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We study the effect of a magnetic field on Dirac fermions in graphene subject to a scalar potential
oscillating in time. Using the Floquet theory and resonance approximation, we show that the energy
spectrum exhibits extra subbands resulted from the oscillating potential in addition to quantized
Landau levels. It is found that a current density can be generated in x and y-directions that is
strongly dependent on the magnetic field and potential. Our numerical analysis show that the
energy spectrum possesses a symmetry and the current density oscillates with different amplitudes
under various conditions.
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I. INTRODUCTION

Graphene is one of the most two-dimensional materials that received a huge study starting from the first discovery in
2004 [1]. This comes because such a material possesses incredible properties, either electric, mechanical, or optics [2].
Just to mention, electrons in graphene have a very great speed and behave like massless Dirac fermions. Graphene
has a linear dispersion relation in the energy spectrum [3] and high mobility [4]. However, the absence of a gap
causes a delay in finding suitable applications for graphene in the industry. It turns out, however a gap is needed to
control the flow of the charge carriers in systems based on graphene. This Dirac gap can be opened using a variety of
experimental methods [5]. Due to the sublattice symmetry breakdown, the greatest energy gap might be 260 meV,
as proven in the experiment [6]. It’s worth noting that changing the experimental technique changes the value of
the energy gap. Controlling the structure of the graphene-ruthenium interface has been established as one of the
experimental ways of opening a gap [7]. Furthermore, an energy gap has been detected in graphene grown epitaxially
on a SiC substrate [6]. In addition, it has been theoretically established that an energy gap can be closed using a
local strain and/or a chemical approach [8–10].

On the other hand, quantum transport in periodic-driven systems is a crucial topic for device and optical applications
as well as for academic purposes. Extra sidebands in the transmission probability are caused by electrons exchanging
energy quanta carried by the oscillating field, as described by [11, 12]. With this respect, the standard model is
a time-modulated scalar potential in a finite region of space, studied experimentally [13] by showing evidence of
photon-assisted tunneling in superconducting films under microwave fields. Theoretically, the first explanation for
these experimental findings was reported in [14]. The recent upsurge in theoretical analysis of the influence of time-
dependent periodic electromagnetic fields on electron spectra was driven by the growing experimental interest in
studying optical features of electron transport in graphene under intense laser beams [15]. Laser beams have recently
been shown to change the electron density of states and, as a result, electron transport properties [16]. Subharmonic
resonant enhancement was seen in graphene after electron transport was induced by laser irradiation [17]. Recent
research [18] has verified that an applied oscillating field can result in an effective mass or, in other words, a dynamic
gap. A Josephson-like current was anticipated for numerous time-dependent scalar potential barriers placed on a
monolayer of graphene [19]. It is shown that the electron spectrum of graphene superlattices created by static one-
dimensional periodic potentials is analogous to the spectra of Dirac fermions in laser fields [20].

We study the effects of a magnetic field on Dirac fermions in graphene, subjected to oscillating potential in time.
The solutions of the energy spectrum are found by using the Floquet theory in the first order approximation together
with the algebraic method, which results in an energy with two subbands. We determine the current density and
in x and y-directions, show the contribution of the oscillating potential. We numerically analyze our results and in
particular show that the current density oscillates with different amplitudes depending on the magnetic field and the
potential.
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The paper is organized as follows. In section II, we establish the theoretical model describing Dirac fermions in
graphene in the presence of a magnetic field and oscillating potential. The algebraic method is employed to find the
eigenvalues and eigenspinors for the Hamiltonian part time-independent, resulting in Landau levels. We completely
determine the solutions of the energy spectrum by using the Floquet theory in section III. The numerical analysis
shows that the quantized energy is shifted due to the subbands resulting from the oscillating potential. The current
density and the graphical representations under various conditions of the physical parameters will be the subject of
section IV. Finally, we conclude our work.

II. LANDAU LEVELS

In this paper, we consider graphene in the presence of a magnetic field B and a periodic scalar potential with
amplitude U0 and frequency w in time. The Hamiltonian (in the unit ~ = e = vF = 1) describes this system as two
parts

H = H0 +H1 (1)

such that H0 reads as

H0 = ~σ · (~p− ~A) (2)

and the time-dependent Hamiltonian is given by

H1 = U0 cos(wt)I2 (3)

where σi (i = x, y) are the Pauli matrices, ~p− ~A is the conjugate momentum chosen in the Landau gauge of the vector

potential ~A = (0, Bx, 0) and I2 is the unit matrix. To explicitly determine the solutions of the energy spectrum, we
separately treat each part of the Hamiltonian (1). Because momentum py is a conserved quantity in the Hamiltonian

H0, the corresponding eigenspinors can be ψ(x, y) = [ψA(x), ψB(x)]
T
eikyy and distinguished by the labels ”A” and

”B” on the two triangular sublattices. We continue by solving the eigenvalue equation H0ψ(x, y) = εψ(x, y) related
to the energy ε. It can be written as(

−ε px − i(ky −Bx)
px + i(ky −Bx) −ε

)(
ψA

ψB

)
=

(
0
0

)
. (4)

To go further, it is convenient to apply the algebraic method based on the annihilation and creation operators. They
can be mapped as

a =
1√
2B

[px + i(ky −Bx)] (5)

a† =
1√
2B

[px − i(ky −Bx)] (6)

which fulfill the commutation relation [a, a†] = I. These operators can be used to write (4) as(
−ε

√
2Ba†√

2Ba −ε

)(
ψA

ψB

)
=

(
0
0

)
(7)

giving rises to two coupled equations
√

2Ba†ψB = εψA,
√

2BaψA = εψB (8)

and they can be mapped to get a second differential equation having the Hermite polynomial as a solution. Then, as
a result, one finds the eigenspinors

Ψn,ky
(x, y) =

(
Hn (X)

sHn−1 (X)

)
e−

X2

2 eikyy (9)

associated to the quantized eigenvalues

εn = s
√

2Bn, n ∈ N (10)

where the dimensionless variable X =
x+kyl

2
B

lB
and the magnetic length lB = 1√

B
are introduced. Here the sign

function is s = ±1.
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III. FULL ENERGY SPECTRUM

Because the Hamiltonian H1 is periodic, the Floquet theory can be used to calculate the temporal spinor , with T
denotes transpose. From the eigenvalue equation, we integrate to obtain

φA,B(t) = e−i
∫ t
0
U0 cos(ωt′)dt′e−iEt (11)

which can be decomposed in Fourier series

φA,B(t) =

+∞∑
n=−∞

Dn
A,Be

−inωte−iEt (12)

where Dn
A,B are time-independent Fourier coefficients and E is the Floquet energy. In the first order approximation

±ω
2 [20], the eigenspinors of H1 can be written as

φ(t) =

(
D+

Ae
iwt

2 +D−Ae
−iwt

2

D+
Be

iwt
2 +D−Be

−iwt
2

)
e−iEt. (13)

Finally, combining the solutions (9) and (13) to build Φ(x, y, t) = [ΦA(x, y, t),ΦB(x, y, t)]T as eigenspinors the
Hamiltonian (1). Consequently, we get

Φn,ky (x, y, t) =

 Hn

[
D+

Ae
iwt

2 +D−Ae
−iwt

2

]
sHn−1

[
D+

Be
iwt

2 +D−Be
−iwt

2

] e−
X2

2 eikyy e−iEt. (14)

To determine the full energy spectrum we use the eigenvalue equation satisfied by the Hamiltonian (1) and the
eigenspinors (14). As a result, we end up with

U0 cos(ωt)ΦA +
√

2Ba†ΦB = i
∂

∂t
ΦA (15)

√
2BaΦA + U0 cos(ωt)ΦB = i

∂

∂t
ΦB (16)

and by substituting the components of (14) we find

U0 cos(ωt)
(
D+

Ae
iwt

2 +D−Ae
−iwt

2

)
+ εn

(
D+

Be
iwt

2 +D−Be
−iwt

2

)
= E−D

+
Ae

iwt
2 + E+D

−
Ae
−iwt

2 (17)

U0 cos(ωt)
(
D+

Be
iwt

2 +D−Be
−iwt

2

)
+ εn

(
D+

Ae
iwt

2 +D−Ae
−iwt

2

)
= E−D

+
Be

iwt
2 + E+D

−
Be
−iwt

2 (18)

where we have set E± = E ± w
2 . After some algebras and within the fast-oscillating terms in the resonance approxi-

mation, we can neglect the term e±i
3ωt
2 [20] to write (17-18) as

U0

2

(
D+

Ae
−iwt

2 +D−Ae
iwt

2

)
+ εn

(
D+

Be
iwt

2 +D−Be
−iwt

2

)
= E−D

+
Ae

iwt
2 + E+D

−
Ae
−iwt

2 (19)

εn

(
D+

Ae
iwt

2 +D−Ae
−iwt

2

)
+
U0

2

(
D+

Be
−iwt

2 +D−Be
iwt

2

)
= E−D

+
Be

iwt
2 + E+D

−
Be
−iwt

2 (20)

which can be cast in the matrix form
E− −U0

2 −εn 0
−U0

2 E+ 0 −εn
−εn 0 E− −U0

2

0 −εn −U0

2 E+



D+

A

D−A
D+

B

D−B

 =

0
0
0
0

 . (21)

Actually, the eigenvalues can be obtained by requiring that the determinant of the matrix be null. Thus, after
computation, we end with

Ess′

n = εn +
s′

2

√
U2
0 + w2 (22)
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where the Landau levels εn is given in (10) and s′ = ±1. Indeed, first the term 1
2

√
U2
0 + w2 contributes by shifting

the Landau levels up and downs, known as subbands. This result is in agreement with previous published works on
the subject [11, 12]. Second, we recall that such a term is found to play the rule of an opening gap by irradiating
graphene with a laser field [20].

We numerically analyze the effects of a magnetic field and an oscillating potential on Dirac fermions in graphene
under various conditions. In Fig. 1, we plot the energy Ess′

n as a function of the magnetic field B for four quantum
numbers n. We choose the parameters describing the potential as U0 = ω = 1 (a), 2 (b), 3 (c) and 4 (d). It is clearly
seen that the symmetry holds between different energy bands, that is E++

n = −E−−n and E−+n = −E+−
n . Crossing

points between different energy bands are observed as a result of the second term in Ess′

n . As long as U0 and ω
increase, these points change their positions. As a result, we observe that the Landau levels are strongly affected
because of the shifts appearing in Fig. 1, which depend on the oscillating potential. It might be relevant to mention
the variations between the two consecutive energies and also under the change of s′. They are

Ess′

n+1 − Ess′

n = s
√

2B
(√
n+ 1−

√
n
)

(23)

Es+
n − Es−

n =
√
U2
0 + ω2. (24)
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FIG. 1. (color online) The energy spectrum as a function of the magnetic field B with U0 = ω = 1 (a), 2 (b), 3 (c) and 4 (d).
Four quantum numbers are considered n = 0 (black line), 1 (blue line), 2 (red line), 3 (green line). Continuous lines for s′ = 1
and dashed ones for s′ = −1.

Fig. 2 shows the energy Ess′

n as function of the amplitude U0 of the oscillating potential for ω = 1 and four values
of the quantum number n with the magnetic field B = 0.5T (a), 1T (b), 1.5T (c) and 2.5T (d). As one can see, the
amplitude acts by increasing or decreasing all energy bands. Also, we notice the emergence of different crossing points
between energy bands. One more result is that the magnetic field affects the behavior of energy by creating different
shifts as shown in Figs. 2(a,b,c,d).
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FIG. 2. (color online) The energy spectrum as a function of the potential amplitude U0 for ω = 1 with the quantum numbers
n = 1 (black line), 2 (blue line), 3 (red line), 4 (green line). Four values of magnetic fields are chosen B = 0.5T (a), 1T (b),
1.5T (c) and 2.5T (d). Continuous lines for s′ = 1 and dashed ones for s′ = −1.

IV. CURRENT DENSITY

We compute the current density ~J through the continuity equation

∂

∂t
ρ+ ~∇ · ~J = 0 (25)

such that the charge density is ρ =|Ψ|2. As for our system of eigenspinors Φn,ky (x, y, t) (14), we show that ~J takes
the following form

~J = Φ∗n,ky
~σΦn,ky

(26)

and therefore we end up with the two components take the forms

J (n)
x = s [C1 + C2 cos(wt)]Hn(X)Hn−1(X) e−X

2

(27)

J (n)
y = sC sin (wt)Hn(X)Hn−1(X) e−X

2

(28)

where we have defined

C = 2
(
D+

AD
−
B −D

−
AD

+
B

)
(29)

C1 = 2
(
D+

AD
+
B +D−AD

−
B

)
(30)

C2 = 2
(
D+

AD
−
B +D−AD

+
B

)
. (31)
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For numerical use, it is convenient to rearrange the two components as

J (n)
x = Jn

0x + Jn
1x (32)

J (n)
y = Jn

0y + Jn
1y (33)

and here Jn
0y = 0. As one can notice, the current densities generated in the x and y-directions show two corrections,

which are time dependent, i.e. Jn
1x and Jn

1y. These are analogous to those obtained by analyzing the Josephson current
in graphene under periodic potential in position and time [19, 21].

For the numerical implementation we focus only on the two quantum numbers n = 1, 2 and the Fourier coefficients
D±A,B = U0

2 . The resulted current densities along the x-direction are

J
(1)
1x = ±2U2

0 cos(ωt)Xe−X
2

(34)

J
(2)
1x = ±2U2

0 cos(ωt)X(4X2 − 2)e−X
2

(35)
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FIG. 3. (color online) The current density J
(1)
1x (n = 1) as a function of ωt for k = 0.1, U0 = 1 and x = 0.1. We choose different

values of magnetic field. (a): B = 0.1T (red line), 0.2T (blue line), 0.6T (green line). (b): B = 0.7T (red line), 1.4T (blue
dashed). (c): B = 1.5T (black line), 3.5T (blue line). (d): B = 4T (black line), 6T (blue line).

Fig. 3 represents the current density J
(1)
1x (n = 1) as a function of ωt under the choice of some values of the

magnetic field B. It is clearly seen from (34) that J
(1)
1x is a sinusoidal function in terms of ωt but with an amplitude of

two contributions coming from U0 and Xe−X
2

. As a result, we see that there are three regimes B showing different
behaviors. Indeed, we observe that from 0.1T up to 0.6T, B acts by decreasing the amplitude of oscillations (Fig. 3a)
and it becomes insensitive to B regardless of the value taken (Fig. 3b) form 0.7T to 1.4T. However, from B = 1.5T,
we observe that the amplitude of oscillations starts to increase again (Fig. 3c) for a strong field. This tells us that
the magnetic field can serve as a control to manipulate the current density for experimental use.
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FIG. 4. (color online) The current density J
(2)
1x (n = 2) as a function of ωt for ky = 0.2, U0 = 1 and x = 0.2. We choose

different values of magnetic field. (a): B = 0.1T (red line), 0.2T (blue line), 0.7T (green line). (b): B = 0.7T (red line), 1.4T
(blue dashed). (c): B = 1.5T (black line), 3.5T (blue line). (d): B = 4T (black line), 6T (blue line).

FIG. 5. (color online) Density plot of the current density J
(1)
1x as a function of the magnetic field B and ωt for U0 = 1 with

four values of ky = x (a): 0.25, (b): 0.5, (c): = 0.75 and (d): = 1.
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In Fig. 4, we plot the current density J
(2)
1x (n = 2) as a function of ωt and choose some values of the magnetic field

B. We also have a sinusoidal function with the same period but different amplitudes depending on B. As before,

the behavior of J
(2)
1x can be divided into three zones according to the value taken by B. Indeed, the amplitude of

oscillations increases from 0.1T up to 0.7T as shown in Fig. 4a and remains constant from 0.7T up to 1.4T in Fig.
4b. However, as seen in Fig. 4c, the amplitudes decrease despite increasing the field to 1.5T up to 3.5T. Just to
illustrate, we observe that for B = 0.2, the amplitude is seven times greater than for B = 0.1.

Fig. 5 represents the current density J
(1)
1x as a function of the magnetic field and ωt by choosing four values of

the wave vector and position such that ky = x. As for Fig. 5a with ky = x = 0.25, we observe that for each value

of B, the current density is sinusoidal and for each half period ω = T
2 , the peaks occur. It is clearly seen that for

ky = x = 0.5 in Fig. 5b the amplitude decreases as long as B increases. In Fig. 5c for ky = x = 0.75 clearly shows

the attenuation of J
(1)
1x with the magnetic field. More precisely, after a certain value of B, there is no current despite

increasing it.

FIG. 6. (color online) Density plot of the current density J
(2)
1x as a function of B and ωt for U0 = 1 with four value of ky = x

(a): 0.25, (b): 0.5 and (c): 0.75 and (d): = 1.

Fig. 6 represents the current density J
(2)
1x as a function of B and ωt for three values of ky = x. As for ky = x = 0.25

we notice that Fig. 6a shows that the curve is symmetrical with respect to an axis perpendicular to the value B = 5

because of the term (4X2 − 2) appearing in (35). One more thing is that the amplitude of J
(2)
1x is small compared to

that of J
(1)
1x as seen in Fig. 5a. We also notice that far from the axis of symmetry, J

(2)
1x exhibits sinusoidal behavior

with an increase in amplitude. For ky = x = 0.5 Fig. 6b shows that the amplitude of oscillations increases in the

vicinity of B = 5 and decreases elsewhere, but J
(2)
1x is still a sinusoidal function. In Fig. 6c for ky = x = 0.75,

we observe an attenuation of the current density when B increases, and then, after a certain value of B, there is no
current. These results show evidence of the effect of the magnetic field on the current density of graphene subjected
to an oscillating potential.
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V. CONCLUSION

We have studied the effect of a magnetic field on graphene in the presence of a temporal potential. Solving the
Dirac equation, we have derived the exact solutions of the energy spectrum using the Floquet theory together with
algebraic method. The eigenvalues are found as Landau levels added to extra subbands originated from the oscillating
potential in the first approximation of the frequency ω. It is showed that the energy exhibits a symmetry under the
change of energy signs in addition to crossing points between different bands. Our results are an agreement with
precious published works on the subject [11, 12].

Subsequently, we have determined the current density in x and y-directions. It consists of two separate parts
depending on the position dimensionless X and the oscillating potential. It was found that the current density
exhibits extra terms that originated from oscillating potential, knowing that they could be interpreted as corrections
to standard results. Our numerical analysis showed that the current density oscillates with different amplitudes
strongly dependent on the magnetic field B. In fact, we have found three sets of B generating various amplitudes of
oscillation. More precisely, the amplitude can decrease, increase, or remain constant according to the value taken by
B. Furthermore, the wave vector ky and space position x are discovered to be important in the density plot of the
current density in terms of B and the argument ωt. As a result, they act by decreasing the current density to a very
low level.
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