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Abstract

The present work deals with the influence of magnetic field on Newtonian fluid sand-

wiched between two porous cylindrical pipes which are filled with micropolar fluids. Fluid

motion is occurring along z∗-axis and applied magnetic field is taken in the direction

perpendicular to the direction of fluid motion. On applying appropriate boundary con-

ditions, velocity profiles, microrotations, flow rate and shear stresses are obtained for the

corresponding fluid regions. The graphs for volumetric flow rate and fluid velocity are

plotted and discussed for different values of micropolar parameter, couple stress parame-

ter, porosity, viscosity ratio parameter, Hartmann number, conductivity ratio parameters

and Darcy numbers.
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Introduction

Micropolar fluids [1] consist of rigid, randomly oriented cylindrical/spherical particles,

having microstructure and belong to a class of fluids with non-symmetric stress tensor.

Eringen [2] developed theories on micropolar fluids consisting the effects of couple stresses

and microstructure systematically. Equations of motion are derived from the laws of con-

servation of linear and angular momenta, described in the classical book of Nowacki [3].

Flows of micropolar liquids can exhibit many effects that are not possible in non-polar

Stokesian fluids [4]. Creeping flow of a rotating porous cylinder through a micropolar

fluid is reported by Moosaie and Atefi [5]. Sherief et al. [6] investigated the micropolar

fluid flows (both parallel and perpendicular) between slip cylinder and coaxial cylindrical

adeepak893395@gmail.com (corresponding author)
bsd mathau@yahoo.co.in
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shell. Mathematical models for flows of a non-Newtonian liquid have been reviewed by

Khanukaeva and Filippov [7]. The micropolar fluid flow through a swarm of cylindri-

cal particles with porous layer, reported by Khanukaeva et al. [8]. In the presence of

magnetic field, the micropolar fluid flow through the membrane is observed [9]. Yadav

and Verma [10] investigated the fluid motion of two immiscible fluids (Newtonian and

non-Newtonian) through a porous cylindrical pipe. Deo et al. [11] studied the micropolar

fluid motion moving through a cylindrical tube in presence of the magnetic field which

is coated with porous layer. Yadav et al. [12] formulated the mathematical model for

Newtonian and non-Newtonian fluids through concentric pipes having porous space of

different permeability. Maurya and Deo [13] reported the stream function solution of the

Brinkman/Stokes equations in parabolic cylindrical coordinates.

The porosity [14] of a porous medium is defined as the fraction of the total volume of

the medium that is occupied by void space. Brinkman [15] investigated the viscous force,

exerted by a flowing fluid on a dense swarm of particles. Numerical results for flow be-

tween two parallel plates show that the entrance length decreases linearly as the Darcy

number decreases, reported by Kaviany [16]. Tiwari and Deo [17] studied pulsatile flow

of Newtonian fluid in a cylindrical pipe. Madasu and Bucha [18] observed the effects

of magnetic field on fluid flow through a porous cylindrical shell. In cylindrical polar

coordinates, generalized version of the stream function solution of Brinkman equation is

obtained [19]. Recently, Maurya et al. [20] investigated the Stokes flow of non-Newtonian

fluid flowing through a porous cylinder and presented a comparison of flow pattern for

two types of boundary value problems.

In this study, we have discussed the effects of magnetic field on the Newtonian fluid flow-

ing through a porous cylindrical shell, sandwiched between two porous cylindrical shells

which are filled with non-Newtonian fluids (e.g. micropolar fluids). The direction of

fluid flow is taken along z∗-axis and the uniform magnetic field is applied in the direction

perpendicular to the direction of fluid motion. For the corresponding fluid flow regions,

velocity profiles, flow rate and shear stresses are obtained by applying suitable boundary

conditions. The volumetric flow rate and fluid velocity are plotted and discussed for dif-

ferent values of micropolar parameter, couple stress parameter, porosity, viscosity ratio
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parameter, Hartmann number, conductivity ratio parameters and Darcy numbers.

1 Mathematical Formulation of the Problem

In the presence of uniform magnetic field B∗, let us consider a steady, incompressible,

electrically conducting, Newtonian and micropolar fluids, moving with uniform velocity

U∗ along the z∗-axis of coaxial porous cylinders. The uniform magnetic field is taken

in the direction perpendicular to the direction of the fluid flow. The present research

model exhibits the sandwiching of Newtonian fluid between the micropolar fluids through

two porous coaxial cylindrical shells (Fig. 1). Due to the constant pressure gradient

along the direction of the fluid motion, Hagen-Poiseuille flow is used. The Nowacki’s

governing equations of micropolar fluid is used for non-Newtonian fluids, and Brinkman

type equation has been used for the Newtonian fluid flowing through the porous medium.

The micropolar fluid of permeability k1
∗ is flowing in the inner cylindrical shell whose

radius is a∗, the middle porous cylindrical shell of radius b∗ is filled with Newtonian fluid

of permeability k2
∗ and the upper porous cylindrical region is of radius c∗ which is filled

with micropolar fluid of permeability k3
∗.

Fig. 1: Schematic diagram of the problem
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In the absense of magnetic field, body forces and body couples, governing equations

of an incompressible steady micropolar fluid flow in the Eringen approach, are given by

∇∗ · v∗ = 0, (1)
(

µ∗

e + κ∗

e

k∗

)

v∗ +∇∗p∗ − κ∗

e

2φ
∇∗ ×w∗ +

(

µ∗

e + κ∗

e

φ

)

∇∗ ×∇∗ × v∗ = 0, (2)

−2κ∗

ew
∗ + κ∗

e∇∗ × v∗ − χ∗

e∇∗ ×∇∗ ×w∗ + (ξ∗e + ζ∗e )∇∗(∇∗. w∗) = 0. (3)

Here, φ is porosity and k∗ is permeability of the porous cylindrical shells, and the fluid

velocity vector, microrotation vector and fluid pressure, are represented by v∗, w∗ and p∗,

respectively. The state variables (µ∗

e, κ
∗

e) are used for viscosity coefficients and (ξ∗e , ζ
∗

e , χ
∗

e)

are taken as angular-viscosity coefficients of the micropolar fluid.

In general, viscosity coefficient µ∗

e is not equal to dynamic coefficient of viscosity µ∗ of a

Newtonian fluid. Redefining the viscosity coefficients using the replacement µ∗

e = µ∗−κ∗

and κ∗

e = 2κ∗ on applying Stokes hypothesis. To derive the components of deformation

tensors and for reducing the coefficient µ∗

e into µ∗, Nowacki proposed to take the angular

viscosity coefficients as χ∗

e = δ∗ + τ ∗, ζ∗e = δ∗ − τ ∗ and ξ∗e = ξ∗.

Nowacki’s governing equations of an incompressible steady micropolar fluid flow through

the porous cylindrical shells (0 ≤ r∗ ≤ a∗) and (b∗ ≤ r∗ ≤ c∗) in the presence of uniform

magnetic field B∗, are given by

∇∗ · v∗

i = 0, (4)
(

µ∗ + κ∗

ki
∗

)

v∗

i +∇∗p∗ −
(

κ∗

φ

)

∇∗ ×w∗

i +

(

µ∗ + κ∗

φ

)

∇∗ ×∇∗ × v∗

i − J∗

i ×B∗ = 0, (5)

−2κ∗w∗

i + κ∗∇∗ × v∗

i − (δ∗ + τ ∗)∇∗ ×∇∗ ×w∗

i + (ξ∗ + δ∗ − τ ∗)∇∗(∇∗ ·w∗

i ) = 0, (6)

where, v∗

i , w∗

i are representing the velocity vectors and microrotation vectors of mi-

cropolar fluid for inner porous cylindrical shell (i = 1) and outer porous cylindrical shell

(i = 3), at any point (r∗, θ, z∗), respectively. The material’s constants (µ∗, κ∗) are viscos-

ity coefficients and (ξ∗, δ∗, τ ∗) are gyro-viscosity coefficients. These viscosity coefficients

are related by inequalities:

µ∗ ≥ 0, κ∗ ≥ 0, δ∗ ≥ 0, 3ξ∗ + 2δ∗ ≥ 0, |δ∗ − τ ∗| ≤ (δ∗ + τ ∗).

The governing equations for Newtonian fluid through the porous cylindrical shell (a∗ ≤

r∗ ≤ b∗), in the presence of uniform magnetic field and in the absense of body forces, are
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given by

∇∗ · v∗

2 = 0, (7)

−∇∗p∗ −
(

µ2
∗

k2
∗

)

v∗

2 −
(

µ2
∗

φ

)

∇∗ ×∇∗ × v∗

2 + J∗

2 ×B∗ = 0, (8)

where, v∗

2 and µ∗

2 are fluid velocity vector and dynamic viscosity of the Newtonian fluid,

respectively. The applied fluid pressure p∗ is same for both the micropolar and Newtonian

fluids. Assuming that the magnetic Reynolds number is negligible and external electric

field (E∗) is absent, then the induced electric current can be neglected. By Ohm’s law,

J∗

i = σ∗

i (E
∗ + v∗

i ×B∗), where, σ∗

i (i = 1, 2, 3) and E∗ stand for electrical conductivity of

micropolar fluid and electric field, respectively. Therefore,

J∗

i ×B∗ = −σ∗

iB
∗2 v∗

i , (9)

where, B∗ = |B∗|, the magnitude of applied uniform magnetic field.

In order to treat governing equations of the micropolar fluid flow problem into dimen-

sionless form, some non-dimensionalising variables are introduced:

vi =
v
∗

i

U∗
, wi =

a∗w∗

i

U∗
, r = r∗

a∗
, l = b∗

a∗
, m = c∗

a∗
, p = a∗p∗

µ∗U∗
,

ki =
ki

∗

a∗2
, λ =

µ∗

2

µ∗
, M2 = κ∗

µ∗+κ∗
, L2 = δ∗+τ∗

2µ∗a∗2
, W 2 = ξ∗+δ∗−τ∗

2µ∗a∗2
,

Λ2 =
σ∗

2

σ∗

1

, Λ3 =
σ∗

3

σ∗

1

, H1 = B∗a∗
√

σ∗

1

µ∗
, H2 = H1

√
Λ2, H3 = H1

√
Λ3.

Here, H1 is the Hartmann number (0 ≤ H1 < ∞), M is micropolar parameter (0 ≤ M <

1) and L is couple stress parameter (0 ≤ L < ∞). The non-dimensional form of the

governing equations (4) - (6) for i = 1, 3, are

∇ · vi = 0, (10)

∇p+

(

1

ki(1−M2)
+Hi

2

)

vi−
(

M2

φ(1−M2)

)

∇×wi+
1

φ(1−M2)
∇×∇×vi = 0, (11)

wi −
1

2
∇× vi +

(

L2(1−M2)

M2

)

∇×∇×wi −
(

W 2(1−M2)

M2

)

∇(∇ ·wi) = 0. (12)

Similarly, the field equations (7) - (8) for middle porous cylindrical shell are

∇ · v2 = 0, (13)

∇p = −
(

λ

k2

)

v2 +

(

λ

φ

)

∇2v2 −H2 v2. (14)
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For micropolar fluid, the non-dimensional form of shear stresses (Trz(i)) for i = 1, 3, will

be

Trz(i) =

[

1

1−M2

(

dvi

dr

)

+

(

M2

1−M2

)

wi

]

. (15)

For Newtonian fluid, the non-dimensional form of shear stress (Trz(2)) will be

Trz(2) = λ
dv2

dr
. (16)

2 Analytical solution of the Problem

2.1 For Inner and Outer Porous Cylindrical Shells

Assuming that the fluid velocities vi and microrotation vectors wi for Hagen Poiseuille

flow of micropolar fluid along the z-axis of inner (i = 1) and outer (i = 3) porous

cylindrical shells are vi = (0, 0, vi(r)) and wi = (0, wi(r), 0), respectively. Introducing

a differential operator E2 as

E2 =
1

r

d

dr

(

r
d

dr

)

.

Then, governing equations (10) - (12) will take the form

(E2 − α2
i )(E

2 − β2
i )vi = −PφM2

L2
, (17)

where,

α2
i + β2

i =
(2−M2)M2

2L2(1−M2)
+

φ

ki
+ (1−M2)Hi

2φ,

α2
iβ

2
i =

φM2

L2(1−M2)

[

(1−M2)Hi
2 +

1

ki

]

,

and pressure gradient P = dp

dz
is taken constant.

The general solution of the equation (17) represent velocity of micropolar fluids and comes

out as

vi(r) = Ai I0(αir) + Bi K0(αir) + Ci I0(βir) +Di K0(βir) +
φ M2P

α2
iβ

2
i L

2
, (18)

where, Ai, Bi, Ci, and Di (i = 1, 3) are arbitrary parameters.

6



2.2 For Middle Porous Cylindrical Shell

Since the fluid velocity v2 for Hagen-Poiseuille flow along the z-axis of the middle porous

cylindical region which is filled by Newtonian fluid is v2 = (0, 0, v2(r)). Therefore,

equations (13) and (14) will reduce to

d2v2

dr2
+

1

r

dv2

dr
− n2v2 =

Pφ

λ
, (19)

where, n2 = φ

k2
+
(

φ

λ

)

H2
2 .

So, the analytical form of Newtonian fluid velocity is:

v2(y) = A2I0(nr) + B2K0(nr)−
Pφ

λn2
, (20)

where, A2 and B2 are arbitrary parameters.

3 Determination of Arbitrary Parameters

To determine the ten parameters A1, B1, C1, D1, A2, B2, A3, B3, C3, D3, we are applying

the following suitable boundary conditions:

(i) Regularity condition within inner cylinder (i.e. r = 0) implies that,

A1 = C1 = 0. (21)

(ii) No spin condition at r = 1 implies that,

w1 = 0. (22)

(iii) Continuity of velocity at r = 1 implies that,

v1 = v2. (23)

(iv) Continuity of shear stress at r = 1 implies that,

Trz(1) = Trz(2). (24)

(v) Continuity of velocity at r = l implies that,

v2 = v3. (25)
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(vi) Continuity of shear stress at r = l implies that,

Trz(2) = Trz(3). (26)

(vii) No spin condition at r = l implies that,

w3 = 0. (27)

(viii) No slip condition at r = m implies that,

v3 = 0. (28)

(ix) Spin condition at outer surface r = m implies that,

−→w3 = ∇×−→v3 . (29)

Substituting the boundary conditions (BCs) from equations (21)-(29), we will obtain a

system of linear equations for the arbitrary parameters occuring in the expressions of

velocities v1, v2, v3. All parameters have been evaluated uniquely with the utilization

of MATHEMATICA software. Due to burdensome expressions of these parameters, we

refrain the values of these parameters from the text of manuscript.

4 Evaluation of flow rate

The flow rate through cylindrical shells (0 < r < m) can be evaluated using the formula:

Q =

∫ 1

0

v1 r dr +

∫ l

1

v2 r dr +

∫ m

l

v3 r dr. (30)

Substituting the analytical expressions of fluid velocities from equations (18) and (20) in

the equation (30), we are capable to determine the mathematical expression for volumetric

flow rate of Newtonian-micropolar fluid flow. Therefore, analytical expression of the

volumetric flow rate comes out as:

Q = π

[

1

ξ3

(

2 (A3 (mI1 (mξ3)− lI1 (lξ3)) + B3 (lK1 (lξ3)−mK1 (mξ3)))

)

+A1 0F̃1

(

; 2;
ξ21
4

)

− 2A2(I1(n)− lI1(ln))

n
+

2B2(K1(n)− lK1(ln))

n
+

1

ζ3

(

2(C3(mI1 (mζ3)

− lI1 (lζ3)) + F3 (lK1 (lζ3)−mK1 (mζ3)))

)

+ C1 0F̃1

(

; 2;
ζ21
4

)

+
M2Pφ (m2 − l2)

ζ23L
2ξ23

− (l2 − 1)Pφ

λn2
+

M2Pφ

ζ21L
2ξ21

]

, (31)
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where F̃1( ; ; ) is regularized hypergeometric function.

4.1 Discussion of flow rate with variation of flow parameters:

Volumetric flow rate Q versus parameter l (1 ≤ l ≤ 3) is plotted and discussed its

graphical behaviors for various values of flow parameters. These flow parameters are well

known micropolar parameter (M), porosity (φ), viscosity ratio (λ), Hartmann number

(H1), conductivity ratio parameters (Λ2, Λ3), Darcy numbers (k1, k2, k3). For each case

of flow rate, some flow parameters are taken fixed and these are: L = 2, m = 5, and

P = −3.

4.1.1 Effect of micropolar parameter (M)

The effects of flow parameter (M = 0.4, 0.7, 0.8) on flow rate are shown in figure 2.

Viscosity ratio parameter (λ = 0.2), porosity φ = 0.5, Hartmann number (H1 = 1.5),

Darcy numbers (k1 = 0.3, k2 = 4, k3 = 5) and conductivity ratio parameters (Λ2 =

0.5, Λ3 = 0.25) are used for plotting. On observation of the graphical behavior of

volumetric flow rate, we conclude that volumetric flow rate decreases whenever the flow

parameter (i.e. micropolar parameter) increases.

Fig. 2: Variation of flow rate with micropolar parameter M .
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4.1.2 Effect of porosity φ

Figure 3 exhibits the graphical nature of the flow rate for different values of non-dimensional

parameter porosity. Values of other flow parameters are taken as follows: M = 0.2, λ =

0.2, k1 = 0.3, k2 = 4, k3 = 5, H1 = 1.5, Λ2 = 0.5, Λ3 = 0.25, along with the value

of porosity is taken as 0.2, 0.4, 0.6. The present investigation offers that the flow rate

varies smoothly, and converges with the variation of large values of parameter l. Also,

we obtain that volumetric flow rate decreases as the porosity increases i.e., voidness of

the space with respect to total volume of the porous medium increases.

Fig. 3: Variation of flow rate with porosity φ.

4.1.3 Effect of viscosity ratio λ

The effects of viscosity ratio parameter (λ = 0.05, 0.1, 1) on volumetric flow rate are

represented by figure 4 with some fixed value of micropolar parameter M = 0.2, porosity

φ = 0.5, Hartmann number (H1 = 1.5), Darcy numbers (k1 = 0.3, k2 = 4, k3 = 5) and

conductivity ratio parameters (Λ2 = 0.5, Λ3 = 0.25). Within the porous cylindrical shell
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containing Newtonian fluid, the graph of flow rate increases as viscosity ratio parameter

increases and for outer porous cylindrical shell region through which micropolar fluid is

flowing, it decays as the parameter λ increases.

Fig. 4: Variation of flow rate with viscosity ratio parameter λ.

4.1.4 Effect of Hartmann number H1

For the various values of magnetic parameter i.e. Hartmann number (H1 = 1, 1.25, 1.5),

the graphs of the flow rate are plotted, and shown in figure 5 withM = 0.2, φ = 0.5, , λ =

0.2, k1 = 0.3, k2 = 4, k3 = 5 and conductivity ratio parameters Λ2 = 0.5, Λ3 = 0.25. For

parameter 1 < l < 2.75, flow rate increases as Hartmann number increases and further,

flow rate decreases as the magnetic parameter H1 increases whenever l > 2.75.
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Fig. 5: Variation of flow rate with Hartmann number H1.

4.1.5 Effect of conductivity ratio parameter Λ2

Figure 6 represents the variation of the flow rate for the various values of conductivity ratio

parameter (Λ2 = 0.2, 1, 2). Graphical behaviors are plotted with the some fixed value of

flow parameters as flow parameters M = 0.2, φ = 0.5, λ = 0.2, k1 = 0.3, k2 = 4, k3 = 5

and along with conductivity ratio parameter Λ3 = 0.25. The obtained graph is similar

to graph which is plotted for case of viscosity ratio parameter. We observed that for

parameter 1 < l < 2.25, flow rate increases as parameter Λ2 increases and further, flow

rate decreases as the conductivity ratio parameter Λ2 increases whenever l > 2.25.
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Fig. 6: Variation of flow rate with conductivty ratio parameter Λ2.

4.1.6 Effect of conductivity ratio parameter Λ3

Variation of the flow rate versus parameter l is plotted for different values of flow pa-

rameter (Λ3 = 0.2, 1, 2). To draw the graph, we have considered some fixed value of

flow parameters as micropolar parameter (M = 0.2), porosity (φ = 0.5), viscosity ratio

(λ = 0.2), Hartmann number (H1 = 1.5), Darcy numbers (k1 = 0.3, k2 = 4, k3 = 5) and

conductivity ratio parameter (Λ2 = 0.25). After investigation, we find that the obtained

graph varies smoothly for the case of conductivity ratio parameter (Λ3). It is observed

that the volumetric flow rate increases as the ratio parameter Λ3 increases (Figure 7).

Also, these graphs converge with variation of the parameter l.
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Fig. 7: Variation of flow rate with conductivty ratio parameter Λ3.

4.1.7 Effect of Darcy number k1

With consideration of the fixed value of flow parameters as M = 0.5, φ = 0.3, λ = 0.5,

H1 = 0.5, k2 = 0.4, k3 = 1, Λ2 = 1, Λ3 = 1, volumetric flow rate is plotted for different

values of Darcy numbers (k1 = 0.01, 0.1, 1). It is observed that the volumetric flow rate

decreases as the Darcy number k1 increases and varies continuosly along with variation of

parameter l (Figure 8). Also, these graphs intersect to each other in some neighourhood

of parameter l = 2.5.
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Fig. 8: Variation of flow rate with Darcy number k1.

4.1.8 Effect of Darcy number k2

Figure 9 represents the graphical illustration of flow rate with flow parameters asM = 0.2,

φ = 0.5, λ = 0.2, H1 = 1.5, k1 = 4, k3 = 5, Λ2 = 0.5, Λ3 = 0.25, for the various values

of Darcy number (k2 = 0.1, 0.2, 0.6). Investigation offers that the volumetric flow rate is

of dual nature firstly it decreases as the Darcy number k1 increases whenever 1 < l < 2.

Also, these graphs intersect to each other in some neighbourhood of parameter l = 1.75,

and latter graph of flow rate diverges continuously along with variation of parameter l

whenever l > 2.
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Fig. 9: Variation of flow rate with Darcy number k2.

4.1.9 Effect of Darcy number k3

With consideration of fixed value of flow parameters as M = 0.2, φ = 0.5, λ = 0.2,

H1 = 1.5, k1 = 5, k2 = 4, Λ2 = 0.5, Λ3 = 0.25, volumetric flow rate is plotted for

different values of Darcy numbers (k3 = 0.01, 0.1, 1). It is observed that the volumetric

flow rate decreases rapidly as the Darcy number k3 increases. Also, the graphs decrease

for large value of Darcy number and converge for large values of parameter l (Figure 10).
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Fig. 10: Variation of flow rate with Darcy number k3.

4.2 Discussion on micropolar fluid velocity (v)

With the variation of radial coordinate 0 ≤ r ≤ 5, the micropolar fluid velocity v is plotted

and explained its graphical natures for various values of fluid flow parameters. Flow

parameters are as micropolar parameter, porosity, viscosity ratio, Hartmann number,

conductivity ratio parameters, and Darcy numbers, represented by mathematical symbols

M , φ, λ,H1, Λ2, Λ3, k1, k2, k3, respectively. In every case, couple stress parameter L = 2,

pressure gradient P = −3, length ratio parameter l = 3, m = 5 are used and cylindrical

regions (0 ≤ r ≤ 1), (3 ≤ r ≤ 5) are containing the micropolar fluids of different

permeabilities while Newtonian fluid is passing through the region (1 ≤ r ≤ 3).

4.2.1 Effect of micropolar parameter (M)

Variation of micropolar fluid velocity is plotted for different values of micropolar pa-

rameter (M = 0.1, 0.4, 0.5) by considering the values of some flow parameters as

17



λ = 0.2, k1 = 0.3, k2 = 4, k3 = 5, φ = 0.5, H1 = 1.5, Λ2 = 0.5, Λ3 = 0.25.

Within the fluid region (0 ≤ r ≤ 1), fluid velocity increases as flow parameter M varies

and fluid flowing through Newtonian region (1 ≤ r ≤ 3), velocity decreases as micropolar

parameter increases. Newtonian fluid particles move along a parabolic path within region

(1 < r < 3) whose vertex is upwards (Fig. 11). Also, the path travelled by fluid parti-

cles in outer cylindrical region is cycloidal and fluid velocity v decreases as parameter m

increases with variation of radial coordinate r.

Fig. 11: Variation of fluid velocity with micropolar parameter M .

4.2.2 Effect of porosity (φ)

Figure 12 shows the variation of fluid velocity for flow parameter (φ = 0.2, 0.3, 0.4) by

considering the values of some flow parameters as M = 0.2, λ = 0.2, k1 = 0.3, k2 =

4, k3 = 5, H1 = 1.5, Λ2 = 0.5, Λ3 = 0.25. Within the fluid regions (0 ≤ r ≤ 1) and (3 ≤

r ≤ 5) which are filled with micropolar fluid flows, the micropolar fluid velocity decreases

as porosity increases and also, the flow through Newtonian fluid region (1 ≤ r ≤ 3),

velocity increases as parameter φ increases. Fluid particles move along a parabolic path

18



within region (1 < r < 3). With variation of radial coordinate curve r, streamlines drawn

by fluid particles are parabolic.

Fig. 12: Variation of fluid velocity with porosity φ.

4.2.3 Effect of viscosity ratio (λ)

Variation of fluid velocity is plotted in the figure (13) for viscosity ratio (λ = 1.0, 1.5, 2.0)

along with some fixed values of fluid flow parameters as M = 0.2, φ = 0.5, k1 = 3, k2 =

4, k3 = 5, H1 = 1.5, Λ2 = 0.5, Λ3 = 0.25. The fluid velocity decreases as flow parameter

λ increases in the fluid regions (0 ≤ r < 3), and fluid flowing through outer cylindrical

region (3 ≤ r ≤ 5), velocity increases as viscosity ratio parameter increases. The path

traced by fluid particles through cylindrical region is parabolic.
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Fig. 13: Variation of fluid velocity with viscosity ratio λ.

4.2.4 Effect of Hartmann number (H1)

Plot of fluid velocity for Hartmann number (H1 = 0.1, 0.5, 1.0) is reported in figure (14)

by considering the values of fluid flow parameters as M = 0.2, λ = 0.2, k1 = 0.3, k2 =

4, k3 = 5, φ = 0.5, Λ2 = 0.5, Λ3 = 0.25. Within the fluid region (0 ≤ r ≤ 5), fluid

velocity decreases whenever the flow parameter i.e. Hartmann number H1 increases.
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Fig. 14: Variation of fluid velocity with Hartmann number H1.

4.2.5 Effect of conductivity ratio (Λ2)

Figure 15 shows the variation of fluid velocity for various values of conductivity ratio

(Λ2 = 0.1, 0.3, 0.5) by considering the some fixed values of fluid flow parameters as

M = 0.2, λ = 0.2, k1 = 0.3, k2 = 4, k3 = 5, φ = 0.5, H1 = 1.5, Λ3 = 0.25. Graph

for the conductivity ratio Λ2 is similar to graph plotted for case of Hartmann number.

For the fluid region (0 ≤ r ≤ 5), fluid velocity decreases as flow parameter Λ2 varies and

path traced by each fluid particles is a parabolic path.
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Fig. 15: Variation of fluid velocity with conductivity ratio parameter Λ2.

4.2.6 Effect of conductivity ratio (Λ3)

Variation of fluid velocity is represented for conductivity ratio (Λ3 = 0.2, 0.5, 0.8) by

considering the values of fluid flow parameters as λ = 0.2, k1 = 0.3, k2 = 4, k3 = 5, φ =

0.5, H1 = 1.5, M = 0.2, Λ2 = 0.25. Within the region (0 ≤ r ≤ 5), fluid velocity

increases as flow parameter Λ3 increases (Fig. 16). Streamlines, i.e. path traced out by

each fluid particle in porous cylindrical regions is a parabolic curve along with variation

of radial coordinate curve r.
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Fig. 16: Variation of fluid velocity with conductivity ratio parameter Λ3.

4.2.7 Effect of Darcy number (k1)

Graphical behavior of fluid velocity is plotted for Darcy number (k1 = 0.1, 1.0, 1.5) along

with the fixed values of fluid flow parameters as M = 0.3, λ = 0.2, k2 = 4, k3 = 5, φ =

0.5, H1 = 0.5, Λ2 = 0.5, Λ3 = 0.25 (Fig. 17). On the investigation, we get that the

fluid velocity increases continuously as Darcy number k1 increases with radial coordinate

r. Variations in the fluid velocity are found more sharply in inner cylindrical regions

(0 ≤ r ≤ 3) compared to outer cylindrical region (3 ≤ r ≤ 5). Streamlines coincide for

each values of Darcy number through outer porous cylindrical region.
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Fig. 17: Variation of fluid velocity with Darcy number k1.

4.2.8 Effect of Darcy number (k2)

Variation of the fluid velocity is investigated for viscosity ratio (k2 = 0.2, 0.4, 0.6) in the

figure 18 by fixing the values of the fluid flow parameters as M = 0.2, λ = 0.2, k1 =

0.3, k3 = 5, φ = 0.5, H1 = 1.5, Λ2 = 0.5, Λ3 = 0.25. Within the fluid region (0 ≤ r ≤ 5),

fluid velocity increases as flow parameter i.e. Darcy number k2 increases.
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Fig. 18: Variation of fluid velocity with Darcy number k2.

4.2.9 Effect of Darcy number (k3)

Graph of fluid velocity is plotted for Darcy number (k3 = 0.2, 0.4, 0.6) corresponding to

outer cylindrical region (3 < r < 5). Considering the values of fluid flow parameters as

micropolar parameter (M = 0.2) viscosity ratio (λ = 0.2), porosity (φ = 0.5), Hartmann

number (H1 = 1.5), conductivity ratio parameters (Λ2 = 0.5, Λ3 = 0.25), Darcy numbers

(k1 = 0.3, k2 = 5) for plotting. Streamlines coincide for each values of Darcy number

through inner porous cylindrical region (0 ≤ r ≤ 1) only while different curves (i.e.

streamlines) are obtained for remaining porous cylindrical regions (1 ≤ r ≤ 5). Fluid

velocity decreases as parameter k3 increases and fluid particles move along a parabolic

path within region (1 < r < 3) whose vertex is upwards(Fig. 19).
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Fig. 19: Variation of fluid velocity with Darcy number k3.

5 Conclusion

In the present study, we investigated the Newtonian fluid which is sandwiched between

two immiscible micropolar fluids flowing through coaxial porous cylindrical regions under

the influence of external uniform magnetic field. Motions of fluids are happening along

the axis of cylinders and also, the direction of magnetic field is taken as the direction

perpendicular to fluid motion. Fluid velocities (both Newtonian and micropolar), mi-

crorotations and shear stresses are determined using analyticity condition, continuity of

velocity, continuity of microrotation and continuity of stresses. Volumetric flow rate is

evaluated analytically. The graphical behaviors for flow rate and fluid velocity for various

values of flow parameters (namely micropolar parameter, porosity, Hartmann number,

viscosity ratio, Darcy numbers corresponding to each regions and conductivity ratio pa-

rameters) have been discussed. It is observed that the behaviour of volumetric flow rate

is similar in the case of micropolar parameter, porosity, Darcy number for outer cylindri-

cal region. Similar behaviours for velocity profiles are obtained in the case of Hartmann
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number and conductivity ratio parameter (Λ2). This research work will help and mo-

tivate young researchers to investigate the problems related to composite behaviours of

Newtonian and non- Newtonian fluids. The significance of the proposed mathematical

model is that it explains the effects of magnetic field, porosity, viscosity ratio, different

permeabilities, i.e. Darcy numbers and conductivity ratios. Furthermore, this study will

be useful in purification of contaminated groundwater, blood flows through veins/arteries,

extraction of highly viscous crude oils, etc..
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Figures

Figure 1

Schematic diagram of the problem



Figure 2

Variation of �ow rate with micropolar parameter M.



Figure 3

Variation of flow rate with porosity φ.



Figure 4

Variation of flow rate with viscosity ratio parameter λ.



Figure 5

Variation of flow rate with Hartmann number H1.



Figure 6

Variation of flow rate with conductivty ratio parameter Λ2.



Figure 7

Variation of flow rate with conductivty ratio parameter Λ3.



Figure 8

Variation of flow rate with Darcy number k1.



Figure 9

Variation of flow rate with Darcy number k2.



Figure 10

Variation of flow rate with Darcy number k3.



Figure 11

Variation of fluid velocity with micropolar parameter M.



Figure 12

Variation of fluid velocity with porosity φ.



Figure 13

Variation of fluid velocity with viscosity ratio λ.



Figure 14

Variation of fluid velocity with Hartmann number H1.



Figure 15

Variation of fluid velocity with conductivity ratio parameter Λ2.



Figure 16

Variation of fluid velocity with conductivity ratio parameter Λ3.



Figure 17

Variation of fluid velocity with Darcy number k1.



Figure 18

Variation of fluid velocity with Darcy number k2.



Figure 19

Variation of fluid velocity with Darcy number k3.


