations of each of the null models. For all
other details we refer to the Supplementary Methods, section 3.

Perturbation analysis. The effect of a given perturbation n¼ (x1,x2,...,xS) acting
on the system at time t¼ 0 will propagate in time obeying d

dtdxðtÞ ¼ FdxðtÞ with
initial condition x(0)¼ n. The solution of the latter equation can be written in
terms of the eigenvectors and eigenvalues of F:

dxðtÞ ¼
XS

a¼1

n � ua
ua � va

elatva; ð1Þ

where ua, va and l(a) are respectively the left, the right eigenvectors and the
corresponding eigenvalues of the linearization matrix F. We ordered the eigen-
values so that 04l14Re[l(2)]4...4Re[l(n)] (we note that in our case, as fijZ0,
the Perron–Frobenius theorem holds and l1¼Re[l(1)]). For simplicity, we will
denote by Aa ¼ n � uað Þ= ua � vað Þ the amplitude associated with the a-th mode of
the perturbation.

Localization and effect on stability. We measure the localization using the
inverse participation ratio IPR27, that is, IPR ¼

PS
i¼1 q1ðiÞ

4=ð
PS

i¼1 q1ðiÞ
2Þ2, where

q1¼ v1, u1 or wH. In particular, we identify localization patterns by computing the
rIPR, that is, the ratio between the IPR of each real empirical network and the IPR
of the corresponding random null model: rIPRi ¼ IPRi= IPRran

i

� �
. The average h � i

is taken among different realizations of F� ran. If rIPR is significantly larger than
one, then the system is localized. Otherwise we say that the system is not localized.
We can also quantify the number of localized species by setting a threshold y and
count the fraction of species with a leading eigenvector component larger than that
threshold, that is, v1(i)4y or u1(i)4y. We set y ¼ 1:5=

ffiffiffi
S

p
v1ðiÞ � u1ðiÞ ¼ 1=

ffiffiffi
S

p�

would correspond to the extended, non localized case). We quantify how the
architecture of the ecological networks affects the impact of a simulated
perturbation on the system by comparing the outputs A1, l1, lH, v, u, wH and
r with respect to the corresponding random null models. We consider different
type of perturbations. In Supplementary Methods (section 6 and Supplementary
Fig. 16), we present results for (a) a noise nD which is independent of species
characteristics, that is, nD drawn from a normal distribution Nð1; zÞ of mean 1 and
variance z2; (b) a noise nE that is species dependent, that is, proportional to the
degree of each species (xE(i)pkixD(i)). In the main text we show results for a
perturbation combining both types of noise, that is, nall¼ nDþ nE.

Additional information. A link to the Mathematica notebook with main functions
needed to compute localizations and effect on stability of mutualistic ecological
communities is here provided: https://github.com/suweis/Effect-of-Localization-
on-the-Stability-of-Mutualistic-Ecological-Networks.
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