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Abstract: 

This work systematically studied morphology of nano- and microstructures in primary 

and secondary shear zones of machining chips produced with two different 

machining methods: conventional and ultrasonically assisted turning. Electron 

backscatter diffraction and transmission electron microscopy showed that chips had 

similar microstructures for both machining techniques. The nanostructure in 

secondary shear zones was less homogeneous than that in primary shear zones. In 

addition, a heavily deformed layer was formed in a sub-surface of Ti-15V-3Cr-3Al-

3Sn work-pieces, replicating the microstructure of secondary shear zones of the 

machining chips, and elongated nano-crystalline grains in this layer were aligned 

with a tangential direction of turning. 
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1. Introduction 

In the past decades, titanium alloys have gained extensive applications in the 

aerospace and biomaterial industries, primarily thanks to their excellent mechanical 

properties, corrosion resistance and biocompatibility. Apart from Ti-6Al-4V, which is 

the most prominent α+β titanium alloy in the market, metastable β-titanium alloys, for 

instance Ti-15V-3Cr-3Al-3Sn, attracted substantial attention of the aerospace 

industry thanks to their high tensile strength and better deformability compared to 

those of α or α+β alloys [1]. However, β-titanium alloys are notoriously hard to 

machine because of their low thermal conductivity and high chemical reactivity with 

tool materials [2] [3]. Therefore, an advanced technique, ultrasonically assisted 

turning (UAT), was employed to improve machinability of the Ti-15V-3Cr-3Al-3Sn 

alloy [4] [5] [6] [7] [8]. During UAT, a high-frequency vibration is imposed on the 

cutting tool [9] [10] [11] [12], offering a number of benefits to the machining process 

including lower cutting forces [13] and improved finish of machined surface [10].  

A number of researchers focused on machinability of titanium alloys [14] [15] [16], 

morphology of titanium alloy machining chips [17] [18] [19] [20] [21] [22] and 

numerical simulations of chip formation [23] [24] [25] [26] [27]; however, a very few 

studied the microstructure of machining chips, especially the nano-structure 

generated during the machining process. A systematic study of machining chips will 

help in the understanding of deformation characteristics of the materials exposed to 

different machining techniques. 

During a traditional machining process, a tool is forced into a surface of the 

machined work-piece separating a chip from the parent material due to shear 

deformation along a primary shear zone [28]. Generation of this zone involves 

severe strains localised in a narrow region, which may cause shear failure. In 

addition to the primary shear zone, friction between the formed chip and the tool’s 

rake face can result in a secondary shear zone [28] [29]. The schematic of primary 

and secondary shear zone with respect to the cutting force is illustrated in Fig. 1(a). 

In order to examine the shear strain introduced in the primary shear zone, the chips 

are modelled as parallel plates (Fig. 1(b)). The strain level is derived using the shear 

strain triangle shown in Fig. 1(c) [28]: 
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γ = AC
BD

= AD+DC
BD

= AD
BD

+ DC
BD

= cotφ + tan(φ− α) …Equation 1 

where γ represents the shear strain, 𝛼𝛼 is the tool rake angle (14o in this study) [9] 

[10] and 𝜙𝜙 is the shear plane angle, which is given by: 

𝐭𝐭𝐭𝐭𝐭𝐭𝝓𝝓 =
𝒕𝒕𝒐𝒐
𝒕𝒕𝒄𝒄
𝐜𝐜𝐜𝐜𝐜𝐜𝜶𝜶

𝟏𝟏−𝒕𝒕𝒐𝒐𝒕𝒕𝒄𝒄
𝐬𝐬𝐬𝐬𝐬𝐬𝜶𝜶

 … Equation 2 

where 𝑡𝑡0 is the depth of cut, and 𝑡𝑡𝑐𝑐 is the chip thickness after machining. 

As a result of generation of highly localised strains, the microstructures at the shear 

zones are distinct from those of the parent material. This study aims to reveal the 

character of microstructures in the primary and secondary shear zones employing 

machining chips of Ti-15V-3Cr-3Al-3Sn produced with conventional turning (CT) and 

ultrasonically assisted turning (UAT). 

2. Materials and methods 

Machining chips were obtained with conventional and ultrasonically assisted turning; 

both machining operations were performed without coolant or lubricant to avoid 

contamination. The turning was carried out with a cutting speed of 10 m/min, a feed 

rate of 0.1 mm/rev with a cutting depth of 100 μm. Turning was performed for 500 s 

for each experiment run. Machining tools were made of cemented carbide coated 

with titanium-aluminium-nitride layer and with a nose radius of 0.8 mm. The cutting 

tool was normal to the work-piece axis and the effective rake angle was ~14°. In 

order to circumvent the influence caused by the wear of machining tool, a new tool 

was used for each experimental run. For the UAT process, the vibration of the 

machining tool was monitored by a non-contacted Polytec laser vibrometer (Model: 

OFV-3001). The imposed vibration was imposed in a tangential direction and its 

frequency was ~20 kHz. A detailed experimental setup of UAT was described 

elsewhere [9] [10].  

Continuous chips were collected in form of a curl, as shown in Fig. 2. To avoid 

substantial microstructural difference of the examined chip, the chip near the 

beginning or the end of the test was not used in this study. In order to reveal the 

cross-sectional microstructure, the chips were mounted edge-on in conductive 
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Bakelite, and a bulk metal sample was also prepared along the cross-section. 

Samples were ground on progressively finer silicon carbide papers, followed by 

polishing with 6 μm and 1 μm diamond solutions, and finished with a final polish 

using a mixture of colloidal silica and hydrogen peroxide (20%) to remove stresses 

induced during mechanical grinding. The thickness of chips was measured on optical 

micrographs using ImageJ. For both machining processes, typically 20 

measurements were performed to determine the average thickness of the chips. 

Electron backscatter diffraction (EBSD) was performed using a LEO 1530 VP field 

emission gun scanning electron microscope (FEG-SEM) equipped with an HKL 

Nordlys F high-speed EBSD camera. Site-specific transmission electron microscopy 

(TEM) specimens were lifted out by using an FEI Nova 600 Nanolab Dual-Beam 

Focused Ion Beam (FIB) SEM, and the non-site-specific TEM samples were 

prepared by mechanical polishing to 50 µm followed by argon ion milling (gun current 

of 2.6 mA, voltage of 7 kV and angle of ±10°). The TEM analysis was conducted 

using JEOL 2000FX operated at 200keV. 

3. Results and discussion 

3.1 Ultrafine grained microstructure in CT machining chips 

A typical optical micrograph of a chip’s cross-section of conventionally turned Ti-15V-

3Cr-3Al-3Sn is shown in Fig. 3. The primary and secondary shear zones appear 

darker compared with surrounding matrix (as indicated by squares A and B in Fig. 3). 

A SEM image of the cross-section of a CT Ti-15V-3Cr-3Al-3Sn (Fig. 4) shows finer 

microstructures in the primary and secondary shear zones, marked by arrows A and 

B in Fig. 4, with clear boundaries between the shear zones and segment areas, 

similar to those reported elsewhere [30] [31]. However, no detailed microstructure 

characterisation was reported in the literature to illustrate structural features in these 

shear zones. 

To understand the evolution of shear zones further, both SEM-EBSD and TEM were 

performed. The former was carried out in a region containing shear bands from 

primary shear zones, as shown in Fig. 5. As indicated in an inverse pole figure (IPF) 

orientation map (Fig. 5b), the segments adjacent to the shear bands have the same 
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orientation (same colour), which implies that the segments are likely to belong to the 

same grain before the chip was separated from the bulk. An EBSD IPF orientation 

map (Fig. 6a) of another primary shear region exhibits shear bands formed 

continuously across two grains with misorientation of about 30° (Fig. 6b). This 

suggests that during the primary-shear-zone formation, catastrophic shear failure 

occurred at a very narrow shear zone leaving the adjacent matrix largely undeformed. 

In this study, the depth of cut (𝑡𝑡0) is 100 μm, and the measured chip thickness (𝑡𝑡𝑐𝑐) is 

approximately 135 ± 4 μm. Thus, according to Equation 1 and 2, the shear angle (𝜙𝜙) 

is ~41.2o and the imposed shear strain is approximately 1.67. Significant grain 

refinement was reported for ECAP-processed pure Ti with imposed shear strain of 

0.6 [32]. Therefore, with the shear strain of 1.67, large grain refinement is expected 

in Ti-15V-3Cr-3Al-3Sn. 

In this study, severe plastic deformation at the primary shear zones impeded the 

quality of diffraction patterns. As a result, no information on grain morphology and 

orientation could be obtained with EBSD. Therefore, a site-specific TEM sample, 

containing one primary shear band and the surrounding matrix as indicated by 

square A in Fig. 3, was lifted out to reveal the microstructure of shear bands. 

Figure 7a shows a TEM micrograph of the primary shear zone in CT-produced Ti-

15V-3Cr-3Al-3Sn chips. A ring-shape corresponding selected area diffraction (SAD) 

pattern confirms that the β phase in the central band is nano-crystalline. The average 

grain size of this nano-crystalline region is ~80 nm. The mechanism for generation of 

nano-crystalline grains in the primary shear zone involves formation of dislocation-

cell structures. Usually, the dislocation cells form in the early stages of plastic 

deformation. With the accumulation of misorientation between neighbouring 

dislocation cells, the cells transform into the final fine-grain structures [33]. Estrin et 

al. [34] developed a constitutive model, which applies to the dislocation cells, 

addressing sufficiently large strains. The model assumes that the average 

dislocation cell size, 𝑑𝑑 , is inversely proportional to the square root of dislocation 

density, 𝜌𝜌: 

𝒅𝒅 = 𝑲𝑲
�𝝆𝝆

 … Equation 3 
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where 𝐾𝐾 is a constant. It is known that during the machining process, a large amount 

of dislocations are generated because of the imposed high shear strain in the 

primary shear zone, and hence the formation of nano-crystalline grains. 

There is a sharp boundary between the nano-crystalline region and the adjacent 

matrix, which is consistent with our observations with SEM; this interface at higher 

magnification is shown in Fig. 7b. A SAD pattern taken from the adjacent matrix 

comprises a regular spot pattern indicating a large grain size. No grain refinement or 

dislocations were found in the adjacent matrix. This finding proves that the high level 

of shear strains are only localised at the narrow primary shear zone and have a 

negligible effect on the surrounding matrix. The sharpness of the shear deformation 

region was also observed in face-centred cubic (FCC) metals, e.g. copper, with 

quick-stop optical micrography during machining [35].  

The microstructure of a secondary shear zone was observed in a TEM sample lifted 

out from the area indicated by square B in Fig. 3. In contrast to the primary shear 

zone, the secondary shear zone consists of two distinct layers: layer A near the tool 

tip-chip interface and layer B further away from the tool tip (Fig. 8a). At higher 

magnification, a nano-crystalline microstructure of layer A is shown in Fig. 8b; the 

corresponding SAD has a ring pattern. The average grain size in this region is 

approx. 80 nm. Below the nano-crystalline area (layer A), layer B contained 

elongated grains (marked with a circle in Fig. 8c). Compared to Fig. 8b, the grains in 

Fig. 8c appear larger, with an average grain size of ~150 nm.  

A comparison with the primary shear zone (Fig. 7) demonstrates that the nano-

structure region in the secondary shear zone (Fig. 8) is relatively wider with 

heterogeneous grain size distribution. This phenomenon can be explained with the 

aid of finite-element modelling of similar microstructures formed in carbon steel chips 

[36]. The study suggested that the effective strain gradually attenuated with an 

increasing distance from the tool tip-chip interface, since the material near that 

interface might be subjected to friction-induced deformation followed by shearing in 

the primary shear zone [36]. Therefore, the grain refinement effect is more significant 

near the chip surface, and bigger and elongated grains were observed away from 

the chip surface. 
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3.2 Microstructure of UAT Ti-15V-3Cr-3Al-3Sn chips 

An optical micrograph of Ti-15V-3Cr-3Al-3Sn chip obtained with UAT (Fig. 9) 

demonstrates that its cross-sectional microstructure is similar to that of CT chips. 

Clear boundaries could also be observed between the shear zones and the 

surrounding matrix. It is noted that the thickness of the UAT chip is ~110 ± 8 µm, 

less than that of the CT chip (~135 ± 4 µm). Using Equation 2, the calculated shear 

plane angle is ~49.2o. It is known that a larger shear-plane angle results in a smaller 

shear-plane area and hence a lower chip-formation shear force, which facilitates the 

machining process [28]. This result mutually corroborates with the previous studies 

carried out with Ti-15V-3Cr-3Al-3Sn [9] [10] [11], according to which the measured 

cutting forces during UAT were observed to reduce in excess of 70% compared with 

CT. In addition to reduced cutting force, the improved surface quality also benefits 

from the lower friction in UAT [10].  

Compared with CT, the increase of the shear plane angle for UAT is attributed to the 

reduction of friction between the machining tool and the chips [37]. The reduced 

friction during UAT process can be explained based on the fact that due to a high-

frequency vibration subjected to the tool, the elastic-plastic behaviour of the titanium 

alloy is changed, i.e. quasi-viscous friction occurs in the tool tip-chip interface [10] 

[38]. Because of the acoustic softening effect, the critical static shear stress for 

plastic deformation is reduced under ultrasonic excitation [39]. In addition, another 

cause of the reduced friction may be due to the increase in temperature in UAT chip 

during processing [40]: the yield strength of the material at the tool tip-chip interface 

decreased due to the hot softening effect. 

A SEM-EBSD orientation map showing the cross-sectional microstructure of the UAT 

chip is presented in Fig. 10. According to Equation 1, the shear strain in the primary 

shear zone is ~1.57, lower than that in the CT machining chips but still high enough 

to refine the grains in the narrow region. The TEM micrograph (Fig. 11a) confirms 

the formation of ultrafine grains in the primary shear zone for the UAT chips. 

Compared with CT, the most distinguishable difference in the primary-shear-zone is 

the larger grain size in UAT chip: the average grain size is ~110 nm. In addition, the 

ultrafine-grain region in the UAT chip was less homogeneous than the CT one: some 

grains of size ~180 nm were found, as shown in Fig. 11b.  
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A comparison between the optical micrographs of CT and UAT chips (Fig. 3 and Fig. 

9) indicates that the thicknesses of the secondary shear zones for the CT and UAT 

chips are similar: both of them are ~10 µm. Fig. 12 shows the TEM micrograph of the 

secondary shear zone in the chip produced by UAT. It reveals that ultrafine grains 

also formed during UAT process, however, due to the lower frictional force, the grain 

size is larger than that in the CT chips, moreover some grains of size ~200 nm were 

observed, as indicated by circles.  

3.3 Microstructure of work-piece subsurface  

It is known that a secondary shear zone is a surface, where chips are stripped off 

from a work-piece. Therefore, a sub-surface microstructure of the work-piece is 

supposed to be identical to that of the secondary shear zone [41].  

A SEM micrograph of the CT work-piece surface (Fig. 13a) exhibits a deformation 

layer of ~5 µm on the sub-surface. Here, two layers with different grain sizes can be 

identified marked as Layers A and B in Fig. 13a. This result is consistent with 

observations in the TEM micrograph of the CT-produced chip (Fig. 8a). Figure 13(b) 

confirms that the deformation layer has a nano-crystalline microstructure and a clear 

boundary separating a heavily deformed region from that with the original 

microstructure. At higher magnification, it is obvious that the grains are elongated 

along the turning tangential direction in the nano-crystalline region (Fig. 13c). A ring-

shape SAD pattern with six strong spots implies that the grains in this nano-

crystalline zone have preferred orientation in <110> direction parallel to the turning 

tangential direction. 

The cross-sectional microstructure of the UAT work-piece subsurface is presented in 

Fig. 14. A similar severely deformed layer of ~5 µm in thickness was produced 

during UAT, within which two layers with different grain sizes can be observed.  

4. Conclusions  

In this study, the microstructures of Ti-15V-3Cr-3Al-3Sn chips produced with 

conventional and ultrasonically assisted turning techniques were investigated. The 

major conclusions are: 
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• The primary shear zone in CT chips consists of a homogeneous nano-

microstructure with clear boundaries with the surrounding undeformed matrix. 

• The ultrafine-grain region in the secondary shear zone for CT process is less 

homogeneous than that in the primary shear zone due to the effective strain 

attenuation. 

• As a result of reduced frictional force, machining chips produced by UAT 

demonstrate a larger shear-plane angle and lower shear strain. Larger grains 

were observed in the primary and secondary shear zones.  

• A heavily deformed layer with depth of about 5 μm was formed at the surface 

of the machined bulk material replicating the microstructure of the secondary 

shear zone of the machining chips. Its nano-crystalline grains were equiaxed 

close to the surface and were elongated along the turning tangential direction 

~1 or 2 µm away from it. 
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Fig.1 (a) Schematic of formation of primary and secondary shear zone; R is the resultant force, FX is 
the main cutting force and FY is the feed force (after [13]), (b) the parallel plate model of chips and (c) 

shear strain triangle [28]. 

 
Fig. 2 Collected Ti-15V-3Cr-3Al-3Sn chips 

 
Fig.3 Optical micrograph of CT Ti-15V-3Cr-3Al-3Sn chip showing primary (A) and secondary (B) 

shear zones 
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Fig.4 SEM micrograph of CT Ti-15V-3Cr-3Al-3Sn chip cross-section: (A) primary shear zone; (B) 

secondary shear zones 

 
Fig.5 Band contrast image (a) andIPF orientation map(b) of CT-producedTi-15V-3Cr-3Al-3Sn 

chip(The inset is the colour scheme of the corresponding orientation map.) 

 
Fig. 6 (a) SEM-EBSD IPF orientation map of CT-producedTi-15V-3Cr-3Al-3Sn chip (The inset is the 

colour scheme of the corresponding orientation map.) (b) Misorientation profile from point A to B in (a) 
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Fig.7 TEM micrographs of CT-produced Ti-15V-3Cr-3Al-3Sn chip at cross-section of primary shear 
zone (a) with inset showing SAD pattern taking from nano-crystalline region and interface between 
nano-crystalline zone and adjacent matrix (b) (The inset in (b) is the diffraction pattern of the matrix; 

the beam direction is [𝟏𝟏𝟏𝟏�𝟑𝟑]). 

 
Fig.8 TEM micrographs of CT-produced Ti-15V-3Cr-3Al-3Sn chip in cross-section of secondary shear 
zone: (a) low magnification; (b) nano-sized grains near interface (layer A); (c) elongated grains away 

from the interface (layer B). 

 
Fig.9 Optical micrograph of cross section of UAT-produced Ti-15V-3Cr-3Al-3Sn chip 
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Fig.10 Band contrast image (a) and IPF orientation map (b) of UAT-produced Ti-15V-3Cr-3Al-3Sn 

machining chip (The inset is the colour scheme of the corresponding orientation map). 

 
Fig.11 TEM micrographs of the primary shear zone in UAT-produced Ti-15V-3Cr-3Al-3Sn chip (a) 

nano-structure region and (b) individual large grains 

 

Fig.  12 TEM micrograph of the secondary shear zone in UAT-produced chip 
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Fig.13 Deformed layer of CT-produced Ti-15V-3Cr-3Al-3Sn work-piece surface: (a) SEM; (b) TEM; (c) 
bright-field image of nano-crystalline grains; (d) corresponding dark-field image showing grains with 

one set of <110> parallel to turning tangential direction. 

 

Fig. 14 Severely deformed layer of UAT-produced Ti-15V-3Cr-3Al-3Sn work-piece subsurface 
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