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Effect of Long Range Coulomb Interactions on the Mott Transition
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We reconsider the Mott transition problem in the presence of long range Coulomb interactions. Using
an extended dynamical mean field theory (DMFT) that sums an important class of diagrams absent
in ordinary DMFT, we show that in the presence of Coulomb interactions, the zero temperature Mott
transition is, as envisioned by Mott, discontinuous in two and three dimensions.

PACS numbers: 71.30.+h
The correlation driven metal-insulator transition (MIT),
i.e., Mott transition, is one of the most challenging prob-
lems in solid state physics. The nature of these transitions
depends on the interplay of band structure, magnetism, and
electronic correlations. The simplest scenario for a MIT
was first put forth by Mott [2]. He suggested that a crys-
talline array of hydrogenic atoms, i.e., atoms with just one
electron in their outermost shell, shows a zero temperature
transition from a metal to an insulator as the density is de-
creased or, effectively, as the distance between atoms in-
creases [3]. Later, other possibilities for the MIT, namely,
Slater’s band transition [4] where the system becomes in-
sulating because of the doubling of the unit cell due to an-
tiferromagnetism and the Brinkman-Rice scenario within
the Hubbard model [5] which is characterized by a strong
mass enhancement, were put forth.

Mott’s original argument depended on the presence of
Coulomb long range interactions and pointed out that since
the number of “free” electrons could vary only discontin-
uously across the transition, the transition is necessarily
first order. We recapitulate Mott’s ideas below: the main
premise was that, due to the long range nature of the in-
teractions, the electrons and the holes in the two Hub-
bard bands will always form bound states and not exist
independently. The condition for the formation of at least
one bound state, however, depends on the screening of the
Coulomb interaction. Using Thomas-Fermi estimates for
screening by N electrons per unit volume, Mott showed
that no bound states exist provided

N1�3aH . 0.4 , (1)

where aH is the Bohr radius. In other words, the system is
metallic as long as the density satisfies (1). For densities
where (1) is violated, the electrons and holes in the Hub-
bard bands always form bound pairs resulting in an insu-
lating behavior, implying that the number of carriers jumps
at the transition. Since this results in a kink in the free en-
ergy, the transition is discontinuous and first order. For an
illuminating discussion of these ideas see Refs. [6,7].

On the other hand, various studies of the Hubbard model
[3,5,8] which has long been used as the prototype to de-
scribe various aspects of real systems [1] indicate that the
zero temperature transition is continuous. This model con-
tains a term which describes the hopping of electrons be-
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tween different atomic sites and another describing the
Coulomb repulsion felt by two electrons on the same atom.
In the past few years, the nature of the MIT in this model
has been clearly elucidated using the dynamical mean field
theory (DMFT) [8]. It was shown that the zero tempera-
ture MIT was characterized by a continuous vanishing of a
Kondo-like resonance at the Fermi level in the metal at
the transition, leading to an insulator with a preformed
gap. This led to a divergence of the effective mass of the
quasiparticles and hence the linear coefficient of the spe-
cific heat as the transition is approached from the metallic
side [5,8].

The purpose of this work is to incorporate some of the
effects of the long range Coulomb interactions and Mott’s
ideas into the framework of dynamical mean field theory.
For this purpose, we explore the effects of the long range
interaction on the MIT seen in the single band Hubbard
model [3], using a simple extension of DMFT [11,12]. It
was shown, in a model of spinless fermions, that this ap-
proach captures important 1

d corrections [11]. This method
was independently developed in Ref. [12] and it was ap-
plied to the problem of the breakdown of Fermi liquid the-
ory. We first describe the approach by isolating a class of
diagrams which can be formally controlled by scaling the
interactions and the kinetic energy appropriately and which
can be summed using impurity models. We then demon-
strate that when this extended DMFT is applied directly to
a three- or two-dimensional lattice with interactions hav-
ing the Coulomb form, it changes the Mott transition which
was continuous in ordinary DMFT, to a discontinuous first
order transition, reiterating Mott’s ideas.

The effective Hamiltonian we use to describe our system
is a generalization of the Hubbard Hamiltonian:

H �
X

�ij�s
tijc

y
iscjs 1 H.c. 1
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iscis
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Uni"ni# 1
X

ifij,ss0

Vij : nisnjs0 : . (2)

The first term is the hopping matrix element for an electron
from site i (representing the ion at Ri) to its neighboring
site j, m is the chemical potential, U is the Coulomb re-
pulsion felt by the electrons when they are on the same
atom, and the normal ordered last term is the Coulomb
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interaction between electrons on different atoms. The cou-
pling constants are given by overlap integrals involving a
set of chosen basis vectors u�r 2 Ri� for, e.g., the Wan-
nier or Hartree basis. For example, the on-site interaction
U is given by

U �
Z

dr dr 0ju�r�j2ju�r 0�j2
e2

jr 2 r 0j

Vij �
Z

dr dr 0ju�r 2 Ri�j2ju�r 0 2 Rj�j2
e2

jr 2 r 0j
.
(3)

The Hamiltonian (2) is now studied in the dynamical
mean field approximation. The first step in the DMFT
is to scale the parameters in the large d limit appropri-
ately such that the corresponding energy terms remain fi-
nite. In addition, the scaling should be chosen such that the
terms of interest remain relevant in the large d limit. In the
conventional DMFT scheme, the interaction is not scaled.
Consequently, all nonlocal interactions can be neglected in
the large d limit. Here, to manifestly retain the effects of
the nonlocal terms, we adopt the following scaling: tij is
scaled as

p
d2ji2jj (t !

t
p

d
in the case of nearest neigh-

bor sites); U ! U and Vij are scaled by
p

d2ji2jj. The
normal ordering in (2) makes this scaling well defined and
the leading diagrams can be summed up using the cavity
method described in Ref. [8]. It is a prescription for choos-
ing a set of diagrams that contribute to the self-energy and
hence the Green’s function. DMFT prescribes a scheme
for choosing different sets of diagrams that contribute to
the different Green’s functions. In the case of the Hubbard
model (V � 0), this corresponds to retaining only skeleton
diagrams constructed from U and the local Green’s func-
tions Gii in the self-energy, resulting in the self-energy Sij

being local. In the presence of the longer range interaction,
the above scaling retains all skeleton diagrams constructed
using the local Green’s function Gii and the interaction
vertices U and Vij , such that every point i which has a
vertex Vij originating from it has another vertex Vki ter-
minating at it. In effect, this corresponds to replacing the
U by an Ueff in the local self-energy evaluated for a Hub-
bard model. An example of the diagrams retained is shown
in Fig. 1. We mention that the Hartree term (arising only
from U) is generated in the cavity method. Depending on
the basis chosen to derive the effective model parameters
(2) care should be exerted to see that the Hartree term is

i j

k l

l

i

FIG. 1. Reduction of the self-energy diagrams in the limit of
infinite d.
not double counted. We neglect the Fock term in the en-
suing calculations, since the Fock term is of higher order
in 1

d than the Hartree term.
Using the cavity method [8] and integrating out all sites

save a chosen site or cavity o, we obtain the following
local effective impurity action with retarded interactions:

Seff �
Z

dt dt0
X
s

c
y
0s�t�G21

0 �t 2 t0�c0s�t0�

1 Un0"�t�n0#�t�
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X
ss0

n0s�t�P21
0 �t 2 t0�n0s0�t0� , (4)

where

G21
0 � ≠t 2

X
ij

t0it0jG
�0�
ij �t 2 t0� (5)

and the retarded interaction

P21
0 �t 2 t0� �

X
ij

V0iV0jP
�0�
ij �t 2 t0�

�
X
q

V �q�2P�0��q, t 2 t0� (6)

with G
�0�
ij denoting the single particle Green’s function and

P
�0�
ij � �

P
ss0 nis�t�njs0�t0��0. The superscript �0� im-

plies that the quantities have been evaluated in the system
from which the site 0 and all the links to this site have been
removed. These in turn are related to quantities evaluated
on the entire lattice. Summing over the sites leads to G0
and P0 being determined by self-consistent equations in-
volving local quantities evaluated on the full lattice. Note
that the effect of all nonlocal quartic interactions is to dy-
namically screen the on-site repulsion, with the screening
potential given by (6). These equations depend on the na-
ture of the lattice used. For example, on the Bethe lattice,
G

�0�
ij � Gij and P

�0�
ij � Pij . Retaining only the on-site

and nearest neighbor interactions, the self-consistency con-
dition that should be satisfied by the retarded interaction
on the Bethe lattice takes the simple form P

21
0 � V 2Ploc,

where Ploc is the local density density correlator. For arbi-
trary lattices and interactions (i.e., general tij and Vij) the
(extended) dynamical mean field equations can be derived
by generalizing the discussion presented here to the case
where the hoppings tij are scaled by

p
d2ji2jj.

To obtain the Green’s functions of (4), we now define
certain irreducible quantities. The lattice Green’s functions
can be expressed in terms of a self-energy S which is one
particle irreducible and which becomes local in the limit
of infinite dimensions.

G�ivn, q� �
1

ivn 2 eq 2 S�ivn�
, (7)

where eq is the dispersion on the lattice and ivn are the
Matsubara frequencies. Similarly, the density density cor-
relator P�q, ivn� on the lattice defines an irreducible part
P̃ via the Dyson equation
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P�q, ivn� �
P̃

1 1 V �q�P̃
, (8)

where P̃ is the sum over all polarization diagrams con-
structed with the full G and interaction lines V �q� such
that all the diagrams are irreducible with respect to V �q�.
Within the infinite d approximation, since all vertex func-
tions become independent of momenta, P̃ also becomes
independent of momenta. The impurity model (4) allows
us to compute all local quantities, in particular, S and P̃

and hence, the local density density correlator Ploc and
the local one particle Green’s function Gloc as functionals
of the Weiss fields G0 and P0.

P21
loc�P0,G0� �ivn� � P̃21�P0,G0� �ivn� 2 P21

0 �ivn�
(9)

and

S�P0,G0� �ivn� � G21
0 �ivn� 2 Gloc�P0,G0� �ivn� .

(10)

Using (8) and (9), we can eliminate P̃ to obtain a self-
consistent equation for Ploc �

P
q P�q, ivn�,

Ploc�P0,G0� �
X
q

1

P
21
loc�P0,G0� 2 P

21
0 1 V �q�

.

(11)

Similarly, we obtain an equation for Gloc

Gloc�P0,G0� �
X
q

1
ivn 2 eq 2 S�P0,G0�

. (12)

These equations were derived by an appropriate scaling
of the interactions and the hopping elements in the original
model so as to obtain a well-defined limit of large coordi-
nation. In the spirit of DMFT [8], we can, however, regard
these equations as defined on a finite dimensional lattice
by replacing V by the usual Coulomb interaction on the
lattice. We use these equations to make qualitative predic-
tions of the effect of the Coulomb long range interaction in
finite dimensions, on the order of the Mott transition seen.

The continuous character of the Mott transition at zero
temperature signaled by the vanishing of a Kondo-like
resonance at v � 0 at Uc2 was established using the
projective self-consistent method within DMFT [9]. We
briefly review the projective method below. Then, using
the results of Ref. [9] we study how long range Coulomb
interactions treated within the extended DMFT modify
the above transition.

The projective method uses the separation of two energy
scales that exists in the metallic phase close to the MIT, i.e.,
the low energy scale wD (where w and D are the weight
of the Kondo resonance seen in the metal and the half
bandwidth, respectively) and the high energy scale of the
Hubbard bands, U. w is related to the quasiparticle residue
z � w�1.7 [9]. The high energy scales are then eliminated
to obtain an effective theory governed by the low energy
scale w, which goes to zero at the MIT [8]. Using this
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effective low energy model, which is a Kondo model of
an impurity spin interacting with a bath of electrons, we
can obtain the free energy or the ground state energy of
the lattice problem close to the transition point. This free
energy correctly describes the low energy and coherent part
of the spectra. To order w, the low energy Kondo problem
has been derived in Ref. [9] and is given by

H � wGS ? sL 1 Hb . (13)

Here Hb describes a band of low energy conduction elec-
trons and sL represents the local spin operator of these
electrons. S is the impurity spin and the Kondo coupling
G is determined by matrix elements in the high energy
sector (comprising the two Hubbard bands). The high en-
ergy sector is an insulator and has a spin doublet ground
state which is separated from the excited states by a large
gap. Using the results of Ref. [9], the simplest approxi-
mation to the high energy sector of the Hubbard model
yields G � 2D2

U . The self-consistency conditions translate
to conditions on the expectation value �S ? sL�. Since we
are interested only in the qualitative features of the transi-
tion, we replace the bath of electrons by a single electron.
Therefore, using this toy model, the energy of the Kondo
model is

EK � 2
3
4

wG . (14)

Using the results of [10], and taking into account the ki-
netic energy of the lattice which is positive and of order
wD, the ground state energy of the lattice model has the
following expansion in terms of w:

E0 �
D
2

µ
1 2

Uc

U

∂
w 1

3D2

8U
w2 1 corrections. (15)

The w2 term describes the lowest order effective inter-
action between the bath electrons. The transition is sig-
naled by the vanishing of the term linear in w in (15) at
U � Uc � 3D. Since the energy minimum still occurs at
w � 0, this transition is continuous.

Though the DMFT and the self-consistent projective
method are both formulated in infinite dimensions, it is
nonetheless known that they capture some aspects of the
physics of systems in finite dimensions rather well. We
therefore use the projective method to make some predic-
tions about the transition in three dimensions. First, in the
presence of the long range Coulomb interaction, there are
corrections to (15), because of the screening of the on-site
Coulomb interaction given by (6). This implies that U in
(15) has to be replaced by an Ueff. For the free energy (15),
it is sufficient to consider the effective static on-site repul-
sion. Assuming P�0� � P 1 sub-�leading corrections� in
(6) and using the fact that at zero frequency, P̃ in (8) is by
definition the compressibility k of the system, one obtains
from (6) and (4)

Ueff � U 2
X
q

V 2�q�
k

1 1 kV �q�
. (16)
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Note that V �q� � C��qa�2 is the Fourier transform of the
Coulomb potential with strength C. Since the effective in-
teraction remains finite at the transition, the leading critical
behavior of the compressibility k is the same as that found
in the Hubbard model where [8,9]

k � 0.55
w
D

. (17)

Within the Hubbard model, k is finite in the metal and goes
to zero smoothly as w ! 0 at the transition. Notice that
the parameter w in the projective self-consistent method
neatly embodies the notion of “a number of free carriers”
in Mott’s original work. Equation (16) shows that the ef-
fective repulsion seen by the electrons in the metallic phase
is reduced. In the insulator k � 0 and the bare on-site re-
pulsion is unscreened. This is physically correct because
one does expect the itinerant electrons in the metallic phase
to better screen the Coulomb repulsion. Using (17) in (16),
and performing the q sum in d � 3 we find that the effec-
tive repulsion felt on-site is

Ueff � U 2 aw1�2, (18)

where a � 0.157C
p

C�D. The screening is proportional
to logw in two dimensions. Replacing U by Ueff in (15),
we see that the expansion of the energy in terms of the low
energy weight w has nonanalytic terms

E0 �
D
2

µ
1 2

Uc

U

∂
w 2 a

3D2

2U2 w3�2 1
3D2

8U
w2

1 correction. (19)

The nonanalyticity in (19) arises purely from the Coulomb
long range interaction via the self-consistency conditions
(11). We now see that at the transition, this nonanalyticity
shifts the minimum of the energy which formerly was at
w � 0 to a nonzero value. In other words, the value of
w jumps discontinuously to zero at the transition, i.e.,
Dwtrans � 9� a

Uc
�2 � 0.216�C�Uc�2�C�D� which equals

0.024�C�D�3 at Uc � 3D. This implies a minimal metal-
lic quasiparticle residue zmin � 0.127�C�Uc�2�C�D� and
is a feature of a first order transition. In two dimensions,
a similar analysis results in a w logw in the free energy
(15) which also implies a discontinuous transition.

zmin depends on the magnitudes of the two indepen-
dent model parameters, C and U which in turn depend
on the material considered, and could in principle be de-
termined from constrained density functional calculations.
Normally, since the long range parts of the Coulomb inter-
actions are much better screened than the on-site ones, we
expect C to be smaller than U. As an order of magnitude
estimate we take C 	 D 	 Uc�3 implies that zmin & 0.1.
The jump in zmin will be more visible in systems with very
poor screening.

To conclude, we have studied the effects of long range
Coulomb interactions on the Mott transition using an ex-
tended DMFT. We find that the Coulomb interactions dy-
namically screen the effective on-site interaction. We find
that to lowest order, the screening is determined by the low
energy scale w which is related to the width of the Kondo
resonance at the Fermi level. Consequently, the screening
is zero in the insulator. Extending our analysis to three
dimensions, we find that the screening term is nonanalytic
in w resulting in nonanalytic terms in the free energy. As
a result the Mott transition which was continuous in the
absence of these dynamical screening terms now becomes
a first order transition vindicating Mott’s ideas. More im-
portantly, the formalism developed in this Letter can be
used to study a whole range where a more realistic treat-
ment of the Coulomb interactions is required. Combined
with a more realistic modeling of band structure and or-
bital structure, one could obtain estimates for zmin for real
materials which undergo a pressure driven Mott transition.
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