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Effect of maintaining neck flexion on anti-saccade
reaction time: an investigation using transcranial
magnetic stimulation to the frontal oculomotor
field
Kenji Kunita1* and Katsuo Fujiwara2
Abstract

Background: Reaction time for anti-saccade, in which the gaze is directed to the position opposite to an illuminated
target, shortens during maintenance of neck flexion. The present study applied transcranial magnetic stimulation (TMS)
to the frontal oculomotor field, and investigated the effect of maintaining neck flexion on information processing time
in the anti-saccade neural pathway before the frontal oculomotor field.

Methods: The reaction time was measured with the chin resting on a stand (‘chin-on’ condition) and with voluntary
maintenance of neck flexion (‘chin-off’ condition) at 80% maximal neck flexion angle, with and without TMS. The TMS
timing producing the longest prolongation of the reaction time was first roughly identified for 10 ms intervals from 0
to 180 ms after the target presentation. Thereafter, TMS timing was set finely at 2 ms intervals from −20 to +20 ms of
the 10 ms step that produced the longest prolongation.

Results: The reaction time without TMS was significantly shorter (21.9 ms) for the chin-off (235.9 ± 14.9 ms) than for
the chin-on (257.5 ± 17.1 ms) condition. Furthermore, TMS timing producing maximal prolongation of the reaction time
was significantly earlier (18.6 ms) for the chin-off than the chin-on condition. The ratio of the forward shift in TMS
timing relative to the reduction in reaction time was 87.8%.

Conclusions: We confirmed that information processing time in the anti-saccade neural pathway before the
frontal oculomotor field shortened while neck flexion was maintained, and that this reduction time accounted for
approximately 88% of the shortening of reaction time.

Keywords: Neck flexion, Brain activation, Transcranial magnetic stimulation, Frontal oculomotor field,
Anti-saccade reaction time
Background
In humans, a basic dynamic posture in which the foot,
knee, hip, and neck joints, and the trunk are slightly flexed
is common for sudden initiation of various motions, and
when pursuing a rapidly moving visual target [1]. Main-
taining the neck flexion position, which constitutes a part
of this dynamic posture, leads to non-specific activation of
the brain. This results in: 1) shortened limb and saccade
reaction times [2-5]; 2) reduced latencies of visual,
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auditory, and somatosensory evoked potentials, and
increased amplitudes of auditory evoked potentials [6,7];
3) increased oxy-hemoglobin concentration, taken as an
index of cerebral blood flow, in the visual, auditory, and
somatosensory areas [6]; 4) increased amplitudes of the
event-related potentials associated with motor preparation
and cognition [3,8]; and 5) shortened latencies and in-
creased amplitudes of motor evoked potentials (MEPs)
evoked by transcranial magnetic stimulation (TMS) [9].
In one experiment, the P100 latency of the visual

evoked potential (VEP), reflecting information process-
ing in the neural pathway prior to the visual area, de-
creased by approximately 3.6 ms while neck flexion
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position was maintained [7]. By contrast, there was
greater shortening in information processing time in the
pro-saccade neural pathway beyond the visual area; this
decreased by approximately 10 ms during maintenance
of the neck flexion position [2]. Irrespective of any dif-
ferences between information processing associated with
the P100 component of the VEP and that associated with
the saccade, the fact that shortening of the processing
times differed between these two functions suggests that
there should be shortening of information processing time
beyond the visual area when neck flexion is maintained.
The shortening of reaction time associated with main-

taining neck flexion was also found in anti-saccade, in
which gaze is oriented to a location situated at the same
visual angle but in the opposite direction to an illumi-
nated target [10], and this shortening was of a greater
magnitude than that seen in pro-saccade [4]. Multiple
cortical and subcortical regions are involved in anti-
saccade, including the visual, parietal, prefrontal, and an-
terior cingulate cortices, frontal and supplementary eye
fields, basal ganglia, cerebellum, thalamus, and superior
colliculus [11-14]. The frontal eye field (FEF) in the
frontal oculomotor field has an important role in sac-
cadic triggering. It is known that TMS interferes with
the information processing at the FEF, and that subse-
quently, the information processing time in the neural
pathway involving the FEF is prolonged. In previous
studies [15-17], when TMS was applied to the FEF ap-
proximately 100 ms after the target presentation, the
anti-saccade reaction time increased. Thus, information
processing time in the anti-saccade neural pathway be-
fore the frontal oculomotor field can be examined by the
TMS interference method. Furthermore, it is possible to
investigate the shortening of the information processing
time beyond the frontal oculomotor field in the anti-
saccade neural pathway, based on the reduction in the
Figure 1 Experimental setup. (A) Angle detector for neck angle; (B) angl
anti-saccade reaction time and the information process-
ing time occurring before the frontal oculomotor field.
We investigated changes in TMS timing at which

maximal prolongation of anti-saccade reaction time was
observed during maintenance of neck flexion.

Methods
Participants
In a preliminary experiment, we measured the anti-
saccade reaction time during maintenance of neck flexion
in 14 participants, and selected 11 participants (8 men, 3
women, age (mean ± SD) 23.3 ± 2.9 years) who exhibited
shortening of this reaction time. Participants had no his-
tory of neurological or orthopedic impairment.
In accordance with the Declaration of Helsinki, all par-

ticipants provided written informed consent after receiv-
ing an explanation of the experimental protocols and
how their privacy would be protected. The experimental
protocols were approved by our institutional ethics
committee.

Apparatus and data recording
The experimental setup is shown in Figure 1. Partici-
pants sat on a steel-frame chair with the back resting
against a vertical wall, and the trunk secured by a cotton
band to prevent anteroposterior movement. They kept
the knees flexed at approximately 90° and rested the feet
on a low table. Neck flexion angle was defined as the ro-
tational angle of the tragus around the acromion in the
sagittal plane, with the starting position (0°) being a
quiet sitting posture. We determined 80% of maximal
neck flexion (neck flexion position) for each subject
using a custom-made angular detector with the center
point set at the acromion, while regulating the distance
between the acromion and tragus. Head inclination
angle was determined as the angle between the auriculo-
e detector for head inclination angle; (C) chin stand.
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infraorbital line and the gravitational line, and this was
maintained at the same angle as the sitting posture to
maintain constant sensory inputs from the vestibular organ.
An angular detector (Level + angle detector; Mitsutomo,
Tokyo, Japan), using the pendulum principle, was attached
to the temple to confirm this angle. A chin stand was used
to support the head and to allow maximal relaxation of the
neck extensor muscles.
A visual stimulator (LPK2000; Electro Design, Chiba,

Japan) was used to induce saccadic eye movement.
Light-emitting diodes (LEDs), which were located at the
central fixation point and at the targets, were illumi-
nated for time periods set by a microcomputer within
the stimulator. LEDs were placed at the height of the
participant’s nose root, and the distance between the
Figure 2 Reference grid markers and transcranial magnetic stimulatio
muscle and the frontal oculomotor field.
LED at the central fixation point and the nose root was
set at 50 cm. The central fixation point was illuminated
for a random duration of 2 to 4 seconds, and one of the
lateral targets was subsequently illuminated for 1 s. The
four lateral targets were located at 5 and 10° to the left
and right of the central fixation point, and were pre-
sented in random. The target triggering a saccade of 10°
to the right (10° target to the left) appeared on 70% of
occasions, while the other three targets each appeared
on 10% of occasions. To measure the calibration ampli-
tude of the anti-saccade, the central fixation point and
the target of 10° to the right were illuminated for a dur-
ation of 2 seconds each.
Eye movement was measured using the electro-

oculography (EOG) technique. Horizontal EOG was
n (TMS) to the motor area of the first dorsal interosseous (FDI)
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recorded from surface electrodes (P-00-S; Ambu, Ballerup,
Denmark) on the outer canthus of each eye, and vertical
EOG from the electrodes above and below the left eye. A
ground electrode was placed at the center of the forehead.
Electrode-input impedance was reduced to less than 10
kΩ. The signal from the electrodes was amplified (×2,000)
using a DC amplifier (AN-601G; Nihon Kohden, Tokyo,
Japan). To obtain stable EOG traces, recording began at
least 20 minutes after placement of the electrodes.
TMS was applied to the left hemisphere by a magnetic

stimulator (MagStim 200, West Wales, UK) with a
figure-of-eight coil (each wing 90 mm in diameter). In
previous studies, single-pulse TMS has been used to
identify the motor area of the first dorsal interosseous
(FDI) muscle [18-20] and the frontal oculomotor field
[15-17,21]. In the present study, the single-pulse TMS
was delivered over various regions of the scalp to iden-
tify that motor area and the frontal oculomotor field
(Figure 2). The nasion, inion, vertex, and bilateral pre-
auricular points were located according to the 10–20
international electrode method. Reference lines were
drawn between the nasion and inion and between the
vertex and preauricular points, on a tightly fitting rubber
cap. Then grid markers on the left hemisphere were
made by drawing additional lines parallel to the refer-
ence lines such that the distance between these parallel
lines was 1 cm [22]. The hand motor area has been used
as a reference point to the areas where saccades were
most affected by TMS [16,17,23]. According to previous
studies, when applying TMS to the motor area of the
FDI muscle, the coil was placed on the scalp with its
handle oriented backward and at 45° leftward relative to
the midline [19,24,25]. Furthermore, in previous studies,
stimulation over the frontal oculomotor field has been
performed with the coil handle pointing backwards
[21,23,26]. In the present study, the coil handle
Figure 3 Motor evoked potential generated by transcranial magnetic
interosseous (FDI) muscle on the right side in the first experiment.
directions in TMS to the motor area of the FDI muscle
and the frontal oculomotor field were consistent with
those in previous studies.
Surface electrodes with bipolar derivation were used to

monitor and record surface electromyography (EMG)
activity of the muscles of the right FDI muscle and the
bilateral upper trapezius. Inter-electrode distance was
about 1.5 cm for FDI muscle and about 3 cm for trapezius.
Signals from electrodes were amplified 1,000 times and
band-pass filtered at 20 to 500 Hz for FDI, and 2,000
times and 1.6 to 500 Hz for trapezius, using an EMG
amplifier (6R12; NEC, Tokyo, Japan). To monitor the
EMG of the trapezius, the signal was directed to a digital
oscilloscope (DS-6612; Iwatsu, Tokyo, Japan). Electrode
impedances were reduced to less than 2 kΩ.

Procedure
Prior to the start of measurement, participants contracted
and relaxed the shoulder girdle elevator muscles several
times, and then exhaled deeply to relax the trapezius
muscle. The experimenter verbally instructed the subject
to relax the trapezius muscle, and relaxation of that
muscle was confirmed by EMG.
The motor area of FDI was determined as the site at

which MEP was elicited by TMS (Figure 3). The minimal
TMS intensity required to obtain EMG responses in the
FDI muscle exceeding 50 μV in more than half of the
trials was used [20,27-29]. Previous studies have re-
ported that the motor area of the FDI muscle is located
approximately 5 cm lateral to the vertex [30,31]. Based
on the point 5 cm lateral to the vertex, the center of the
coil was set at various points in 0.5 cm steps in the
anterior-posterior and left-right directions. The position
of the FEF in the frontal oculomotor field has been re-
ported at 2 cm anterior or 2 to 4 cm anterior/2 to 4 cm
lateral to the hand motor area [16,17,23]. To identify the
stimulation (TMS) to the motor area of the first dorsal



Figure 4 Representative waves of visual target, electro-oculography (EOG), and electromyography of the bilateral upper trapezius.
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location of the frontal oculomotor field, based on a loca-
tion 2 cm anterior to the motor area of the FDI, the
TMS coil was positioned at various points in steps of
0.5 cm in the anterior-posterior and left-right directions.
We determined in advance the position of the frontal
oculomotor field at which TMS induced prolongation of
the anti-saccade reaction time. The TMS intensity deliv-
ered to the frontal oculomotor field was set 10% above
the motor threshold over the motor area of the FDI
muscle [21,26,30]. Furthermore, based on a previous
study, TMS timing to identify the position of the frontal
Figure 5 Typical example generated the interference to information p
magnetic stimulation (TMS) was applied to the frontal oculomotor fie
oculomotor field was set at 80 to 120 ms after target
presentation [17].
After identifying the motor area of the FDI muscle and

the frontal oculomotor field, the anti-saccade reaction
time was measured with the chin resting on a stand (chin-
on condition) and with voluntary maintenance of neck
flexion (chin-off condition) at 80% maximal neck flexion
angle, with and without TMS. First, the reaction time
without TMS was measured (first experiment; Figure 4).
A trial block under each postural condition comprised 20
trials triggering 10° of saccade to the right. In the second
rocessing associated with the anti-saccade when the transcranial
ld 100 ms after the target stimulation. EOG, electro-oculography.



Figure 6 Typical example of the relationship between application timing of transcranial magnetic stimulation (TMS) and anti-saccade
reaction time in the second experiment.

Figure 7 Mean and standard deviation of anti-saccade reaction
time without transcranial magnetic stimulation under the chin-
on and chin-off conditions. *P < 0.01.
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experiment, we varied the TMS timing by 10-ms intervals
from 0 to 180 ms after the target presentation (Figure 5).
The TMS timing was set at random for each postural con-
dition, and two trials triggering 10° of saccade to the right
were obtained for each time period. Total trial numbers in
the second experiment were 38 under each postural con-
dition. Figure 6 shows a typical example of the relation-
ship between TMS timing and anti-saccade reaction time.
The TMS time period generating the longest prolongation
of the reaction time was identified in each condition. In
the third experiment, for a −20- to +20 ms bandwidth of
the 10 ms step producing the longest prolongation in each
condition, TMS timing was set at every 2 ms. The TMS
timing was set at random for each condition, and two tri-
als triggering 10° of saccade to the right were obtained for
each time period. Total trial numbers in the third experi-
ment were 42 under each postural condition.
The measurement sequence was randomly set be-

tween postural conditions for all experiments. Further-
more, after the measurement of saccadic reaction time
in each postural condition, the subject alternately gazed
at the central fixation point and the target of 10° to the
right, and 10 saccadic calibration amplitudes were re-
corded. A 3 minute rest was taken between each pos-
tural condition. Measurements were completed within
2 hours to prevent subject fatigue.

Data analysis
EOG and visual stimulus data were sent to a computer
via an A/D converter at 1,000 Hz with 16-bit resolution.
We analyzed the reaction time and the amplitude ratio
of practice to calibrated saccades for anti-saccade of 10°
to the right. Reaction time was defined as latency to the
beginning of eye movement following target appearance.
Onset of eye movement was determined by visual
inspection of EOG displacement, which was easily dis-
cernible from baseline. The saccadic amplitude was de-
termined as the difference of amplitude between
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1 second before the onset of the visual target and 1 sec-
ond after the cessation of saccade. Analysis of saccadic
parameters was performed using BIMUTAS-II software
(Kissei Comtec, Nagano, Japan).

Statistical analysis
The Shapiro-Wilks test confirmed that all data satisfied
the assumption of normality. The effect of condition on
saccadic reaction time, interval between target presenta-
tion and TMS application that produced the longest reac-
tion time (target-TMS interval), and amplitude ratio was
analyzed using a paired t-test. Pearson’s correlation was
used to examine the relationship between the shortening
of the target-TMS interval and the reduction in anti-
saccade reaction time. Alpha level was set at P = 0.05. All
statistical analyses were performed using SPSS 14.0 J (IBM
Japan, Tokyo, Japan). All data are presented as mean ± SD.

Results
The motor area of FDI was located 3.6 ± 1.0 cm lateral
to the vertex and 0.3 ± 0.7 cm anterior to the line be-
tween the vertex and preauricular points. The TMS in-
tensity at this point was 54.0 ± 6.2%. The position of the
frontal oculomotor field at which prolongation of reac-
tion time by TMS was observed was 4.9 ± 1.2 cm lateral
to the vertex, and 2.5 ± 1.1 cm anterior to the line be-
tween the vertex and preauricular points. The TMS inten-
sity at this point was 59.3 ± 7.3%. The position of the
frontal oculomotor field was 1.1 ± 1.0 cm lateral and 2.4 ±
0.7 cm anterior to the motor area of FDI.
Amplitude ratio of practice to calibrated-saccades

ranged from 99.1 ± 29.9% to 105.3 ± 22.9% in the first and
third experiments. Figure 7 shows the anti-saccade reac-
tion time without TMS under both conditions. The reac-
tion time was significantly shorter under the chin-off
Figure 8 Typical example of the relationship between application tim
reaction time in the third experiment.
condition than under the chin-on condition (235.9 ±
14.9 ms vs. 257.5 ± 17.1 ms, degrees of freedom (df) = 10,
t = 6.33, P < 0.01), representing a shortening of 21.9 ±
11.4 ms. A typical example of the relationship between
TMS timing and anti-saccade reaction time in the third
experiment is shown as a quadratic function in Figure 8.
The correlation coefficient between the two parameters,
calculated by a quadratic function, ranged from 0.320 to
0.681 under the chin-on condition, and from 0.312 to
0.644 under the chin-off condition, hence the two parame-
ters were found to be significantly correlated. The TMS
timing eliciting the longest reaction time, estimated by the
quadratic function, was significantly shorter under the
chin-off condition than under the chin-on condition
(88.0 ± 15.6 ms vs. 106.6 ± 14.4 ms, df = 10, t= 5.16, P < 0.01;
Figure 9). This represented a shift toward earlier TMS
timing of 18.6 ± 12.0 ms. The correlation coefficient be-
tween the shortening of the target-TMS interval and
aforementioned shortening of the anti-saccade reaction
time was significant at 0.827 (df = 9, t = 4.41, P < 0.01;
Figure 10). The ratio of the early shift in TMS timing
relative to shortening of the reaction time was 87.8 ±
32.8%.

Discussion
A previous study found that saccadic reaction time var-
ied with saccade amplitude [32]. In the present study,
amplitude ratio of practice to calibrated saccades ranged
from 99.1% to 105.3% in the first and third experiments.
Thus, the error in amplitude ratio was less than 10%, in-
dicating that the error in movement angle was less than
1°. In the previous study, when the error in visual angle
was less than 1°, no difference in saccadic reaction time
according to visual angle was observed [32]. We can ac-
cordingly discuss the different effects of the chin-on and
ing of transcranial magnetic stimulation (TMS) and anti-saccade



Figure 9 Transcranial magnetic stimulation (TMS) timing
producing the longest anti-saccade reaction time under the
chin-on and chin-off conditions. Data are mean and standard
deviation. *P < 0.01
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chin-off conditions on saccade reaction time and the TMS
timing that produced the longest reaction time, without
addressing the effect of eye movement amplitude.
The frontal oculomotor fields related to anti-saccade

are the FEF and the prefrontal cortex. TMS applied to
the FEF, which is involved in saccadic triggering, has
been reported to interfere with saccadic reaction time
[16,17]. Terao et al. found that the anti-saccade reaction
time lengthened when TMS was applied to the FEF at
100 ms after target presentation [17]. In the present
study, the TMS timing that had the greatest effect on
anti-saccade reaction time was 106.6 ± 14.4 ms in the
chin-on condition, consistent with that previous study
[17]. The position of the FEF in the frontal oculomotor
field has been reported at 2 cm anterior or 2 to 4 cm
anterior/2 to 4 cm lateral to the hand motor area
[16,17,23]. The position of the FEF in relation to the
motor area of FDI, based on Talairach coordination in
functional magnetic resonance imaging studies, is con-
sistent with its position in TMS studies [12,23,26,33]. In
the present study, the position of the frontal oculomotor
field observed to prolong the anti-saccade reaction time
was located 2.4 cm anterior and 1.1 cm lateral relative to
the motor area of FDI. This therefore strongly suggested
that our stimulating position corresponded to the FEF.
The important finding of the present study was that

the interval between target presentation and TMS appli-
cation generating the longest reaction time was signifi-
cantly shorter under the chin-off than the chin-on
condition. The present study is the first in which infor-
mation processing time in the anti-saccade neural path-
way before the frontal oculomotor field decreased
during voluntary maintenance of the neck flexion pos-
ition. This suggests that information processing speed in
the saccade pathway before the frontal oculomotor field
was markedly increased by the brain activation associated
with maintaining the neck flexion position. In the neck
flexion position, the neck extensors activate to maintain
the head and neck in the gravitational environment. The
brain activation is presumably due to ascending activation
associated with muscular sensory information from the
neck extensors, and/or descending activation from the
cerebral cortex, which includes attention-related processes
[34-38]. In a previous study, saccadic reaction time de-
creased during vibration of the trapezius muscle when the
neck was in a resting position [39]. This finding supports
the existence of ascending brain activation from the neck
extensors. Morruzi and Magoun [40] proposed that the
ascending brain activation system originates at the brain-
stem reticular formation, and the system has since been
examined using animal studies, pharmacological experi-
ments, and neurological treatments for patients with brain
dysfunction [38,41,42]. Currently, the activation system is
known to consist of two subsystems: a dorsal pathway
from the reticular formation to the thalamus and cortex,
and a ventral pathway from the reticular formation to the
hypothalamus and cortex [41,42].
The correlation between shortening of the target-

TMS interval and reduction in the reaction time during
maintenance of the neck flexion position was signifi-
cant (r = 0.827). The ratio of shortening of the target-
TMS interval to reduction in the reaction time was
87.8%. Hence, when neck flexion was maintained, re-
duction in information processing time before the frontal
oculomotor field accounted for approximately 88% of the
shortening of anti-saccade reaction time. The present



Figure 10 Correlation of early shifts in timing of transcranial magnetic stimulation (TMS) that produced the longest reaction time and
reduction in the anti-saccade reaction time, under the chin-off condition compared with the chin-on condition.
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study could not identify which portion of the neural path-
way was involved in this reduction in reaction time.
However, findings relevant to this have been reported pre-
viously. In one study, the P100 latency of the VEP de-
creased by approximately 3.6 ms when participants
maintained the neck flexion position [7]. Another study
showed that the P100 component reflects sensory infor-
mation processing in the calcarine sulcus within the visual
area [43]. Although the information processing associ-
ated with the P100 component of the VEP differs from
that associated with anti-saccade, the time reduction in
the pathway before the frontal oculomotor field was
18.6 ± 12.0 ms in anti-saccade, five times greater than
the reduction in P100 latency. This suggests that cor-
tical information processing from the visual area to the
frontal oculomotor field is greatly affected by the brain
activation associated with maintaining the neck flexion
position. By contrast, the neural pathway from the
frontal oculomotor field to the extraocular muscle en-
compasses the basal ganglia, superior colliculus, and
abducens nerve. The information processing time on
this neural pathway beyond the frontal oculomotor
field, based on the anti-saccade reaction time and tim-
ing of TMS that induced prolongation of the reaction
time, was approximately 150 ms, accounting for the
three-fifths of the anti-saccade reaction time. However,
the reduction in information processing time on the
neural pathway beyond the frontal oculomotor field as-
sociated with maintaining neck flexion was approxi-
mately 3 ms, much smaller than that on the neural
pathway before the frontal oculomotor field.

Conclusions
It was clear that the information processing time in the
anti-saccade neural pathway before the frontal oculo-
motor field shortened by 18.6 ms (average) with volun-
tary maintenance of neck flexion. This time accounted
for approximately 88% of the shortening of anti-saccade
reaction time.
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