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ABSTRACT

Context. Observations of post-flare transversal coronal loop oscillations by TRACE have given us an excellent opportunity to imple-
ment magneto-seismological techniques for probing the plasma fine structure of the Sun’s upper atmosphere.
Aims. We investigate the combined effect of magnetic and density stratification on transversal coronal loop oscillations.
Methods. A coronal loop will be modelled as an expanding magnetic flux tube with arbitrary longitudinal plasma density. The gov-
erning equation of the fast kink body mode is derived and solved by analytical approximation and numerical methods.
Results. It is found that even a relatively small coronal loop expansion can have a significant and pronounced effect on the accuracy
of the plasma density scale height measurements derived from observation of loop oscillations.
Conclusions. To conduct more accurate and realistic magneto-seismology of coronal loops, the magnetic field divergence should be
taken into account.
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1. Introduction

Solar post-flare transversal coronal loop oscillations observed
by high-resolution EUV imager onboard the Transition Region
And Coronal Explorer (TRACE) have provided valuable data
to probe the plasma fine structure of the corona by imple-
menting magneto-seismological techniques (see Banerjee et al.
2007, for the latest review). These magnetoacoustic oscilla-
tions have been observed many times, e.g., Aschwanden et al.
(1999a), Aschwanden et al. (2002), Nakariakov et al. (1999) and
Verwichte et al. (2004) and have been identified as the stand-
ing fast kink mode from MHD wave theory developed by e.g.,
Edwin & Roberts (1983). This theory models a coronal loop as
a straight magnetic cylinder with different external and inter-
nal plasma densities, both of which are taken to be constants.
However, it is apparent from the wealth of many space-borne
observations that the structure of coronal loops may be more
complex than this simple equilibrium configuration.

Regarding plasma density in the solar atmosphere, it has
been shown using spectroscopic methods that the density de-
creases drastically from the photosphere to the corona, e.g.,
Vernazza et al. (1981) estimated that for a particular active
region the number density of electrons in the photosphere is
≈1014−1015 cm−3 and only ≈109 cm−3 in the lower corona.
Attempts to measure the degree of plasma stratification in
coronal loops using emission measure from EUV imager data
have provided some puzzling results. In younger active re-
gion loops there have been measurements of “super-hydrostatic”
scale heights that are up to four times higher than expected
(Aschwanden et al. 2000, 2001). On the other hand, loops have
been observed in older active regions that are close to hydrostatic
equilibrium with density scale heights that can be explained
by gravitational stratification (Aschwanden et al. 1999b). To

further complicate matters the plasma of “static” coronal loops
has also exhibited significant dynamic behaviour such as flows
(Brekke et al. 2001; Winebarger et al. 2001, 2002) and cooling
events (Schrijver 2001; Winebarger et al. 2003). It was shown
by Terra-Homem et al. (2003) that flows can significantly alter
the oscillation frequencies of coronal loops.

To investigate how plasma density stratification in coronal
loops affects the standing fast kink body mode, more realistic
MHD wave theory has been developed which can model a loop
as a magnetic cylinder with an inhomogeneous plasma density
equilibrium. Following on from the work of Hollweg & Yang
(1988), it has been shown that varying plasma density in the
radial direction results in a change of period and damping of
MHD waves (see e.g., Ruderman & Roberts 2002; Goossens
et al. 2002; Aschwanden et al. 2003; Van Doorsselaere et al.
2004; Arregui et al. 2007). Furthermore, inhomogeneity in the
longitudinal direction of coronal loops leads to changes in the
amplitude profiles of standing modes and the ratios of the peri-
ods of the fundamental mode to that of higher harmonics (see
e.g., Andries et al. 2005a,b; Goossens et al. 2006; Dymova &
Ruderman 2006a,b; McEwan et al. 2006; Arregui et al. 2007;
Erdélyi & Verth 2007; Verth et al. 2007). Applying this theory
to TRACE data of loop oscillations, attempts have been made
to estimate coronal density scale heights (see e.g., Andries et al.
2005a; Van Doorsselaere et al. 2007). However, the theory used
for this type of magneto-seismology assumed a constant mag-
netic field along loops. Since the kink speed in a homogeneous
loop is also proportional to the magnetic field strength, mag-
netic inhomogeneities will also affect the properties of these
oscillations as shown by Verth (2007) (referred to as V07 here-
after). It is very difficult to make direct measurements of mag-
netic field strength variation in the corona, although recently
there has been some progress made using spectropolarimetry by
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Lin et al. (2004). On average, the magnetic field strength is ex-
pected to decrease with height above the photosphere and the
results of Lin et al. (2004) seem to confirm this. The flux tube
interpretation of coronal loops suggests that most loops should
expand with height above the photosphere, since flux tube cross-
sectional area and magnetic field strength are inversely propor-
tional. This expansion, defined by

Γ =
ra

rf
(1)

where ra is the radius at the apex and rf is the radius at the foot-
point (see e.g., Klimchuk 2000), has been estimated for a num-
ber of loops. Analysing Yohkoh data, Klimchuk (2000) mea-
sured a median value of Γ ≈ 1.30 for soft X-ray loops. Using
TRACE data, Watko & Klimchuk (2000) measured mean val-
ues of 1.16 and 1.20 for nonflare and postflare EUV loops,
respectively. So far, potential and force-free magnetic field ex-
trapolations tend to predict larger loop expansions than those
observed (see e.g., McClymont & Mikic et al. 1994; Gary 1996;
Lopéz Fuentes et al. 2006; Klimchuk et al. 2000). There have
been a number of ideas proposed to explain this. One interpre-
tation is based on the fact that resolution of previous/current
imagers have simply not been sufficient to observe coronal
loop expansion accurately enough (DeForest 2007). However,
Lopéz Fuentes et al. (2007) strongly disagree with this interpre-
tation and suggest that the observed near constancy of loop width
is due to the magnetic field within loops being highly tangled.
Whatever the proposed magnetic structure of a coronal loop may
be, e.g., potential or a more complex current carrying tangled
magnetic field, this must also be consistent with its observed os-
cillatory properties. It is the purpose of this paper to look at the
simplest of these scenarios and predict the oscillatory properties
of a loop that expands with height above the photosphere em-
bedded in a potential field.

There have been previous studies of longitudinal and
transversal MHD wave propagation along thin magnetic flux
tubes with variable cross sectional area embedded in a non-
magnetic environment (see e.g., Roberts & Webb 1978; Spruit
1981; Rae & Roberts 1982). However, in the corona it is more
realistic to model a loop as an expanding magnetic flux tube em-
bedded in a magnetic environment. An initial study into the ef-
fect of a variable longitudinal magnetic field in a flux tube em-
bedded in a magnetic environment was done by V07. In that
paper Verth considered a thin flux tube where the magnetic field,
to zeroth order was taken to be purely axial, similar to the ap-
proximation of e.g., Roberts & Webb (1978). Interestingly, it
was found that the effect of magnetic field strength decreasing
with height has the opposite effect on amplitude profiles and
frequency mode ratios to that of gravitational density stratifica-
tion. It is the purpose of this paper to follow on from the work
of V07, to model an expanding flux tube (referred to hereafter
as the EFT model) so that the effect of the observable expansion
factor Γ, along with density stratification can be quantified.

2. Magnetic field equilibrium

2.1. 2D potential field

Using cylindrical coordinates (r, θ, z), a magnetic flux tube of
length 2L is modelled with arbitrary internal and external lon-
gitudinal densities ρi(z) and ρe(z). To model a magnetic field
equilibrium that decreases in strength with height above the pho-
tosphere, an expanding flux tube is constructed with rotational

Fig. 1. The equilibrium magnetic field of an expanding flux tube.

symmetry about the z-axis (see Fig. 1). Therefore it is required
that

B = Br(r, z)er + Bz(r, z)ez (2)

so that the solenoidal condition,

∇ · B = 0 (3)

is satisfied. Since the purpose of this paper is to investigate the
fast kink mode only, we neglect gravity and consider the plasma
to be cold. Hence, the magnetic field is only required to be in
equilibrium with itself. Choosing a potential field configuration,
magneto-static equilibrium demands that

∇ × B = 0, (4)

must also be satisfied. By the equilibrium field given in Eq. (2),
Eq. (4) is equivalent to

∂Br

∂z
− ∂Bz

∂r
= 0. (5)

For convenience we shall use the vector potential A, defined by

B = ∇ × A, (6)

which automatically satisfies condition (3). To find the required
form of the magnetic field B given by (2) that also satisfies con-
dition (4), we define A with an azimuthal component only such
that,

A =
ψ(r, z)

r
eθ. (7)

The vector potential described by (7) is convenient since ψ is
constant along field lines (see e.g., Browning & Priest 1982). In
terms of ψ, the components of B are now given by

Br = −1
r
∂ψ

∂z
(8)



G. Verth and R. Erdélyi: Effect of longitudinal magnetic and density inhomogeneity on transversal coronal loop oscillations 1017

and

Bz =
1
r
∂ψ

∂r
· (9)

The force-free condition described by Eq. (4) is now equivalent
to

∂2ψ

∂r2
− 1

r
∂ψ

∂r
+
∂2ψ

∂z2
= 0. (10)

By inspection, one possible solution to Eq. (10) is

ψ = (C1 +C2z) r2 +C3z + C4, (11)

where all Cn are arbitrary constants. The method of separation
of variables is also used to find a particular solution to Eq. (10).
Defining ψ = R(r) Z(z), Eq. (10) is equivalent to

d2Z
dz2
− κ2Z = 0 (12)

and

d2R
dr2
− 1

r
dR
dr
+ κ2R = 0, (13)

where κ2 is the separation constant. For the longitudinal domain
|z| ≤ L, we must have κ2 > 0 to have a finite bounded solution
in the radial direction. It must be noted at this point, that the
choice of κ2 > 0 is arbitrary and will determine the nature of the
solution. Here, we have chosen to normalise the r and z spatial
scales to loop half length L, therefore we define κ as

κ =
1
L
· (14)

The general solutions to Eqs. (12) and (13) with scaling (14) are

Z = C5 cosh
( z

L

)
+C6 sinh

( z
L

)
(15)

and

R = r
[
C7 J1

( r
L

)
+C8 Y1

( r
L

)]
, (16)

where J1 and Y1 are Bessel functions of the first and second kind.
Hence, combining Eqs. (11), (15) and (16) gives the general so-
lution to the force-free Eq. (10) as follows,

ψ= (C1 +C2z) r2 + C3z +C4 + r
[
C5 cosh

( z
L

)
+ C6 sinh

( z
L

)]
×

[
C7 J1

( r
L

)
+C8 Y1

( r
L

)]
· (17)

From the definition of Br given by Eqs. (8) and (17) it follows
that

Br =−C2r − C3

r
− 1

L

[
C5 sinh

( z
L

)
+C6 cosh

( z
L

)]
×

[
C7 J1

( r
L

)
+ C8 Y1

( r
L

)]
· (18)

It is required that Br is bounded on r and is an odd function about
z = 0 (see Fig. 1) so we must have C2 = C3 = C6 = C8 = 0. It is
also required that J1(r/L) does not change sign on the physically
relevant r domain. Since in Sect. 4, the aim is to describe only
linear perturbations of the tube, the required r range is from r = 0
to r ≈ r0, where r0 is the tube boundary. By observation r0/L �
1, therefore r0/L � j1,1 ≈ 3.83 (the first zero of J1). Hence on

the r domain of interest, J1 ≥ 0 as required. Let A1 = C5 C7,
then the expression for Br can be simplified to

Br = −A1

L
sinh

( z
L

)
J1

( r
L

)
· (19)

The chosen direction of the magnetic field shown in Fig. 1 re-
quires that Br ≥ 0 for z ≤ 0 which implies that A1 > 0. We now
check that the chosen form of ψ also gives the required func-
tional form of Bz. Using Eq. (9) and the well known relation that

Jν
′(x) = Jν−1(x) − ν

x
Jν(x) (20)

for all ν and x (see e.g., Abramowitz & Stegun 1965), it can be
easily calculated that

Bz = A2 +
A1

L
cosh

( z
L

)
J0

( r
L

)
, (21)

where A2 = 2C1. By inspection of Fig. 1, it is required that Bz

is a positive even function about z = 0 and is monotonically
increasing as z → ±L. Since r0/L � j0, 1 ≈ 2.40 (the first zero
of J0), we have that J0 > 0 on the physically relevant r domain.
Hence, Eq. (21) satisfies these all these requirements if A2 >
−A1/L. The constant C4 in Eq. (17) is not required for the present
study, therefore Eq. (17) can be simplified to

ψ =
A2

2
r2 + A1r cosh

( z
L

)
J1

( r
L

)
· (22)

2.2. Equilibrium quantities at the tube boundary

The purpose of this section is to derive explicit expressions for r,
Br and Bz at the tube boundary which depend on z only. These
expressions will then be used in the governing radial velocity
equation for the fast kink body mode in Sect. 4. The thin flux
tube parameter is defined as follows,

ε1 =
ra

L
· (23)

Denoting the r and z components of the magnetic field at the
footpoints as

Br(rf ,±L) = ∓Br, f (24)

and

Bz(rf ,±L) = Bz, f , (25)

where Br, f ≥ 0 and Bz, f > 0, one can then define the constants A1
and A2 in Eqs. (19) and (21) in terms of physical parameters as
follows,

A1 =
Br, f L

sinh (1) J1 (ε1/Γ)
(26)

and

A2 = Bz, f − Br, f J0 (ε1/Γ)

tanh (1) J1 (ε1/Γ)
· (27)

By observation, ε1 � 1 and we also assume that the small ex-
pansion observed by Klimchuk (2000) and Watko & Klimchuk
(2000) were of fully resolved loops so that Γ ≈ 1. Then the
Bessel function terms in Eqs. (26) and (27) can be approximated
to first order as

J0

(
ε1

Γ

)
≈ 1 (28)
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and

J1

(
ε1

Γ

)
≈ ε1

2Γ
· (29)

Since Γ ≈ 1, it follows that Br � Bz, so we must also introduce
the small parameter ε2 such that

ε2 =
Br, f

Bz, f
· (30)

By magnetic flux conservation,

Γ2 =
Bf

Ba
(31)

and relation (30) we have that

Γ2 ≈ Bz, f

Bz,a
· (32)

Using the expression for Bz given by Eqs. (21), (26), (27), def-
inition (30) and approximations (28), (29) in Eq. (32) gives the
following relation between the small parameters, ε1 and ε2,

ε2

ε1
≈

(
1 − Γ2

)
2Γ3

sinh(1)
1 − cosh(1)

· (33)

For Γ ≥ 1, Eq. (33) shows that the magnetic equilibrium has
ε2 < ε1. Since r0/L� 1 we also have that

J1

(r0

L

)
≈ r0

2L
· (34)

Using the approximations (28), (29), (34), Eqs. (22), (26), (27),
(33) and definition (30), ψ at the flux tube boundary is given by

ψ(r0, z) ≈ Bz, f r2
0

2

⎧⎪⎪⎪⎨⎪⎪⎪⎩1 +

(
1 − Γ2

)
Γ2

[
cosh

(
z
L

)
− cosh(1)

]
1 − cosh(1)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ · (35)

By the choice of vector potential (7), the magnetic surface de-
noting the boundary of the flux tube has a constant ψ value.
Using Eq. (35), at the loop footpoints the boundary value of ψ is
given by

ψ(rf , ±L) ≈ Bz, f r2
f

2
· (36)

Hence using Eqs. (35) and (36), we obtain an explicit expression
for the radius of the flux tube boundary as a function of z given
by

r0(z) ≈ rf

⎧⎪⎪⎪⎨⎪⎪⎪⎩1 +

(
1 − Γ2

)
Γ2

[
cosh

(
z
L

)
− cosh(1)

]
1 − cosh(1)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
− 1

2

· (37)

Similarly, Br and Bz at the tube boundary can also be described
explicitly as functions of z,

Br(z) ≈ −Bz, f

(
1 − Γ2

)
2Γ2

sinh
(

z
L

)
1 − cosh(1)

r0(z)
L

(38)

and

Bz(z) ≈ Bz, f

⎧⎪⎪⎪⎨⎪⎪⎪⎩1 +

(
1 − Γ2

)
Γ2

[
cosh

(
z
L

)
− cosh(1)

]
1 − cosh(1)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ · (39)

Fig. 2. Stratification of plasma density and inhomogeneous magnetic
field.

3. Linearising the MHD equations

The cold and ideal MHD equations are linearised by assuming
small perturbations of the magnetic field, b = (br, bθ, bz) about
the force-free magnetic equilibrium (2) and velocity perturba-
tions, u = (vr, vθ, vz) about a plasma in static equilibrium, result-
ing in the following system of equations,

μρ
∂vr

∂t
= Bz

(
∂br

∂z
− ∂bz

∂r

)
, (40)

μρ
∂vθ
∂t
= D‖bθ − μr

∂P
∂θ
, (41)

μρ
∂vz

∂t
= −Br

(
∂br

∂z
− ∂bz

∂r

)
, (42)

∂br

∂t
= −Br

r
∂vθ
∂θ
+
∂

∂z
(Bzvr − Brvz) , (43)

∂bz

∂t
= −1

r
∂

∂r
[
r (Bzvr − Brvz)

] − Bz

r
∂vθ
∂θ
· (44)

and

1
r
∂

∂r
(rbr) +

1
r
∂bθ
∂θ
+
∂bz

∂z
= 0, (45)

where in Eq. (41) operatorD‖ is defined as

D‖ ≡ Br
∂

∂r
+ Bz

∂

∂z
(46)

and P is the total perturbation to magnetic pressure,

P =
B · b
μ
· (47)

Note that Eqs. (40) and (42) have been simplified using Eq. (5).
From the equilibrium magnetic field shown in Fig. 1, it is clear
that perturbations normal to the surface of the tube will have

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809626&pdf_id=2
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both r and z components. From Eqs. (40) and (42), it follows
that

∂vz

∂t
= −Br

Bz

∂vr

∂t
· (48)

Since the equilibrium quantities only depend on r and z, we can
introduce the following Fourier decomposition

f (r, θ, z) = f̂ (r, z) ei(mθ−ωt) (49)

where f is any perturbed quantity, m is the azimuthal wave num-
ber (a positive integer) and ω is the angular frequency of the
oscillations. Then Eq. (48) becomes

v̂z = −Br

Bz
v̂r. (50)

Since Br � Bz, Eq. (50) shows the z component of the velocity
perturbation is only a small correction to the total perturbation.
Therefore, in the following analysis we shall concentrate pri-
marily on the dominant r component. Taking the time derivative
of Eq. (40), substituting Eqs. (43) and (44) and using the rela-
tion (50) results in the following equation which describes the
r component of plasma motion,

μρ

Bz

∂2vr

∂t2
=

∂2

∂z2

(
B2

Bz
vr

)
− ∂

2bz

∂r∂t

+
∂

∂z

{
Br

Bz

[
∂bz

∂t
+

1
r
∂

∂r

(
B2

Bz
rvr

)]}
. (51)

Equation (51) shows that we must know bz before we can find the
velocity perturbation vr. Taking the time derivative of Eq. (44)
and substituting Eqs. (40)–(42) and (45) results in the following
equation which describes the z component of the magnetic field
perturbation,

∂2bz

∂t2
= −1

r
∂

∂r

[
r

B2

μρ

(
∂br

∂z
− ∂bz

∂r

)]

+
Bz

μρ

1
r

[
D‖

(
∂

∂r
(rbr) + r

∂bz

∂z

)
+
μ

r
∂2P
∂θ2

]
, (52)

where B2 = B2
r+B2

z . Equation (52) shows that the z and r compo-
nents of the magnetic field perturbations are coupled but it will
be shown in the following section that the observed expansion
factor, Γ ≈ 1 and relations r0 � L and Br � Bz effectively
decouple these perturbations for the fast kink body mode.

4. Governing equation for fast kink body mode

The fast kink mode is essentially incompressible with bz � br.
In the thin flux tube limit, bz/br ≤ ε1, therefore the scaling
b̃r = ε1br is introduced. By Eq. (30), Br/Bz ≤ ε2, accordingly,
the radial magnetic field component is rescaled with Br = ε2B̃r.
Inside the tube, the characteristic scale in the radial direction
is r0 but outside the tube it is assumed to be L, therefore the
stretching coordinate ζ = ε1z is introduced in the axial direction
both inside and outside the tube. Consequently, the stretching
coordinate ξ = ε1r rescales the radial direction outside the tube.
This implies that the frequency both outside and inside the tube
becomes ω̃ = ω/ε1. Applying Fourier decomposition given by
Eq. (49) with m = 1 (the observed kink mode) and assuming
small tube expansion such that ε2 < ε2

1 , the r and z magnetic

perturbations are effectively decoupled and Eq. (52) can be ap-
proximated by

∂

∂r

(
r
∂b̂z

∂r

)
− b̂z

r
= 0 (53)

inside the tube and

1
ξ

∂

∂ξ

(
ξ
∂b̂z

∂ξ

)
+
∂2b̂z

∂ζ2
+

⎛⎜⎜⎜⎜⎜⎝ ω̃2

v2
A, e

− 1
ξ2

⎞⎟⎟⎟⎟⎟⎠ b̂z = 0 (54)

outside the tube, where v2
A, e = B2

z/(μρe). Note that the poten-
tial field relationship between Br and Bz shown in Eq. (5) has
also been used to simplify Eqs. (53) and (54). The solution of
Eq. (53), regular at r = 0 is

b̂z = Ai(ζ)r. (55)

Equation (54) is similar in form to that derived by Dymova &
Ruderman (2005) (for the case when Bz is constant) and can be
solved using separation of variables and an asymptotic expan-
sion near the tube boundary (see Dymova & Ruderman 2005,
for details), giving the solution outside the tube,

b̂z = Ae(ζ)r−1. (56)

The solutions for b̂z given by (55) and (56) can be substituted in
Eq. (51), giving the governing equation for radial velocity inside
the tube as

∂2

∂ζ2

(
Bzv̂r, i

)
+
∂

∂ζ

[
B̃r

Bz

1
r
∂

∂r
(
rBzv̂r, i

)]
+

(
ω̃

vA, i

)2

Bzv̂r, i = − iω̃
ε1

Ai (57)

and outside as

∂2

∂ζ2

(
Bzv̂r, e

)
+

(
ω̃

vA, e

)2

Bzv̂r, e =
iω̃
ε1

Ae

r2
· (58)

By inspection, we look for solutions to Eqs. (57) and (58) in the
following form,

Bzv̂r, i = Gi(ζ) (59)

and

Bzv̂r, e = Ge(ζ)r−2. (60)

Substituting Eqs. (59) and (60) in Eqs. (57) and (58), respec-
tively, results in

d2Gi

dζ2
+

1
r
∂

∂ζ

(
B̃r

Bz
Gi

)
+

(
ω̃

vA, i

)2

Gi = − iω̃
ε1

Ai (61)

and

d2Ge

dζ2
+

(
ω̃

vA, e

)2

Ge =
iω̃
ε1

Ae. (62)

Returning to the initial longitudinal z variable, to match solu-
tions (61) and (62) at the tube boundary r = r0 (where all quan-
tities are functions of z only), the continuity of b̂z and v̂r requires
that

Ae = Air
2
0 (63)

and

Ge = Gir
2
0. (64)
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Substituting Eqs. (63) and (64) into Eq. (62) and adding the re-
sulting equation to (61), one arrives at

G′′i +
1

2r0

(
Br

Bz
+ 4r′0

)
G′i

+

⎡⎢⎢⎢⎢⎢⎣
(
ω

ck

)2

+
1

2r0

(
Br

Bz

)′
+

(
r′0
r0

)2

+
r′′0
r0

⎤⎥⎥⎥⎥⎥⎦Gi = 0, (65)

where ′ ≡ d/dz and

c2
k =

2B2
z

μ (ρi + ρe)
(66)

is the fast kink speed. Dispensing with the i subscript notation
and substituting Eq. (59) into Eq. (65), the governing equation
for the fast kink body mode in terms of radial velocity at the tube
boundary is

(Bzv̂r)′′ +
1

2r0

(
Br

Bz
+ 4r′0

)
(Bzv̂r)′

+

⎡⎢⎢⎢⎢⎢⎣
(
ω

ck

)2

+
1

2r0

(
Br

Bz

)′
+

(
r′0
r0

)2

+
r′′0
r0

⎤⎥⎥⎥⎥⎥⎦ Bzv̂r = 0. (67)

In the case of a flux tube with constant Bz and arbitrary longitu-
dinal density stratification, Eq. (67) simply reduces to

v̂r
′′ +

(
ω

ck

)2

v̂r = 0 (68)

which is in agreement with Dymova & Ruderman (2005) and
Erdélyi & Verth (2007). The solutions to Eq. (68) have been ex-
tensively studied by Dymova & Ruderman (2005), Erdélyi &
Verth (2007) and Verth et al. (2007). Substituting the expres-
sions for equilibrium quantities from Eqs. (37)–(39), Eq. (67) is
equivalent to

f2(z) v̂r
′′ + f1(z) v̂′r + f0(z) v̂r = 0, (69)

where functions fn(z) are

f0(z) = a6 cosh2
( z

L

)
+ a7 cosh

( z
L

)
+ a8

+a9

[
μ(ρi + ρe)ω

Bz, f

]2

, (70)

f1(z) = sinh
( z

L

) [
a4 cosh

( z
L

)
+ a5

]
, (71)

f2(z) = a1 cosh2
( z

L

)
+ a2 cosh

( z
L

)
+ a3, (72)

and an are the following constants,

a1 = 8L2
(
Γ4 − 2Γ2 + 1

)
, (73)

a2 = −16L2
(
Γ4 − cΓ2 + c

)
, (74)

a3 = 8L2
(
Γ4 − 2cΓ2 + c2

)
, (75)

a4 = 6L
(
Γ4 − 2Γ2 + 1

)
, (76)

a5 = −6L
[
Γ4 − (c + 1)Γ2 + c

]
, (77)

a6 = 3
(
Γ4 − 2Γ2 + 1

)
, (78)

a7 = −2
[
Γ4 − (c + 1)Γ2 + c

]
, (79)

a8 = −
(
Γ4 − 2Γ2 + 1

)
, (80)

a9 = 8L2Γ4
(
c2 − 2c + 1

)
, (81)

with c = cosh(1).

5. Flux tube expansion with constant density

The solutions to Eq. (69) will depend on the parameter Γ and the
functional forms chosen for ρi and ρe in Eq. (70). Since previous
studies have quantified the effect of density stratification with a
constant magnetic field, it will be instructive here to study the ef-
fect of magnetic stratification with constant density. We know of
no analytical solution to equations of general type (69) when ρi
and ρe are chosen to be arbitrary constants. However, transform-
ing Eq. (69) to its canonical form

u′′ + f u = 0, (82)

where

f = f0 − 1
4

(
f1
f2

)2

− 1
2

(
f1
f2

)′
(83)

and

v̂r = u(z) exp

(
−1

2

∫
f1
f2

dz

)
, (84)

it is found that Eq. (82) with constant densities ρi and ρe can
be very closely approximated by the Halm equation (see e.g.,
Polyanin & Zaitsev 2003) where

f = fa

⎡⎢⎢⎢⎢⎢⎢⎣1 +
⎛⎜⎜⎜⎜⎜⎜⎝
√

fa
ff
− 1

⎞⎟⎟⎟⎟⎟⎟⎠
( z

L

)2
⎤⎥⎥⎥⎥⎥⎥⎦
−2

, (85)

fa = f (0) and f f = f (±L). The general solution to Eq. (82),
where f is described by Eq. (85), is

u(z) =
√
α2 + 1

× {
Cn cos

[
η arctan (α)

]
+ Dn sin

[
η arctan (α)

]}
, (86)

where Cn and Dn are arbitrary constants,

α = δ
z
L
, (87)

δ2 =

√
fa
ff
− 1 (88)

and

η =

√
fa
L
δ + 1. (89)

To find the standing mode solution to Eq. (82), it is required that

u(±L) = 0. (90)

Let n = 1, 2, 3, . . . correspond to the mode number. Then by
Eqs. (86) and (90), the dispersion relation is given by the follow-
ing transcendental equation,

η arctan (δ) =
nπ
2
· (91)

Dispersion relation (91) can be solved asymptotically, since for
Γ ≈ 1, the following approximations can be made,

fa ≈
(
ωn

ck, f

)2

(92)

and

δ2 ≈ Γ2 − 1, (93)
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Fig. 3. Frequency ratio ω2/ω1 against Γ. Solid line is numerically de-
rived from governing equation, Eq. (69) and the dashed line shows the
analytically derived relation given by Eq. (95).

where ck, f is the kink speed at the footpoints. Applying asymp-
totic approximations (92) and (93) along with Eqs. (89) to (91),
results in an explicit expression for the mode frequency,

(
ωn

ck, f

)2

≈ L√
Γ2 − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎜⎜⎝ nπ

2 arctan
(√
Γ2 − 1

)
⎞⎟⎟⎟⎟⎟⎟⎟⎠

2

− 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (94)

Hence by Eq. (94), the ratio of the first harmonic (n = 2) to the
fundamental mode (n = 1) squared is

(
ω2

ω1

)2

≈
π2 − arctan2

(√
Γ2 − 1

)
(π/2)2 − arctan2

(√
Γ2 − 1

) · (95)

Equation (95) shows that change in frequency ratio is purely de-
pendent on the loop expansion factor Γ. Hence by Eq. (95), for
a loop with constant density, the lowest order correction due to
magnetic stratification is

ω2

ω1
≈ 2

⎡⎢⎢⎢⎢⎢⎢⎣1 + 3
(
Γ2 − 1

)
2π2

⎤⎥⎥⎥⎥⎥⎥⎦ · (96)

Equation (96) clearly shows that the frequency ratio ω2/ω1 >
2 for an expanding magnetic flux tube with constant density.
Therefore, if magnetic field strength is decreasing with height
above the photosphere, this has the opposite effect to that of
density stratification (cf. Andries et al. 2005a), in agreement
with V07. The relationship between ω2/ω1 and Γ given by
Eq. (95) is compared with values derived numerically, by solv-
ing Eq. (69) using the shooting method (shown in Fig. 3). When
Γ = 1.3, the solutions only differ by a few percent, hence Eq. (95)
is a very reasonable analytical approximation of the frequency
ratio ω2/ω1.

Using Eq. (3) of V07 and the equilibrium magnetic field
given by Eq. (39) in this paper it can be shown that the fre-
quency ratio results with the purely axial field approximation
and EFT models are in excellent agreement. Hence the eigen-
values of the EFT governing Eq. (67) correspond to those of the
much simpler Eq. (3) in V07. However, with increasing mag-
netic stratification a difference becomes apparent in the ampli-
tude profiles (see comparison in Fig. 4). This would be rele-
vant if one wanted to attempt spatial magneto-seismology as
suggested by Erdélyi & Verth (2007) and Verth et al. (2007).
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Fig. 4. Amplitude profile of the 1st harmonic plotted against z (Γ = 1.3)
for the EFT (solid line) and V07 (dashed line) models.
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Fig. 5. Normalised shift of 1st harmonic anti-node plotted against Γ for
the EFT (solid line) and V07 (dashed line) models.

This difference is most clearly seen if one compares the anti-
node shift of the first harmonic. It was pointed out by V07 that
if the magnetic field becomes weaker towards the loop apex, a
useful magneto-seismological signature is the anti-node of the
1st harmonic since it shifts towards the loop apex (see Fig. 4
in this paper and Fig. 5 in V07). Normalised anti-node shift
ΔzAN/L, is plotted for the two models in Fig. 5. It can be seen
that the shift for the EFT model is actually greater than predicted
by V07. Quantifying this by example, if we take Γ = 1.3 and
L = 100 Mm, the EFT model and that of V07 predict shifts of
8.24 Mm and 5.50 Mm, respectively, a difference of 2.74 Mm.

6. Implications for magneto-seismology
and estimating coronal density scale heights

Interestingly, there have recently been measurements of fast
kink mode loop oscillations by O’Shea et al. (2007) and
De Moortel & Brady (2007) where ω2/ω1 > 2, which may
be explained by magnetic field divergence being the dom-
inant effect over density stratification. O’Shea et al. found
three examples of cool loop (temperature ≈0.25 MK) oscilla-
tions with harmonics in temporal series image data from the
Coronal Diagnostic Spectrometer (CDS) onboard the SOlar and
Heliospheric Observatory (SOHO). Of the three cases studied,
two both had ω2/ω1 ≈ 2.4. Using the EUV 171 Å passband

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809626&pdf_id=3
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809626&pdf_id=4
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809626&pdf_id=5
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(temperature ≈1 MK) of TRACE, De Moortel & Brady anal-
ysed fast kink oscillations in a twisted S-shaped post-flare loop
and identified the fundamental mode along with two higher har-
monics. However, what they interpreted as the 1st harmonic is
probably more consistent with the fundamental mode, as pointed
out by VNV07. If this is the case then the mean value of ω2/ω1
is 2.11 (see Table 1 in their paper). If the interpretation of
De Moortel & Brady is indeed correct, then the mean value
is 2.76 but either way, ω2/ω1 > 2. Collectively, these obser-
vations may be evidence of the importance of magnetic field di-
vergence in governing the properties of fast kink oscillations. In
specific relation to the model presented in this paper, it must be
pointed out that the twisted S-shaped loop studied by De Moortel
& Brady has a magnetic field structure that is far from potential.
To fully understand the oscillatory properties of loops of this
type, a more advanced study must be made using more general
force-free fields.

V07 pointed out that neglecting the effect of magnetic strat-
ification on loop oscillations can cause the overestimation of
coronal density scale height H. Assuming a constant mag-
netic field for two oscillating loops observed with the TRACE
171 Å passband, VNV07 estimated super-hydrostatic density
scale heights of H = 68 Mm and H = 109 Mm. In this pass-
band, hydrostatic loops should have H ≈ 50 Mm, therefore a
possible explanation of these estimated super-hydrostatic scale
heights is that magnetic field divergence was not taken into ac-
count. The loops in question were judged to be approximately
vertical to the photosphere and semi-circular. For a gravitation-
ally stratified loop of this type the density profile is given by

ρi(z) = ρi, f exp

⎡⎢⎢⎢⎢⎢⎣ − 2L
πH

cos

⎛⎜⎜⎜⎜⎜⎝ πz
2L

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦, (97)

where ρi, f is the internal footpoint density. Equation (69) is
solved numerically with the shooting method using the density
profile (97) with ρe taken to be proportional to ρi. Taking the
estimates of L and ω2/ω1 from VNV07, it is found that the
super-hydrostatic scale heights of 68 Mm and 109 Mm can be
reduced to the hydrostatic scale height with loop expansions
of only Γ ≈ 1.1 and Γ ≈ 1.5, respectively. Hence, even the
modest values of Γ measured by Watko & Klimchuk (2000) for
TRACE EUV loops (see Figs. 14 and 15 in their paper) could
prove very significant in determining an accurate value of H.

7. Conclusions

Since there is still much theoretical disagreement about the fine
structure of coronal loops, it is important that any proposed mod-
els can be tested against the observed oscillatory properties. The
MHD wave theory presented in this paper is an improvement on
previous magnetic cylinder models of loops, in that both lon-
gitudinal plasma density and flux tube cross-sectional area (in-
versely proportional to magnetic field strength) are allowed to
vary. It was shown in Sect. 6, that even the small loop expansion
factors observed may have a significant effect on their oscilla-
tions. Hence, to conduct more precise magneto-seismology of
the solar corona, magnetic field divergence should be taken into
account. In the future, it will also be instructive to develop MHD
wave theory which models loops with more general force-free
equilibria. There are important observational challenges too in
the field of coronal magneto-seismology. Since there have been
so few cases of higher harmonics analysed so far, a much larger
statistical study must be done before any firm conclusions can

be reached about loop fine structure through the implementation
of magneto-seismological techniques.
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