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Abstract 

In semi-arid Mediterranean areas, studies of the performance of conservation tillage systems 

have largely demonstrated advantages in crop yield, soil water storage and soil protection 

against wind and water erosion. However, little attention has been given to interactions between 

soil biochemical properties under different tillage practices. Biochemical properties are useful 

tools to assess changes caused by different soil tillage systems in long-term field experiments. 

This study deals with the effect of long–term tillage practices (reduced tillage and no tillage vs. 

traditional tillage) on soil chemical properties and microbial functions in three different sites of 

Spain two of them located in the Northeast and one in the Southwest under semi-arid 

Mediterranean conditions. Soil biological status, as index of soil quality, was evaluated by 

measuring microbial biomass carbon (MBC) and dehydrogenase (an oxidoreductase) and 

protease (a hydrolase) activities at three soil depths (0-5, 5-10 and 10-25 cm). In the three 

experimental areas, increases in soil organic matter content, MBC and enzymatic activities were 

found at the superficial layers of soil under conservation tillage (reduced tillage and no tillage) 

in comparison with traditional tillage. Values of the stratification ratio of some biochemical 

properties were significantly correlated with yield production in Northeast sites.  

Conservation tillage has proven to be an effective strategy to improve soil quality and fertility in 

Mediterranean areas of Spain. 

 

Keywords: Soil tillage, soil organic carbon, soil enzymatic activities, soil microbial biomass 

carbon; semi-arid areas. 
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1. Introduction 

Benefits from conservation tillage, including improvement of soil properties, savings of time, 

energy and water, and wind erosion control, have been reported in many studies carried out 

under different environment conditions (Griffith et al., 1986; Lal, 1989). Thus, traditional, 

intensive inversion tillage (TT) is being replaced by conservation tillage systems. Conservation 

tillage systems reduce labour, fuel, and machinery expenses and also have some agronomic and 

environmental implications. Conservation tillage protects the soil against water and wind 

erosion and reduces soil evaporation by leaving crop residues on the soil surface, thus 

promoting greater soil moisture content (Lafond, 1994).  

To be considered conservation tillage (CT), any tillage and planting system must maintain at 

least 30 percent of the soil surface covered by residue after planting to reduce soil erosion by 

water. Where soil erosion by wind is a primary concern, the system must maintain a 1.1 Mg ha-1 

flat small grain residue equivalent on the surface during the critical wind erosion period (Gajri 

et al., 2002). Some times, there is no distinction between CT, MT (minimum tillage) or reduced 

tillage (RT) (Bradford and Peterson, 2000). Types of CT include no-tillage (NT), ridge tillage, 

mulch tillage and zone tillage (Hill, 1996). 

Under semiarid climate, CT is one of the best options to store and conserve soil water (Rawitz 

and Hadas, 1994). Many short-term studies and a few long-term studies have evaluated the 

effect of tillage systems on plant productivity (Cantero-Martínez et al., 2003; Moreno et al., 

1997). In general, the lack of negative effect on yield, make conservation tillage attractive 

attending the reduction in operating costs and soil quality increase (Franzluebbers, 2004). Soil 

quality can be defined as its capacity to work properly within ecosystem boundaries maintaining 

biological productivity, environment quality and also to promote plant and animal health (Doran 

and Safley, 1997). The definition of soil quality has focused on some properties that affect soil 

health and quality (Doran and Safley, 1997). Soil microbial biomass and enzymes have been 
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suggested as potential indicators of soil quality because of their relationship to soil biology, ease 

of measurement (i.e., potential to be adopted by commercial laboratories for routine soil 

testing), rapid response to changes in soil management and high sensitivity to temporary soil 

changes originated by management and environment factors (Nannipieri 1994).  Conservation 

tillage increases organic matter levels in superficial layers of the soil (Franzluebbers, 2004). 

Thus, biological activity has been found to be higher in soils under CT than under TT, (Bolinder 

et al., 1999). Also, under CT, an increase of the activity of some enzymes (acid 

phosphomonoesterase, arylsulphatase, dehydrogenase, urease and -glucosidase) has been 

found (Angers et al., 1993, Eivazi et al., 2003). 

During the past 20 years, conservation tillage practices, as RT or NT, have been introduced in 

the Mediterranean areas with different success (Cantero-Martínez et al., 2003; López et al., 

1996, 2005; Moreno et al., 1997). In these areas, studies of the performance of conservation 

tillage systems have demonstrated advantages in yield, water profitability (water storage, water 

use by crops) and protection of the soil against erosion by water and wind (Álvaro-Fuentes et 

al., 2008a; Cantero-Martínez et al., 2003; Mrabet, 2002, Muñoz et al., 2007). Reduction of CO2 

fluxes to the atmosphere derived from conservation tillage adoption has also been reported 

(Sánchez et al., 2002; Álvaro-Fuentes et al. 2008b). Despite some disadvantages such as the 

increase of the use of herbicides, CT appears to be the most important sustainable alternative 

system to traditional agriculture to cope with negative agro-environmental problems derived 

from TT, including the diminution in soil biodiversity. However, comparatively little attention 

has been given to soil biochemical properties under different tillage systems (Madejón et al., 

2007).  

The aims of the study were to determine the effects of long-term conservation tillage on soil 

chemical properties and microbial function in three sites of Spain under semi-arid 
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Mediterranean conditions. We hypothesized that conservation tillage would have a positive 

effect by increasing soil organic matter and fertility, and, enhancing soil microbial functionality.  

 

2. Materials and methods 

The study was carried out in three different experimental sites of the semi-arid Spain located 

specifically in the provinces of Lleida (LLE), Zaragoza (ZAR) and Sevilla (SEV) (Fig. 1). All 

the sites have a long history of experimentation of conservation tillage (12-18 years).  

2.1. Experiment at Lleida 

The experiment was established in the fall of 1996 in a farm of Agramunt in the Lleida province 

(NE Spain). Soil was classified as Typic Xerofluvent  (USDA, 1996). The area has a temperate 

continental Mediterranean climate with rainfall variable ranging between 350–550 mm. The 

rainfall distribution has two peaks, in autumn and late spring, respectively, with little rain in the 

winter and summer months. More details of the site and soil characteristics are shown in Table 

1. Three tillage systems (TT, RT and NT) were established. The TT consisted of one moldboard 

ploughing (25–30 cm depth) plus one or two cultivator passes (15 cm depth) before sowing 

during August or September each year, depending upon the soil moisture. The RT was 

conducted with one or two cultivator passes (10–15 cm depth) in each September in the same 

soil moisture conditions as the TT. The NT consisted of sowing by direct drilling after spraying 

with herbicide (1.5 L 36% glyphosate [N-(phosphonomethyl)-glycine] plus 1 L of 40% MCPA 

(2-(4chloro 2-metilfenoxi) acetic acid) per ha). Barley (Hordeum vulgare L. cv. “Hispanic”) 

was sown in late October to early November each year. Sowing was performed with a no-till 

disc and harvesting was done with a standard, medium-size combine. Nine replicate plots (50 m 

x 6 m) for each tillage system were randomly established. More details of the crop management 

practices are given in Cantero-Martínez et al. (2003). 

2.2. Experiment at Zaragoza 
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The experiment was established in 1990 in the dryland research farm of the “Estación 

Experimental de Aula Dei (CSIC)”, in the Zaragoza province (NE Spain).  The soil was 

classified as Xerollic Calciorthid (USDA, 1996). The area is characterized by a semiarid 

climate. More details of the site and soil characteristics are shown in Table 1. Three tillage 

treatments (TT, RT and NT) were established The TT treatment consisted of mouldboard 

ploughing to a depth of 30–40 cm in followed by secondary tillage to a depth of 10–15 cm with 

a sweep cultivator in late spring. In the RT treatment, primary tillage was chisel ploughing to a 

depth of 25–30 cm (non-inverting action), followed, as in TT, by a pass with the sweep 

cultivator in the same dates. After this cultivation, the plots were not ploughed again until 

November–December when seedbed preparation with a point cultivator was carried out prior to 

sowing. Weeds on NT plots were controlled with herbicide application (2 L ha-1 of 36% 

glyphosate {N-(phosphonomethyl)-glycine}). A conventional planter was used in the TT and 

RT treatments. In NT, sowing was performed directly into the crop residues from the previous 

harvest using a hoe drill. Barley (Hordeum vulgare L. cv.“Albacete”) was cropped  

Tillage treatments were arranged in a randomized complete block design with six replications 

per treatment. The subplot size was 33.5 m × 10 m. Details about crop management practices 

and experimental design have been previously given (López et al., 1996). 

 2.3 Experiment at Sevilla 

The experiment was established in 1992 at the experimental farm of the “Instituto de Recursos 

Naturales y Agrobiología (CSIC)” in the Sevilla province (SW Spain). Soil was classified as 

Xerofluvent, (USDA, 1996). Climate of the zone is typically Mediterranean, with mild rainy 

winters (500 mm mean rainfall, average of 1971-2004) and very hot, dry summers. More details 

of the site and soil characteristics are shown in Table 1.  An area of about 2,500 m2 was selected 

to establish the experimental plots in 1991, which was cropped with wheat under rainfed 

conditions. Two tillage treatments were established: TT used in the area for rainfed agriculture 
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and a RT. The TT consisted of mouldboard ploughing (30 cm depth), after burning the straw of 

the preceding crop. Straw burning was suppressed since 2003. The RT was characterized by not 

using mouldboard ploughing, by reduction of the number of tillage operations and leaving the 

crop residues on the surface (Moreno et al., 1997). A wheat (Triticum aestivum, L.)-sunflower 

(Helianthus annuus, L.) crop rotation was established for both treatments. In 2005 a fodder pea 

crop (Pisum arvense, L. cv. “Ideal”) was included in the rotation. Before sowing wheat in first 

December 2005, a pre-emergence herbicide (18% glyphosate + 18% MCPA) was applied in RT 

at a high rate of 7L ha-1 Three replicate plots (22 x 14 m) for each tillage system were randomly 

established. More details of the experimental management and agronomic practices are given in 

Moreno et al. (1997). 

 

 

2.4 Soil sampling and analysis  

Soil sampling in the three sites of study was carried out in March 2006 at depths of 0-5, 5-10 

and 10-25 cm. At each plot five soil cores were taken to make a composite sample 

representative of each plot and depth. (ca. 200 g per soil core sample at each depth). Surface 

residue was left in the corresponding depth (mainly in the 0-5 cm). Field moist soil was sieved 

(2 mm) and divided into two subsamples. One was immediately stored at 4 ºC in plastic bags 

loosely tied to ensure sufficient aeration and to prevent moisture loss until assaying of 

microbiological and enzymatic activities. The other was air-dried for chemical analysis. 

Soil total organic carbon (TOC) content was determined according to Walkley and Black 

(1934), water soluble carbon (WSC) was determined in an (1/10) aqueous extract using a TOC-

V-CSH/CSN analyser. The MBC content was determined by the chloroform fumigation-

extraction method modified by Gregorich et al. (1990). Dehydrogenase activity (DHA) was 

determined in a 1 M TRIS–HCl buffer (pH 7.5) by the method of Trevors (1984), using INT 
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(2(p-iodophenyl)-3-(p-nytrophenyl) 5-phenyl tetrazolium chloride) as the electron acceptor. The 

iodonitrotetrazolium formazan (INTF) produced was measured spectrophotometrically at 490 

nm. Protease activity was measured after incubation of soil with casein and measurement of the 

absorbance of the extracted tyrosine at 700 nm following the procedure described by Ladd and 

Butler, (1972). 

Stratification ratio for each variable was calculated dividing the values of the variable 

determined at 0-5 cm by the value determined at 10-25 cm. 

2.5 Statistical analysis 

In ZAR and LLE experiments, the data were analysed by ANOVA, considering the tillage 

system as the independent variable. The means were separated by the Tukey’s test, using a 

significance level of p<0.05. 

In SEV, response variable between both tillage systems were assessed by the Student t-test. All 

statistical analyses were carried out with the program SPSS 15.0 for Windows. 

 

3. Results and discussion 

3.1 Soil total organic carbon and water soluble carbon 

As a rule, TOC and WSC values were higher in the soils under RT and NT that under TT at the 

superficial layer (0-5 cm) (Figures 2a and 2b). For both parameters, differences among 

treatments were only significant at LLE, where the increase of TOC and WSC with 

conservation tillage was noticeable even at intermediate layers (5-10 cm) (Figures 2c and 2d). In 

the three experimental sites, soil organic matter content decreased with depth and at the deepest 

layer (10-25 cm) the values of TOC and WSC similar for the different tillage treatments 

(Figures 2e and 2f). 

Conservation tillage systems have been shown to maintain soil organic matter at higher levels 

than traditional tillage especially at surface (Díaz-Zorita and Grove, 2002). This increase is 
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particularly important in the Mediterranean area, where the levels of organic matter in semi-arid 

agricultural soils are low (around 10 g kg-1) (Acosta-Martínez et al., 2003). 

Water soluble carbon accounts for only a small proportion of the TOC in soil (Mc Gill et al., 

1986). However, it is widely recognised that this fraction influences soil biological activity 

(Flessa et al., 2000). Soil tillage has been found to affect WSC. Thus, Linn and Doran (1984) 

reported higher WSC values in NT system than in conventionally tilled soil in the top 7.5 cm. 

These authors reported also that no differences were recorded at deeper layers. In accordance, 

Leinweber et al. (2001) found that intensive tillage enhanced oxidative chemical and microbial 

activity and consequently decreased the WSC content. 

3.2 Soil microbial biomass carbon and enzymatic activities 

Soil MBC values at the LLE site were significantly higher under RT and NT that under TT up to 

10 cm depth (Figures 3a and 3b). In ZAR, only soil under NT significantly increased MBC 

values with respect to TT at the superficial layer (Figure 3a). In SEV, no differences between 

treatments were found for MBC (Figure 3). As occurred with TOC and WSC, MBC values 

decreased with depth in the three experimental sites. 

The microbial biomass contained in the crop residues and the addition of substrate-C could 

account for the increase of MBC in the RT and NT soils in the most superficial layer. Soil 

subjected to conservation tillage accumulates crop residues and, consequently, increases organic 

carbon in soil, speciality at the most superficial layer (Kanderler et al., 1999). This carbon is the 

substrate for soil microorganisms and, consequently, the microbial biomass tended to increase in 

the soil surface. This stimulating effect of high levels of soil organic matter on MBC is 

supported by the high correlation found between TOC (r2= 0.590 p<0.01) and WSC (r2= 0.394 

p<0.01) and MBC. Numerous authors have found strong relationships between organic matter 

and microbial population under different conditions (Melero et al., 2007).  
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Values of DHA were higher in NT than in TT in LLE and ZAR only at the superficial layer (0-5 

cm) whereas in SEV, no differences between treatments were found (Figure 4).  DHA, which 

depends on the metabolic state of the soil biota, has been proposed as a sensitive indicator of 

changes in microbial activity in soils of semi-arid Mediterranean areas (García et al., 1997). As 

DHA uses oxygen and different compounds as terminal electron acceptors, this enzyme should 

reflect the oxidative capacity of the total soil microflora. DHA responded to tillage treatments in 

a similar manner as soil organic C, increasing under conservation tillage and reflecting a better 

oxidative capacity of the soil.  

The highest values of protease were found in the RT and NT soils of LLE for all soil profile 

considered (Figure 5). In ZAR, effect of tillage was only observed in the most superficial layer 

and for soils under NT (Figure 5). In SEV, no differences between treatments were found 

(Figure 5).  

Both enzymes (dehydrogenase and protease) were positively correlated with each other (r2= 

0.647 p<0.01) and with WSC, TOC and MBC. This behaviour has been also reported by other 

authors (Alvear et al., 2005; Melero et al., 2007). Kunito et al. (2001) attributed this positive 

correlation between enzyme activities and MBC to an indirect effect of the increase of the soil 

organic carbon. 

Values of all the biochemical parameters measured were, in general, higher in LLE than in the 

other two experimental sites, indicating a better soil quality in this site. Moreover, differences 

among treatments clearly showed the positive effect of conservation tillage on biochemical 

status of the LLE soil. In contrast, in ZAR, the soil showed the smallest values of biochemical 

properties, indicating the low activity of the microorganisms, probably due to the adverse 

climatic conditions of the area, related mostly with the low precipitation recorded in the period 

previous to the sampling. Nevertheless, in this soil slight increases in soil biochemical 

properties with conservation tillage were also observed.   
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The lack of tillage effect in organic carbon and biochemical properties in SEV can be due to the 

presence of the leguminous (pea) in the previous season. This crop improves the 

microbiological status of the soil in any tillage system. Leguminous add organic matter and N to 

the soil (Ashraf et al., 2004), increasing soil fertility and favouring soil microorganisms 

development. Dinesh et al. (2004) also observed that the leguminous cover crop enhanced soil 

microbial activity and enzyme synthesis and accumulation due to increased C turnover and 

nutrient availability. In fact, in previous years before leguminous cropping, increases of 

biochemical properties were clearly observed in conservation tillage soils (Madejón et al., 

2007). Moreover the rotation of crop in this area (in the other two areas no rotation of crop was 

carried out) could also contribute to maintain a higher biochemical activity. 

Some authors have shown that herbicides could reduce the microbial functional diversity in soil 

but did not affect other microbiological parameters (Moreno et al 2009). These authors also 

revealed that the positive effect of the cover crop and the organic matter predominated in 

microbiological status in presence or not of herbicides. In the present experiments a reduction in 

the microbial activity due to the application of herbicides was not observed. Nevertheless 

further investigations are required to asses the potential influence of the herbicides applied 

under conservation tillage on microbial activity. 

3.3 Stratification Ratio 

Climatic conditions of the Mediterranean areas are the limiting factor for the accumulation of 

organic carbon in the top soil layers. Thus, the simple determination of TOC can not be the best 

indicator of the improvement caused by conservation tillage. Under these conditions it may be 

more interesting to study the stratification ratios (STR) of TOC. In general, under any condition, 

high STR for TOC indicates a good quality of the soil. In contrast, ratios lower than 2 are 

frequent in degraded soils (Franzluebbers, 2002). This approach could also be applied to other 

variables (Figure 6). Thus, in LLE, STR was clearly higher in soil under RT and NT than under 
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TT and the differences among treatments were even higher than those found when comparing 

values of each parameter. In ZAR, a general increase in the values of the STR was also 

observed, although differences were only significant in the case of MBC and PRA. In SEV, high 

values of STR were observed in all treatments, pointing out the benefits of the leguminous crop 

on the improvement of the superficial layer with conservation tillage. 

These results could also show the importance of the values of STR of the biochemical properties 

to indicate the advantages derived from the adoption of conservation tillage in semi-arid areas. 

Soils with low inherent levels of organic matter can be the most functionally improved with 

conservation tillage, despite modest or no change in total standing stock of organic matter 

within the rooting zone (Franzluebbers, 2004). In general, the enrichment of the soil surface 

with crop residues usually led to significantly greater and more stable soil aggregates, especially 

in soils with coarse texture (Franzsluebber, 2004). Other authors have also confirmed the 

positive relation between soil biochemical parameters such as dehydrogenase and microbial 

biomass carbon and soil macroaggregation (Roldan et al., 2005). Moreover, data of STR were 

significantly correlated in some cases with yield production in LLE and ZAR (Tables 2 and 3).  

In SEV, although correlations were also positive and sometimes significant, the results were not 

consistent due to the low number of cases (6 plots in total). These positive relationships could 

point out the importance of STR data not only on determining soil quality but also yield 

production in the studied areas. These results pointed out the importance of these indexes to 

assess soil quality and fertility. Nevertheless, further studies in the same areas should be 

necessary to asses the positive correlation between STR and productivity before to define these 

ratios as indexes of productivity for Mediterranean conditions. 
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4. Conclusion 

Long-term use of conservation tillage has become a proven strategy to increase soil 

organic matter, especially surface soil biochemical quality in Mediterranean areas of Spain. 

Changes in soil biochemical properties with tillage and in their stratification ratios should 

provide practical tools to complement physical and chemical test and, thus, evaluate the effect 

of tillage in Mediterranean semi-arid conditions. As the climatic conditions of the semi-arid 

Mediterranean areas are an important limiting factor for the accumulation of organic carbon in 

the top soil layers, the simple determination of TOC not always is the best indicator of the 

improvement caused by conservation tillage. Under these conditions it may be more interesting 

to study the stratification ratios (STR). Results in this study have shown the importance of the 

values of stratification ratio of TOC and other variables related to soil biology for these 

purposes by their correlations with yield production. 
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Table 1. Site and soil characteristics in the Ap soil layer 
Site and soil  characteristics Experimental site 
 Lleida Zaragoza Seville 
Latitude 41º 48’ N 41º 44’N 37º 17’ N 
Longitude 1º 07’E 0º 46’W 6º 3’ W 
Elevation (m) 330 270 30 
    
Mean annual air temperature (ºC) 14.2 14.5 17.5 
Mean annual precipitation (mm) 430 390 494 
    
Soil classification* Xerofluvent 

typic 
Xerollic 
Calciorthid 

Xerofluvent 

    
Ap horizon depth (cm) 28 30 30 
pH (H2O, 1:2.5) 8.5 8.2 7.9 
EC1:5 (dS m-1) 0.15 0.29 - 
Water retention (g g-1)    
-33 kPa 0.16 0.20 0.23 
-1500 kPa 0.05 0.11 0.12 
TOC (g kg-1) 5.58 11.4 9.20 
Particle size distribution (%)    
Sand (2000-50 μm) 30.1 32.4 49.8 
Silt (50-2 μm) 51.9 45.5 29.1 
Clay (<2 μm) 17.9 22.2 21.1 
*USDA classification (USDA, 1996). 
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Table 2. 

Correlation coefficients between stratification ratio of biochemical properties and organic matter 
in soil samples and yield production in Lleida experiment. (n = 27) 
 

 
STR 

TOC 

STR 

WSC 

STR 

CMB 

STR 

DHA 

STR 

PRA 
Yield 

 

STR TOC 
- 0.626** 0.447* 0.627** 0.404** 0.554** 

 

STR WSC 
 

- 
0.409* 0.901** 0.601** 0.851** 

 

STR CMB 
 

 
- 0.403* 0.565** 0.266 

 

STR DHA 
 

 
 - 0.565** 0.811** 

 

STR PRA 
 

 
  

- 
0.481* 

** correlation is significant at the 0.01 level. 
*   correlation is significant at the 0.05 level. 
TOC: total organic carbon,  WSC: water soluble carbon, CMB: carbon 
biomass; DHA: dehydrogenase activity;  
PRA: protease activity;  
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Table 3. 

Correlation coefficients between stratification ratio of biochemical properties and organic matter 
in soil samples and yield production in Zaragoza experiment n = 18 
 

 
STR 

TOC 

STR 

WSC 

STR 

CMB 

STR 

DHA 

STR 

PRA 
Yield 

 

STR TOC 
- 0.355 0.616** 0.694** 0.319 0.237 

 

STR WSC 
 

- 
0.419 0.730** 0.529* 0.614** 

 

STR CMB 
 

 
- 0.462 0.462 0.224 

 

STR DHA 
 

 
 - 0.660** 0.498* 

 

STR PRA 
 

 
  

- 
0.581* 

** correlation is significant at the 0.01 level. 
*   correlation is significant at the 0.05 level. 
TOC: total organic carbon, WSC: water soluble carbon,  CMB: carbon 
biomass; DHA: dehydrogenase activity;  
PRA: protease activity;  
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Figure 2 
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Figure 5
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LEGENDS OF FIGURES 

Figure 1. Location of the sampling areas 

Figure 2. Total (TOC) and water soluble (WSC) organic carbon at different soil depths 

of each treatment: traditional tillage (TT) in black; reduced (RT) and no-tillage (NT) 

following an increasing grey scale. Columns with the same letter, for each sampling 

area, do not differ significantly (p < 0.05). 

Figure 3. Microbial biomass carbon (MBC) values at different soil depths of each 

treatment: traditional tillage (TT) in black; reduced (RT) and no-tillage (NT) following 

an increasing grey scale. Columns with the same letter, for each sampling area, do not 

differ significantly (p < 0.05). 

 Figure 4. Dehydrogenase (DHA) values at different soil depths of each treatment: 

traditional tillage (TT) in black; reduced (RT) and no-tillage (NT) following an 

increasing grey scale. Columns with the same letter, for each sampling area, do not 

differ significantly (p < 0.05). 

Figure 5. Protease (PROT) values at different soil depths of each treatment: traditional 

tillage (TT) in black; reduced (RT) and no-tillage (NT) following an increasing grey 

scale. Columns with the same letter, for each sampling area, do not differ significantly 

(p < 0.05). 

Figure 6. Values of the stratification ratios (STR) of different soil properties at different 

soil depths of each treatment: traditional tillage (TT) in black; reduced (RT) and no-

tillage (NT) following an increasing grey scale. Columns with the same letter, for each 

sampling area, do not differ significantly (p < 0.05). 

 




