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Abstract: Using a statistical approach, the magnetization and the initial susceptibility for a 
one – dimensional chain of a dilute ferromagnetic fluid have been investigated. Our 
assembly consisted of an N – particle chain with N/3 non - interacting systems. We have 
studied three distinct cases: case 1 with randomly oriented easy axis of the particle 
assembly and the applied magnetic field is parallel to the chain. We found that the initial 
susceptibility follows Curie – Weiss behavior with positive ordering temperature To that 
does not depend on the anisotropy constant K of the particles. In case 2, the applied field is 
perpendicular to the chain with randomly oriented easy axis. In this case, we found an 
antiferromagnetic transition with no dependence on K. In case 3, when the easy axis is 
fixed at an angle ξ  relative to H, we found that whether H parallel or perpendicular to the 
chain there is an interplay between ferromagnetic-like and antiferromagnetic-like behavior, 
depending on K, particle separation within the system and the angleξ . 
PACS: 75.30.Gw, 47.65.Cb, 75.50.Gg, 75.50.Ee 
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Introduction 

Many scientists have been interested in 
studying the magnetic behavior of the 
magnetic fine particle systems in liquid and 
solid states [1–4]. Many different models 
have been introduced to study the magnetic 
behavior analytically or numerically. Morup 
[5] showed that the magnetic interaction leads 
to spontaneous ordering, and he was able to 
give a good description of the magnetic 
properties above the ordering temperature. 
The effect of orientation texture has been 
considered analytically by Chantrell et al. [6] 
and numerically be Raikher [7]. Odeh et al. 
[8] used the Dimer model and found that the 
magnetic behavior of ferro-fluids depends on 
the direction of the external magnetic field 
with respect to the particle chain. Ayoub et 
al. [9] suggested interactions other than the 

dipole – dipole interaction to explain the 
Curie – Weiss behavior for a three - 
dimensional Dimer model. Smirnov and 
Komogortsev [10] used the generalized SW 
model [11, 12] in order to numerically 
investigate the magnetization curves of an 
ensemble of randomly oriented ferromagnetic 
single-domain nanoparticles. They discussed 
the possibility of estimating the ratio of the 
uniaxial anisotropy energy to the total 
magnetic anisotropy energy at low fields. For 
the case of transition between different 
symmetries of local magnetic anisotropy 
energy, they suggested that a more 
complicated form of nonlinear variations of 
the magnetic properties must be considered. 
A hint of possible ferromagnetic transition 
was shown experimentally by Mamiya et al. 
[13]. They have conducted their experiments 
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on strongly interacting Fe3N ferrofluids. 
Magnetic properties of two-dimensional 
layers of interacting nanoparticles with 
random anisotropy were calculated using 
Monte Carlo simulations [14]. The model 
refers to thin granular antiferromagnetic 
films. The effect of shape anisotropy on 
magnetic properties of ferrofluids has been 
calculated [15]. Two particle interactions 
were considered, and it was found that the 
anisotropy plays a major role in determining 
the magnetic state.  

In this paper, we will use a statistical 
mechanical approach to investigate the effect 
of anisotropy energy dominated by the dipole 
– dipole interaction on the initial 
susceptibility of a ferro-fluid chain. We will 
consider an assembly consisting of N single 
domain fine magnetic particles constrained to 
move in one dimension. We will propose a 
three particle interaction that we shall call the 
Trimer model. In the Trimer model, the 
particles are approximated to a set of N/3 
independent systems. Each system consists of 
three interacting identical spherical particles. 
Each particle has an average magnetic dipole 
moment µ  which is randomly oriented and 
each particle has an easy axis. We will 
investigate three distinct configurations. The 
first two are with randomized easy axis and 
applied field H parallel or perpendicular to 
the assembly. The last case is with a fixed 
orientation of the easy axis and H parallel or 
perpendicular to the assembly. The first two 
cases are applicable for the ferromagnetic 
fluids, while the third is applicable for a solid 
matrix. 

Results and Discussion  
Consider an assembly of N/3 systems; the 

total partition function is given by:  
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where Z is the partition function for a single 
system. A single system is consisting of three 
interacting particles. The single system 
partition function is given by:  
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The integral is to be taken over the volume 
phase space Γd . The total energy ET of our 
system can be represented as:  

0 ,T p p aE E E E−= + +      (3) 

where E0 is the external field dipole 
interaction energy, Ep-p is the total dipole – 
dipole interaction energy among the particles 
of a single system and Ea is the anisotropic 
energy of the system. The external energy is 
given by:  
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where iθ  is the angle between the direction 
of the external applied magnetic field H and 
the magnetic dipole moment of each particle 
within the single system. The dipole – dipole 
interaction energy is given by: 
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where iµ  and jµ  are the dipole moments of 
particle i and particle j, respectively and rij is 
the separation between the two particles. The 
anisotropy energy is given by: 

∑
=

=
3

1

2sin
i

ia KVE β ,       (6) 

where K, V and iβ  are, respectively, the 
anisotropy constant, the volume of each 
particle and the angle between the magnetic 
dipole moment of the particle and its easy 
axis.  

The magnetization M of the system can be 
calculated using the equation: 

H
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The initial susceptibility of the system can 
be calculated as: 

H
M
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limχ  .      (8) 

Now, we will discuss in detail each of the 
three cases mentioned above. We will use 
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Eq.7 to calculate the magnetization and Eq. 8 
to calculate the susceptibility.  

Parallel Configuration 

In this case the applied magnetic field is 
parallel to the chain axis (Fig. 1). In the limit 

that the particle – particle interaction energy 
and the anisotropy energy are very small, one 
can expand the exponential term in the 
partition function as: 
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In Eq. 9, 1x  is the separation between the 

first and the second particles, while 2x  is the 
separation between the first and the third 
particles. Performing the necessary 
calculations, the initial susceptibility for the 

system in the limit 1<=
Tk

H

B

µα  is obtained 

having the following expression:  
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where fx1  and ix1  are the maximum and 
minimum separation between the first and the 
second particles. fx2  and ix2  are the 
maximum and minimum separation between 
the first and the third particles. The function 
L1 is defined as: 
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By comparing Eq. 11 with the well-known 

Curie-Weiss law
oTT

C
−

=χ , one can obtain 

the following expressions for the constant C 
and the ordering temperature oT : 
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oT does not depend on the anisotropy 
constant. Eq. 11 suggests a ferromagnetic 
behavior of the system. Therefore, a 
ferromagnetic state will exist in this type of 
configuration. Moreover, a three - body 
interaction leads to the same behavior as for a 
two - body interaction. Similar magnetic 
behavior has been found by Odeh et al. [8] 
and Obeidat et al. [15] for the Dimer model.
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FIG. 1. Parallel configuration: Trimer model in a parallel applied magnetic field. The angles θ and ϕ are 

the polar and the azimuthal angles of the vector µ. The angles β and ψ are the polar and the azimuthal 
angle of the easy axis E. 
 

Perpendicular Configuration 

Fig. 2 shows the second case, where the 
applied magnetic field is perpendicular to the 
chain. In this case, the interaction energy is 
given by: 
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where 1y  is the separation between the first 
and the second particles, while 2y  is the 
separation between the first and the third 
particles. The functions 1 2,q q  and 3q  are 
given by: 
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We have calculated the initial 
susceptibility by applying the same 
assumption as above ( 1<α ), and we have 
found that:  
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In this form, the ordering temperature is 
given by: 
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Here, U is the same function as for the 
previous case. Eq. 18 and Eq. 19 show that 
the initial susceptibility and the ordering 
temperature do not depend on the anisotropy 
constant. However, in this case, the ordering 
temperature oT  has a negative sign and its 
magnitude is half that of the parallel case. 
The negative sign of the ordering temperature 
suggests an anti-ferromagnetic behavior of 
the system. Therefore, an antiferromagnetic 
state exists for such configuration. Also, our 
results indicate that the system has the same 
behaviour as for the two body interaction [8, 
15]. 

 
FIG. 2. Perpendicular configuration: Trimer model in a perpendicular applied magnetic field. The angles 

have the same meaning as in Fig. 1. 
 

Easy Axis is Fixed Relative to the Applied 
Magnetic Field  

As a last case, we will assume that the 
easy axis of the fine magnetic particles has a 
fixed orientation with respect to the external 
magnetic field. Fig. 3 shows the parallel 
applied magnetic field with respect to the 
assembly. The angle between the field and 

the easy axis for each particle is considered 
fixed atξ . Using the same approximations as 
before, we have calculated the ordering 
temperature and found that: 
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As can be seen form Eq. 20, the ordering 
temperature depends on the anisotropic 
constant K and the angle between the easy 
axis and the applied fieldξ . The magnetic 
behavior of the system interplays between 
ferromagnetic and antiferromagnetic states.  

Under the same condition, we have 
calculated the ordering temperature when the 

applied magnetic field is perpendicular to the 
chain. We found that the initial susceptibility 
and the ordering temperature depend on the 
anisotropic constant K. Our results of the 
ordering temperature is:  
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FIG. 3. Trimer model with fixed easy axis in a parallel applied magnetic field. The angles have the same 

meaning as in Fig. 1. 
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In Eq. 21, an antiferromagnetic state or a 
ferromagnetic state can be established 
depending on the parameters U, K and the 
angleξ . In case of 2

πξ = , the ordering 

temperature is negative and an anti-
ferromagnetic state is possessed by the 
system which reduces to case 2. 

Table 1 shows the calculated results of the 
ordering temperature for Fe3O4. We have 
taken the average diameter to be 7.4 nm and 
the surfactant layer to be 2 nm. In the Table, 
the calculated values have been compared 
with the experimental values obtained by 
Popplewell et al. [3] and the calculated values 
for the Dimer model using expressions 
obtained by Obeidat et al. [15]. One can see 
that our model has much better results than 
those of the two - body particle interaction. 
TABLE 1. The calculated values for the 

ordering temperature compared with the 
experimental values (Ref. [3]) and the 
calculated values from the expression 
obtained in Ref. [15] 

Packing fraction 0.03 0.05 0.07 

Trimer model 19 32 45.4

Dimer model 
Ref. [15] 11.37 13.26 15.5

O
rd

er
in

g 
Te

m
pe

ra
tu

re
 

Exp. Values 
Ref. [3] 19 38 48 

Conclusion 
We have studied a statistical assembly 

consisting of a chain of N identical spherical 
particles each with a magnetic moment µ  

and a preferred easy magnetization axis. Our 
approach was carried out by considering three 
- body magnetic interactions (Trimer model). 
We have investigated three different cases. In 
cases 1 and 2, we have assumed a randomly 
oriented easy axis with the applied magnetic 
field parallel to the chain in case 1 and 
perpendicular to the chain in the second case. 
Our results for case 1 showed that a transition 
into ferromagnetic state can occur, where the 
ordering temperature was found to be 
positive. In case 2, we found that an 
antiferromagnetic state exists with negative 
ordering temperature. In the third case, where 
we assumed that the easy axis has a fixed 
direction relative to the applied magnetic 
field, our calculations showed that whether 
the applied magnetic field is parallel or 
perpendicular to the chain, there is a presence 
of both ferromagnetic and antiferromagnetic 
states depending on the anisotropy constant 
K, the particle separations through the 
parameter U and the orientation of the easy 
axis relative to the applied fieldξ . Moreover, 
one can adjust the parameters ξ  and U in a 
solid matrix and predict the magnetic state. 
The calculated ordering temperature for 
Fe3O4 shows much better values than those of 
the Dimer model. 
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