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ABSTRACT

Pressure changeg induced by a change in inferfacial tension on the
curved interface:of a static drop were used to determine the driving force
and subsequent mo;ioné,of the dopplet interface. At any time, the drop
was considered'static with dynamic pressures imposed on it. Thege dynamic
pressures included the interfacial téﬁsion change caused by solute spread-
ing radially from the apex of the drop along the interface and the effect
of a wave propagating from the apex.

The interfacial tension chéﬁge was achieved experimentally by infro-
ducing a tiny drop'bf a cyclohexanol solution to the apex of a cyclo-
hexané or carbon tetrachloride drop which was’rgsting on a flat plate
immersed in water. High speed motion piétures of the dynamic drops and
of the corresponding motion that occurred in a flat interface were taken.
The mathematical model along with the boundary conditions measured from
the picfures was used to calculate droplet shapes which cohpared favorably

to actual droplet shapes.



INTRODUCTION

To better understand the mechanism of mass transfer in liquid-liquid
systems, a more thorough knowledge of droplet mechanics is necéssary, since
. mass transfer most often occurs when‘one phase is dispersed in the other in
thé form éf drdps. Circulation in the dropiét interior carries solute to
the interface where it transfers across the interface to the outside liqufd;
Concentration gradients In the interface create turbulence in the form of
sponténeous jnterfacial movement producing a rapid change in droplet shapé
and ‘a significant‘increaée in thé inte}facial area available for mass
transfer. Systems which exhibit interfacial turbulence prdvide higher
rates of mass transfer Chan those wlthout interfacial turbulence.

Visual iﬁterfacialitufbulence, the fofmation of small waves at théA.
interface, is caused by a combination of.twq different effects. The first.
of these islthe Marangoni effect where a change in concentration at the
interface causes a surface tension gradient. This gradient produces rapid
ﬁotion~in the plane of thé interface; resulting viscous shear stresses
transmit this motion to the bulk phases in the immediate vicinity of the.'
interface.> If the interface remains planar during this movement, there is
no‘visual'turbulence._ However, if-the‘interface should become curved when
an interfacial tension gradient is imposed, a second effect will cause
movement perpendicular to the interface. This secondary effect causes a
violent change in the shape of the droplet interface due to the sudden
imbalance of pressure across the interface. When the interface is

initially flat, the deformation may be in the form of small waves or

ripples.



The purpose of this work is to develop a model to describe the change
in droplet shape that occurs in ﬁonjunction with the Marangoni effect.
The model was developed by introducing apbroximate dynamic:préssures,
based pértly on qualitatlve obgervations, into the equations descrfbing a
static drép. TheldyhamicApres§ures inciude the effect of a variation of
interfacial tenﬁion dist;ibution Qith time and the effect of a wave that
propagates from fhe droplet apex. The droplet profiles predicted by the
mode | weré compared to measurements obtained from high speed motion pic-
tures.éf an actual drop of known initial curvature undergoing motion in-

duced by a prescribed concentration change.



L1 TERATURE REVIEW

An excellent reviéw of the literature on interfacial dynamics has
been given by Scriven and Stefn]ing (19), who cite articles beginning
with the first correct description by James Thomson (24) of what has
'4be;§me known as the Marangoni effeqt; to articles published in 1959.
Because ThomSon'sAwork went unnoticed for several years and because .
Marangoni cohtributed a great deal of dualitative information about surface.
tension variations, the effect was given his name.

Although motions driven by interfacial tension gradients were khown
to exist, their importance in mass‘traﬁsfer operations did not become
apparent until the early 1950's. Lewis and Pratt (12), working at
Britain's Atomic ﬁnérgy Research Establishment at Harwell, had developed
an empérica] correlation rglating the diameter of drops in packed columns
"to the surface tension and the densities of the liquids used. The corre-
lation was restricted to systems where the two liquid phases were in mutual
equilibrium with a solute. However, in later experiments when the solute
was not equilibrated, mass transfer occurred and the actual droplet size
was larger than predicted by their earlier correlation. They thougﬁt this
might have been due to higher interfacial tension, but found that the inter-
facial tension measured experimentally was not only lower, but also that
the drops were disturbed by '""rippling' of the surface and "'erratic pulsa-
tions.!" Aluminum powdér spriﬁkled on the surface showed that ''violent cir~
culation' was taking place. They speculated that this was caused by ther-
mal ~gradients set up by heats of reaction of the transferring solutes.

Garner, Nutt, and Mohtadi (5) working at the same laboratory,



contributed additional qualitative information by observing that droplet
motion dépended upon the rate of droplet formation, solute concentration,
and nature of the liquids. They also found that small amounts of a sur-
face active compound dissolved in the drop suppressedithe pulsating be-
haviof.

Lewis (11) Bui]t a two phase mass transfer cell to obtain mass -trans-
fer aata for testing tHe two film theory. Using the film theory, he calcu-
lated mass transfer coefficients for a single phase using a two component
system and developed an empirical correlation for mass transfer coeffi-
cients as a function of stirring speed and kinematlic viscosity. Using this
. correlation, he calculated mass transfer rates for three componenf systems,
assuming that resistance to mass transfer at the interface was negligible.

0f thirty-two systems whiéh were used to compare calculated’méss
'transfér rates to experimental mass transfer rates, fifteen .were in
reasonable agreement, eight were faster, and nine were slower than pre-
dicted. All eight systems that had high mass transfer éoefficients also
exhibi ted mafkedninterfacial turbulence. One of his conclusions‘was that
the film theory should not be used to correlate mass transfer data in
systems where interfacial turbulence is bresent.

Sherwood and Wei (20), using an apparatus similar to that of Lewis,
.planned to obtain liquid-liquid extraction data that could test the
validity of the.film and penetration theories éf mass transfer. Systems
were chosen in which a chemical reaction would occur and in which the
kinetics of the reaction were known because they wanted to find the effect

of ion movement as opposed to the diffusion of molecules. Their data



gave much higher overal]‘maSS'transfér coefficients than the film theory
could account for and the following possible causes were listed:>

(1) faster ibn diffusion

(2) concentration effect on distribution coefficient

3) femperéture change due to chemical reaction

) interfacial‘turbﬁlence.
4They céncluded, for their system, that interfacial turbulence was an fm-
portant factor in determining mass transfer rates and proceéded to ébéerve
interfacial motion for severai other systems. In almost every case there
was rippling of the surface aﬁd a ﬁendency toward spontaneous emulsifi-
'_cation.

Zuiderweg and Harmens (26) found interfacial effects in distillation
of binary systems in various types of eqﬁipment. Interfacial tension
variations seemed to have a significant effect on the contact area between
the liquid and gas phases and also on the mass transfer rates, especially
in equipment where bubbles or drops were involved. They suggested that
surface tension variations have a greater effect than density, viscosity,
or diffusivity v,‘vériations.

Haydon (7) injected acetone toward pendant water drops immersed in
toluene and noticed that they ''kicked' violently in the direction of the
capillary from which the acetone was introduced. Similar results were
found for an air bubble in toluene.

In a related experiment, when a water drop was immersed in a uniform
solution of acetone in toluene, the water drop oscillated erratically.

However, when an air bubble was used in place of the water drop, there



were no signs of movement. Since the amount of acetone transferred to the
air bubble was negligible, there was no loéal concentration change af the
interface of the aif bubble. Thus, he concluded Fhat an essential con-
dition for oscillation was a ﬁon-uniform'solute distfibution around the
drop. | o

Haydon and Davies (8) conpinued'the investigation with a more quénti-
tative abproach; For a model fhey gsgd spherical pendant drops that wouldA
ﬁove as a pendulum rather than;deforh’under the influence of mass trans-
fer. They modified Laplace's équation to iﬁclude the effect of an inter-
facial tension change over the :area influenced by the concentration fluctu-
ation at the interface. 'The modiffedAeqﬁétion was'Pi - Po = 2(c ~ Ac)/r.
The Ao term is equivalent to increasing the pressure inside the drop, thus
causing the drop. to kick in the,direction observed experimental]y. They
a]so noted the possibility of a change iﬁ curvature in addition to a ''kick"
but fhfs‘was not observed experimentally.

An expreésion was derived to calculate the maximum energy that could
be instanteously imparted to‘a unft area of the drop due to a known change
in interfacial tension. They assumed that all this energy was dissipated
during subsequent oscillations of the pendant drop. This energy dissi-
pation was mathematically described by assuming that the drop behaved as
a.sphere movihg through a viscouﬁ‘flufd. From the resuiting mathematical
expression along.with droplet vélocity“and disﬁlacement measufements, the
energy dissipation due to viscosity was calculated. Then the energy im-
parted to the drop was compared to the energy ﬁissipated andAthey agreed

to the extent that the basic assumptions in their calculations were



confirmed. .
| in an exﬁerimenta%iapparatus devised by Pétré ahd Schayer-Polischuk
(15) two liquid drops were connected by a tube so that the avérage pressure
was. the same in.both drops. They were thh pléced iﬁ a chamber filled with

liquid, but the chamber was diVided by a partition. ;A solute was then
addéd to tﬁat part of the system containing onl? one;of the drops. The
corresponding pressure change.affectéd the size of the other drop wi thout
disturbing its infékfécial tension. At équ(librium the curvatures of two
such drops aré related by oA/gB = RA/RB' | |

.Of special Interest in this work were the condiﬁions that caused an
instability whe(eTOne of the drops broke away. Measyrements_were made so
that the ratio of the.curvatures could be plotted agéinst the ratio of the
hefghts of the two drops. When the.préjected equiliprium for a prescribed
interfacial tengfon cbanée represented a pofnt on the plot‘where the slope
was positive, tHe'system was unstable. Physically, this represented the
condi tion where;tﬁe radius of curvature was less thah the radius of the
tube connectingkthe drops. This type of equipment might alsd be uséful

in isolating the effect of a concentration change on the interfacial

.pressure drops

With a qualitative picture of interfacial turBQﬂence in mind, Stern-
ling and Scriven (21) ana]yéed tHe problem mathematiéally fo‘predict what
coﬁHitions were necessary for interfacial turbulence to occur. They con-
sidered a flat, s;miéinfinite interface with two diménsional disturbances.
The diffusion equatidn, along with linear{ zed equations of motion, enabled

them to solve for a dimensionless wave number. and a dimensionless growth



constant. The signs of these numbers; whi;h are functions of physical
constants, detefmine stabillty or instability. The importancé of their
work is that they have shown that interfacial_turbulence is a result of
hydrodynamic instability which creates conditioné required for the
Maréngoni effect. |
Orell and Westwater (13) tried to verify experimentally the theory of

Sternling and Scriven. They uséd a Schlieren apparatus to view a-liquid-
Iiﬁuid interface under the influence of mass transfer and reasoned that
the same types of cellular patterns that deVeIop at the interface in tﬁermal
instability should also- appear during.interfacial mass transfer. These are
| the patterns‘viewed by Bénard when he spread small particles on the surface
of a liquid Beated from below. Rayleigh (16) explained these patterns
mathematically on the basis of hydrodynamic instability due to density
variations. (Recently if Has been shown ;hat Bénard's hexagonal cells were
also a result of surface tension variations (2, ]4))._

FAs expected, Orell and Westwater found that ploygonal cells having
from three to seven sides formed at the interface.. They also encountered
stripes--elongated bands iying parallel to each other and slowly propaga-
ting across the interface. Stripes did not occur until the interfacial
contact had exceeded fifteen hours. They afso noticed rippleé confined by
cell br stripe boundaries.

They measured the cell diameters, which are equivélent to the wave
lengths described by Sternling and Scrivén. The wave lengths calculated
from the theory were approximately an oraer of magnitude smaller than those

found experimentally and observed phenomena was concluded to be much more



complex than the present theory suggests.

Sawistowski and Goltz (17) aTs§ used a Schlieren arrangement to
determine the onset of interfacial_tufbulence. Their interface was that of
a drop formed and withdrawn by the same nozzle. " They correlated the mass
fransfer coefficient for cases of visual and non-visual turbulence and
found that in thé turbulent regime, the rafe of mass transfer was a
function of the solute concentration and increased almost linearly with
the equilibrium interfacial tension cHanges that might occur dué to con;
centration changes. |

In a short communication, Ellis aﬁd Biddulph (3) discussed the mecha-
nism for wave formation on a flat interface. They said that the inter-
action between the surface tension variation and the rate of surface
movement in the plane of the inteface sets up bulk phase motions which
tend to move the interface when the interface is most vulnerable to a
change in shape.

Valentine, Sather, and Heideger (25) presented a more quantitative
analysis of the motion of an interféce, They coalesced a free stream drop
with a small drop of surface active material and observed the resultant
changes in shape. 'They calculated the internal energy change due to dis-
placement, wave motion, and oscillation, and let the remainder be due to
“"unassigned circulatory flow." They found that 19 to 61 percent of the
total energy dissipation was accounted for by motions other than '"un-
assigned circulatory flow.!" Further developing a treatment by Lamb on
oscillating liquid spheres for two liquid phases, they compared calcu-

lated values for oscillation frequency and amplitude decay constant to
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those Sbtained experihentally. The calculated frequencie§ agréed wi thin
35 percent but the decay constants were nearly an order of magnitude too
high. The a;sumptions Qsed in the development were very Iimitiﬁg, however,
and large errors were not unexpected. |

' Most‘recenpfy, Suci u, Smigélschi, and Ruckenstein (23) studied thg
phenomenon of spréading of thin, soluble, surface films. They fed,sdlute '
onto a surfacg, éllowing it to spread radfally at steady state and obsér-
ving the resultigg flow patterns with a Schlieren apparatus. They used
several systems and reported qualitatively tHe results in terms of wave
formation and the type of film formation.

In a more recent article (22) the same authors reported 6n continued
work with the same experiméntal apparatus, but iﬁ addi.tion, a photographic
system had been devised to measure film velocities as a function of radius.
The contact angle of the film with the bulk iiquid was measured andAfound
to be smaller than for equilibrium contact of the same two liquids. This
di fference was attributed to wHat was called dynamic values of inter-
facial tension which were different from those obtained in static inter-
facial tension measurements and to surface velocities which produced

forces that must be balanced by interfacial tension forces.



STATIC DROPS

This section provides the background for understanding the mathe-
matical description of three form§ of stétic drops:

1) a drop in static equilibrium resting on a flat surface

'2) a hypothetical stétic drop with a non-uniform interfacial‘tension

3) a drop having an upward force applied in the region of the apex.
All of the drops wili be considered surfaces of revolutioh and will be
affected only by forces which are symmetrical with respect to the axis of
Arevolutlon. The principles formulated here will be extended and applied

lTater in the description of dynamic drops.

‘Drop Resting on a Solid Surface
In general, the shape of any liquid-liquid interface of uniform inter-

facial tension may be described by the equation of Young and Laplace,

P=o(g—+37 ). (1)
A o} rRl R2 _ (

The interfacial tension, g, is a physical constant for a given static
system. To calculate the coordinates of the interface, a functional re-
létionship is necessafy to relate AP, the pressure drop across the inter-
face and the two radii of curvature, Rl and Rﬁ: in terms of the coordi-
nates. Bashforth.énd Adams (1) present the equations and show how a
Runge~-Kutta integration may be uged to solve for the'interfacial coordi -
nates.

They located the origin of their coordinate system at the apex of

the drop as in Figure 1. The pressure drop at any point is the pressure



zi+l

Figure 1. Droplet geometry for a surface of revolution.
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drop at the origin pTus the pressure drop due to hydrostatic head,

' 1 1
AP = APO + (pd = pc)gz - O'( R] + RZ ) ‘ (2)
However, at the origin (z = 0), R]-and R, are equal for a surface of
revolution and their common value is set equal to b, the radius of curva-

ture at the origin. Equation (2) now becomes

APO = 2¢/b _ , : ()

and substituting this result back into (2) gives

20/b + (pg = 0c)92 = of R: ' R; - “

The geometry of the surface provides the relations:

_ _ds : o (5)

R] ds

1 _ sin_ 8 . (6)

Ry B X 4

j: = cos &, and (7)
—gf— = sin & . : _ (8)

Substituting the equality in (6) for R, and solving for l/R], in Equations

(4) and (5) yields

dd = - sin & + Ap 92 + 2 . (9)

ds X - b
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Now there are three differential equations (7), (8), and (9) in terms of
the'dependent variables x, z, and &and the dependent variable, s. These
equations may be integrated numerically for given values.of the parameter,
b, whose value for a given drop fs uniquely determined when‘the boundary
conditions are satisfied.

Suppose the volume of the drop ahd'its angle of contact with a solid
surface at its base are known.. These are the boundary conditions in the
sense that the numerical integration is tefminated when & reaches a pre-
scribed vafue;'then the vo]umé under the surface of revolution defined by
the solution-fo the three differentjal_equationé is calculated. The value
of b is corrected and the equafion solved again until the con;act angle
is satisfied and simultaneously the calculated volume agrees with the

known droplet volume,

Drop with Non-uniform Interfacial Tension
This procedure can also be used to consider the shape a drop with a

non=-uniform interfacial tension would assume if it were possible for such

a drop to exist in a static conditibn. In the strictest sense, an inter-
facial tension gradiént can only exist when‘velocity gradients at the
interface produce stresses which tend to balance the interfacial im-
balance (Landau and Lifschitz (10)). However, once an interfacial tension
gradient is established, it may be balanced to some extent by an alteration
in curvature. To determine the equilibrium shape tendency of a drop under
these conditions a limiting qase is considered where the imbalance of

interfacial tension forces is completely balanced by a change in == .
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curvature and,hydrostatié head. Equation (1) ‘is no longer valid under
this hypothesis and a new developmeﬁt must be considered.

Let AP be the average pressure drop across the element‘of.interface
‘described by revolving As in Fig;re 1. The vertical force resulting from
the pressure drop is AP 2tx A*. This force mugt balance the vertical

component of the surface tension forces,

- 2txg sin & + 2t(x + &x) (o + Ag) sin (3 + A%) (10)
where Ax = Xigl T %X s
.Ao'= Oi41 T O and
Ad = §i+| - @i o

Equating these two opposing forces, dividing by ax and taking the limit as
Ax approaches zero gives

AP 2ix = 2tx cos B gf + 2o sin & + 2x —%E— sin @ (1)

Dividing by 2tx and employing Equations (5) through (8) to eliminate x

gives

AP=c(—:{—- +——I—)+tan§ g: (12)

I Ry

which will be used in place of Equation'(l).

Experiments involving the application of solute at the apex of a drop
show that both positive- and negative-beta drops move upward when dg/ds
is positive in the region of the apex. (The sign of beta is determinéd by
the sign of the density difference, og " pc.) Linear forms of o(s) over
the pbrtion of the drop near the apex were chosen to simulate the contact

of solute. The interfacial tension distributions in Figure 2 were used to

t



Figure 2.
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Hypothetical interfacial tension distribution over droplet surface.
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_calculate the droplet‘shépes in Fiéures 3 and 4.. Both sets of drops are

compared on the basis of same volume and contact angle. These theoretical
gquilibrium shapes are in accord with the movement of actual drops whose
'initial moyements‘must be toward a new eduilibriUm shape.

The negative;beta drops in Figure 3 show the profile of the drop with
non-uni form interfacial tension to lie betweén the profiles of drobs wi th
uniform interfacia] tension. This might be expécfed since the profile
should approach that of the static drop with an interfacial tenéion of
30.7 dyngs/cm. as dg/ds becomes smaller and the gradient covers a larger
portion of the interface. |

For the positive-beta system, the profile of the drop with non-uniform
interfacial tension does not lie between the other two profiles. From a
static point of view, this result is unexpected, but the new shape agrees
wi th the dynamic tendency. Unfortunatély, the analysis may not be tested
by allowing an interfacial tensioa gradient to exist over the entire drop
since "Equation (li) becomes unbourded at 3 = n/2. At Qﬁé /2, the
vértical force contribution from the pressure drop is zero and only shear
stresses may balance the forces. -This Is in complete opposition to the

limi ting condition being analyzed.

Drop with an External Force
The shape of a drop acted on by an external vertical force is also of
interest. The magnitude of the vertical force will be,
F=1  APdA
JA.

b

where F is the magnitude of the inherent force exerted by the portion of
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the drop from the origin to some érbifrary height, h. This integral can
be evaluated to give a re]étiohship necessary for the solution of the.
necessary differential equations.

As given by Eékinazi 4) fhe force on a body immersed in anoiher fiuid
is . |

-F= -[ nPds + [ p gdv
s v

where the first term on the right is the buoyant force and the second term
is fhe weight of the dfop. Substituting for Po in the first integral andl
applying the divergencg theorem in Fhe second integral, gives,

- F =_-f H(po_+'pcgz)ds +,I v (poi{ pagz)dv

o
s v

= -I n(poo+ pch)dS + j "(poif.pdgz)ds
s s '
The combination of the two integrals produces,
i

F={ (Poo.- P, + Apgz) nds .

The term in parentheses is equivalent to AP and the only area component
that contributes to the force is the vertical component so the above equa-

tion may be written in terms of the magnitude of the vertical force,

F={0aPdA .

This establishes the result in Equation (13) which may be integrated for a

drop by substituting Equation (1) for aP:
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X, -
: h . .
B ]
F=[ ol +——)dA= [ olg+—) 2tx dx
: i 2 1 2
A 0
hogs g sin | "h
= 2o j ( I Adz e =2 g ) x dx = g j x cos 3d &+ sin & dx
0 : ' 0
*h ‘ o
= I d(2nxg sin &) = Ztx o sin éh
5 ,

Therefore, the vertical force on any static drop at an arbitrary height,

z=h, is

F=2Ztxo sin 9 - : (14) -

Suppose a drop is aéted'upon by a vertical external force, Fe, exer=
ted by a glass tube of radiusxo as in Figure 5. At equilibrium the total

force at any point, z = h, is

X
h
Fr=1] o’(‘TL"+"}.\T‘) Zixdx = F, + F
1 2 4
0
' X
- Pol e ) i+ [0 G+ ) 2
0 "o 20 M 2
x0
1 1 :
Fr = Ao(— +—) + 2o [x, sin § = x_sin § ] (15)
T °"" Ryg R20 h h (o] o

The first term on the right side of Equation (15) represents the magnitude

of the external force,



Figure 5.

Negative-beta drop with an upward force exerted by a round

glass tube.
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1 1 ‘
F =Ag (—— +—— ) =AAP (16)
e (] RIo R20 o~ o

If F, and x  were measured, the coordinates of the profile could be

calculated directly. Fe-is di stributed over the area, Ao% where Ao is

given‘By ) _
A = X o : , ' (17)

for a round glass tube. The pressure drop at z = 0 is
APy = F/A, (18)

‘The relationship in Equation (14) permits calculation of @6 by

, Lo=1 ’
@o = sin (Fe/ZﬂXog) . (19)

Knowledge of the parameter, b, is now unnecessary since APO is known

and Equation (9) becomes

dj  sin @ bp gz AP
T T Tt Tt (20)

which can be solved along with Equations:(7) and (8), as before, with the

initial conditions,

1) z=0
2) x = X,
3) 8=s8,

and a single boundary condition such as droplet volume, contact angle,

droplet height, or base diameter.
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The force Fé is difficult tb measure, particularly in a dynamic drop,
but the dévelopmenf can be extended to calculate the magnitude of the
force if the radius of the glaséltube which applies the force is known.
The initial angle,Ago, cannot be calculated from Equation (i9) since Fe
is unknown anq like b, 3 is difficult to measure accurately. $o, in
‘ sqlVing Equat%ons (&), (5); and (20), 3 willvbe a'parameter that.must be
determined by a boundary condition. Suppose the two boundary condi tions
measuféd_from the drop restrict tﬁe‘drop to a known volume énd contact
angle.

The calculations proceed as follows. An approximate value for Qo i;
chosen and AP is calculated by Equations (14) and (18). Now Equations
(4), (5), and (26) may be integrated until the known contact angle is
reached. The volume calculated for the resulting drop may not agree with
the knowq volume and a new value 6f §0 is chosen and the iteration con-
tinued until a value of_@o is found such'tﬁatAboth condi tions are satis-
fiede Not only can the external force be calculated by

Fe = n~X§ APO,
but the shape of the drop will also have been determined.

Essentially, the knowlgdge of the magnitude of Fe has been traded for
the knowledge of another boundary~c6ndition. If one were given a picture
of a static drop with an external force abplied, the magni tude of that
force could be determined by measuring X @ representation of the dis-
tribution of Fe. Figure 6 shows such a drop where Fe was determined to be

5.45 dynes exerted by the glass tube.
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DYNAMIC DROPS

When a solute is injected exactly at the apex of a drop, it spfeads
'symmetricaliy over the surface so‘tﬁat the interfacial tension may be
considered to be a function of arc length, time, and solute concentration.
An increase in solute concent;ation at the interface lowers the inter-
facial tension and this interfacial tension change causes the droplet inter-
face to move suddenly. The direction in which the interface moves and
hence the sign of the velocity vectér is related to the sign of the curva-
ture of the drop. The radius of curvature is positive when it is inside
the drop and negative when outside the drop. The curvature has the same
sign as the radius ofAcurvature. The total curvature is the sum of the

reciprocals of the two radii of curvature.

Qualitative Observations

Experimentally, one finds that the direcﬁion of movement éf the apex
is upward when solute meets the interface at the apex. The change in
shape for a negative=-beta drop is shown in Figure 7 and this is in agree-
ment with the equilibrium tendency, Figure 3. Similarly a positive-beta
drop, shown in ngure 8, also rises under the same conditions, supporting
the equilibrium tendency as shown in Figure k4.

The curvature is negative near the base of the negative-beta drop
shown in Figure 9a. ff solute is added at this point of negative curva-
ture the motion is inward, or in other words, the velocity is'negative.
Figure 10a shows a positive-beta drop pulled up by a glass tube. Solute

has just been added to the region of negative curvature near the glass
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Figure 7. Motion of negative-beta drop under the influence of solute
at its apex.



Figure 8.
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Motion of positive-beta drop under the influence of solute
at its apex.

(8b)
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(9a)

(9b)

Figure 9. Motion of negative-beta drop when curvature is negative at
point of solute contact.
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(10b)

Figure 10. Motion of a positive-beta drop being held by a glass
tube with solute touching at a point of negative
curvature.



tube and the initial motion is inward, but as solute spreads down the
interface where the curvature is positive, the motion is in the opposite
direction as shown in Figure 10b. The application of equal amounts of
solute at two different portions of the same drop is shown in Figure 11.
The magnitude of the horizontal movement in 11b is large compared to the
vertical movement in 8b shown again on the same page. As before, the
velocity is positive and the magnitude of displacement is greater for
larger curvature. However, the difference in interfacial displacement in
the two pictures is too large to be completely determined by difference in
curvature. The resistance to movement caused by hydrostatic head changes
must be a resistance factor in Figure 8b.

In summary, these photographs illustrate the following points:

1) the direction of interfacial movement is in the direction of the
radii of curvature,

2) the magnitude of the movement is proportional to the magnitude of
the initial curvature,

3) changes in hydrostatic pressure alter the pressure drop and
subsequent motion.
Items 2 and 3 are interrelated since the initial curvature is partly

determined by hydrostatic pressure.

Model Development
The following model applies to an initially static drop and its subse-
quent motion when dynamic pressures are imposed upon it. From the static
drops, initial conditions such as interfacial tension, volume, denisities,

base diameter, contact angle, and the coordinates of the interface as well
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Figure 11.

Increased motion of positive-beta drop as solute touches
point of greater curvature.
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as the radii of curvature at each poinf'are deterﬁined.

.The equations developed thus far deal with static drops and static
forces. The dyﬁamit drop'ét any tfme will be considered a static drop
wi th dynamic pressures impoged on it. The behavior of the drop is ﬁuch
the same as a weight oscillating on a spring. At any time, the system may
be described as a static system whgre a fictfcious amount of weight is
"necessafy to hold the spring in-one of its dynamic positions. |

For example, -an equation describing(the motion of such a system with
no damping is

5 .
m Q_%; + ke =mg ‘ ' (21)
dt

If the first term, the dynamic term, is ignored, the magnitude of mg must
vary so that it equals kg at all times.. For this system, the value of k=
will vary between zero and 2mg. Pursuiné the analogy further, one finds that
the effect of k and m is interchangable siﬁce any solution describing the
motion of this system will depend only on the ratio, k/me

The actual droplet system.fs described by fhe pressure obtained from
figure 12a, | | |

P. = P+ oK or AP = oK. . (22)

If the interfacial tension is suddenly changed from g to a',lthe curvature

K must change to K' in order for P to remain constant and

AP = oK = &'K' - (23) -

The shape of a drop with a changing interfacial tension is difficult to
describe and the static equations are more adaptable to additional pressure
terms. The dynamic pressure equfvaient to an interfacial tension change must.

produce the same droplet shape at equilibrium. In other words, the pressure
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(12a)

(12b)

Figure 12. Pressure balanée on a static and a dynamic interface.



35

must change so the new equilibrium curvature, K', may be attained.
~ Thus, DP, the additional pressure, is the difference between the new and
old static system pressures,

DP =.gK' - gK 4 (24)
where g does not change. Substituting equation (23) into equation (24) gives

DP = - pcK! = = Ag ;,L. K (25)

and from a pressure balance in Figure 12b, the equation describing the dynamic

drop ina quasi-static case is
Pi=P0+GK-DPo

The force actually varies as the height and curvature of the drop
‘change, but the main concern is the pressure distribution necessary to hold
the drop in a given shape if the drop were at equilibrium. The equilibrium

equation to be solved is

P, = P = AP = AP + Apgz = oK - QDP,

where @ represents the fraction of the initial force necessary to hold the

drop a small distance from its initial position. At z' = 0,

.
P = 2 - aop

and substituting for APO,
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2q _ I
+a (DP DPo) + APgz e ( R] + 2

b 2
ds - 1 2 .a(DP - DPO) © Ap9z sin &
ds "R, ° v * o YT e T T x (2§)

Now, a»and-b will be parémeters sﬁbject fo’the,boundary cohditions,'

1) known dfopIet vol ume,

2) known contact angle or measured base width, and

3) measured droplet height.

Thé solution was simplified by using the measured base diameter in place
of known contact angle. The base width was found by actual measurements
to remain constant during dynamic movement. Just as in the static drop
with an external force, the éctua] pressure is not knowﬁ but the distri-
bution relative to the apex is known. The actual pressure and the shape
are determined by the third boundary condition.

The development so far would be satisfactory for describing the shape
of the drop if the movement were small and slow enough that inertia terms
might be neglected. To extend the analysis to large deformations of the |
interface, the variation of driving force with solute movement and the
éffect of velocity components normal to the interface must be considéred.

The solute spreads quite rapidly over the surface, causing both a
variation in pressure drop and a chénge in area on which the‘pressureAacts.
Separate data were taken to measure the rate of solute spreading under the
same conditions as those encountered by‘the drops, except the interface was
flat. The interfacial velocity data were related to the interfacial

tension gradient by considering the shear stress caused by a known
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interfacial_velocity. This approximate relation showed that the inter-
facial tension distribufion was non-linear. Appendix | provides many of
the details of this anélysis. The direction of the‘deviation from
linearfty was determined and a quadradic distribution was assumed? The
spreading velocity daté also made possible the calculation of the area
influenced by the ihtérfacial tension distribution as a function of time.
Finally, an average pressure was calculated to account for the length qf
time a given area was under the influence of a given pressure change.

The nordal-?elocity movement is also quite rapid. Because the initial
movement of the apex of the drop is‘upwafd and outward, the constant volume
restriction demands that there be a corresponding inward movement along the
droplet surface. The position and distribution of the inward movement are
unknown, but the form is that of a propagating wave. The solving of the‘
wave equation including a variablé impulse spreading over a changing area
would be quite complex and has not been solved. Instead, the solution to

a two dimensional wave equation as given by Lamb (9),
6 = BJo(k‘s) cos (yt+e) .

was used as a first approximation. At a given time and for a known

amplitude, Bt’ the displacement is
8=8.J (k's). (27)

The value of Bt is the distance the apex has moved over a specified time
interval, At. The movement of the apex as a function of time was measured

for several drops and these data are in Appendix |l. The wave
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displa;ement is important only in its relation to thg pressure distribution
along the interface. In this regard the assumption was made that the ratio
of displacement to préssure change was cqnstant along the interface. Since
the pressure change aﬁd mot.ion at tﬁe apex were known, the pressure at any

point wéS'given by

DP

6( ——=—) . (28)

The dynamic pressure distribution is a function of time since its
area of influence increases with time. The wave approximation is also a
fun;tion of time since the Wave is caused by the dynamic pressure. Oéer a
very small time intervél,ithe apex of the drop will move a distaﬁcé, B].
Over the same interval, tﬁe solute will have spread a distance, St5 this
increment ha§ an éssumed fnterfacial tension distribution, such that  the
droplet movement is outward over the whole increment. Thus the inward .
mer@ent and inward pressure must beginifor‘s = s]; and Jo(kl's]) mugt be
zero at this point. Now, k]' may be determined and Bt is known, so 5]

may be calculated as a function of s by
— ]
61 = B] Jo(kl S)

and the dynamic pressure distribution is

DP
o

At the end of the succeeding time interval the interfacial tension

change will cover a greater radius, sp. However, an outward pressure does
@ .
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not act over the whole distance since the previous distribution must be
superimposed to get the final distribution. The distribution»over each
time interval is multiplied by the length of the time interval it acts,
tﬁe distfibutioné are“summed, and then they are divided by‘the length of

the total time interval. A value of s will exist where §, = 0, corre-

2

sponding to At; x DP] + Atz x DP, = 0 and k', may be calculated. The

2 2
dyhamfc pressure.distribution used for the integration of a droplet pro-
file is the one corresponding to the length of time the drop has been

moving and is the combination of several superimposed distributions.
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EXPERIMENTAL MEASUREMENTS

'To compare the droplet shapés predicted by the model developed in the
previous sections to actual droplét shapes, motion picturgs were taken of
drops moving under the influence of an interfacial tension change. As
seen in the photographs in the section of dyhamic drops, two liquid-liqufd
systems having inverse density and wetting characteristics were used.

.The negative-beta system consisted of a cyclohexaﬁe drop and an aqueous
continuous phase; The drop was held under water by a flat teflon plate
which was preferentially wetted by the organic phase. The positive-beta
system consisted of a carbén tetrachloride dEop and an aqueous continuous
phase. The drop rested on a glass plate thch was preferentially wetted
by theé water. The solute used to change the interfacial tension was
cyclohexanol for both drops. Each system was_contained in a glass chamber,
. four inches on a side. The chamber was made from five optically flat
pieces of glass glued together bY Eccobond-26 epoxy resin. The resin had
little effect on the interfacial tension. Earlier, a plexiglas chamber
was used, but due to a surfactant material in the plexiglas, the inter-
facial tension of the liquids in the chamber was lowered as much as
10 dynes/cm.

Before each roll of film was taken, all parts of the system that
contacted either liquid were thoroughly cleaned wi.th chromic acid cleaning
solution and rinsed with distilled water. All manipulations were-carried
out with as little time delay as possible to reduce any build-up of inter-
facial contamination which wodld have greatly affected the interfacial

tension and the interfacial response to surface active solutes.
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The pictures were taken at 400 frames per cecond with a Milliken DBMS,
pin registeced motion picture caﬁera. Liéhting was accomplished by three
General Electrlc photoflood lamps, one above and one on each side of the
chamber, located approxcmately one foot from the chamber. The lights were
used only during the actual fflmingﬁ ten seconds are requircd to run one
rolfqof film, so a negligiblc teﬁperature change'was‘brought about by.heat
from the lights. The lens opening was f/2.8 and the shutter speed was
1/2000th of a second.

A 1.0 microliter syringe was used to introduce solute at the droplef
interface. Positidned excct]y above the center of the drop, the syringe
was fastened to a screw driven slide which was operated by a variablc
speed motor. Approximately one~half centimeter above the apex, a drop of
solute was formed on the tip of the syringe. The drop was nearly spHerical
and wa; either 0.1 or 0.2 microliters in volume. The residence time of the
drop in water was kept as small as pcssible.since the cyclohexanol would
transfer to the aqueous phase to some extent evcn though it was not
appreciably soluble in the wacer. The syringe was lowered to the apex
uncil the small drop coalesced with the large one (0.2 - 2.0 milliters).
At the instant of coalesence droplet motfon was initiated.

The motionApicture negétives were projected frame by frame on white
paper at a magnification of about twenty times actual size. Fine grain
film was used to make the profiles of the drcps as sharp as possible.
These profiles wére traced on the paper and measurements were taken from
the tracing. - fhe profiles of static drops measured before any motion had

occurred were fit to the static equation by a two-parameter least squares
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techhique., The parameters were the interfacial tension and the radius of
curvature at the origin. This was done to check the degree of interfacial
contamination present. The volumg was calculated by subdividing the drop
into several elementé approximafed by frustra of right circular cones and
summing their volumes. |

In addition to droplet deformation, it was necessary to measure the
rate at wﬁich the>solute sp?ead along the pléne of the interface. Spreading
data were taken in a fognd glass'dish, three inches in diameter and one andl
one-half inches in height. The bottom of the dish was optically flat and
the camera was positioned below the dish, perpendicular to the interface.
Only one iight was used and it was posi tioned above the interface so lfghf
would be reflected from the particles in the interface into the eye of.the
camera. Seventy-five milliliters of the heavier phase and fifty milliliters
of the lighter liquid were poured into the dish. Eccospheres were placed
on the interface and the camera was focused on the eccospheres. Eccospheres
are tiny hollow glass spheres that gfve an overall appearance of a finely
divided whitekpowder. They come in a mixture of densities but a given
density range may be separated by allowing them to settle in a liquid of
known densi ty. Since:the QOIume of liquid was known, the dish could be
cleaned and refilled after each run without refocusing the camera.

‘Fﬁr each run, a small drop of solute was formed on the tip of the
microliter syringe. With as little time lapse as possible the drop was
‘moved to the interfaceAuﬁtil it coalesced and. the subsequent motion of the
eccospheres was recorded by the camera. The interfacial tension was

measured. before and after the solute was added to check for surface
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.contamination. All interfacial ténsion measurements were made with a
DuNouy Ring Ihterface-Tensiometer.

The spreading data were measured by the same projection technique as
used for dynamic drops. At each frame, the best cfrcle was constructed

through the ring of eccospheres that form the outer edge of spreading as

shown in Figure 13. The radius of this circle will be referred to as the

radius of spreading.

7
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Figure 13. Movement of eccospheres in two consecutive frames
at 40O frames/second.



45

RESULTS

The results in this section combine the anaIysis in the dynamic drops
section with the data in the appendices to calculate the shapes of dynamic
drops. The motions of a typical negative-beta drop (DD-15.2) and.a typical
posi tive-beta drop~(DD-l8.2) are followed and their behavior diécussed
ovér a 25 milliseéond time interval.

Before the‘dynémic droplet profiles could be computed, the dynamic
pressure diétributions over the surface of the droplets had to be calcula-
ted by the procedure described in the dynamic drops section. This calcu-
lation required data on tﬁe movement of the apex as a function of time so
that the wave amplitude, Bi, could be calculated. These data, presented
in detail in Appendix Il, are summarized for seven drops in Figure 4. The
velocities at whiqh the solute spreads on a flat interface were used to
calculate -the interfacial tension distribution. These measurements; found
in Appendix |, were used along with the radii of curvature values calcula=~
ted from the static droplet profile to calculate the change in préssure
drop across the interface.

The droplet profiles were caléulated at intervals of 5 milliseconds
and each calculation required a dffferent dynamic pressdre distribution
corresponding to a specific time. Four such pressure distributions are
shown in Figure 15. The actual value of the dynamic pressure depends on
the value of the coefficient Q, which‘was arbitrarily set equal to 0.22 fdr
this plot. The dynamic pressure, DP, for a short time interval (5 milli-
seconds) is compared to DP for a long time interval (25 milliseconds) for

both drops. The shorter time intervals have the smaller radii of
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spreadinga therefore the rate of change of DP with arc length is rapid
since the total variation in interfacial tension covers a small distance.
The total interfacial tension change--the difference between the new inter-
facial tension at the apex and the unchanged value at the outer edge of
A spfeading--was assumed constant over the 25 millisecond time intefval. At
the later time, the.tqtai change in g is unchanged, but it extends over a
much larger distance. Thus, the slope of DP is not as steep as before.

The formation of a surface wave propagating from the apex of the
droplet, causes DP to become negative at some value of s less than the
radius of spreading. This tends to increase the slope of DP for all the
curves and causes the value of DP to oscillate about the horizontal axis.
Waves may actually be seen in motion pictures of the dynamic drops, but no
attempt was made to compare these waves to the calculated pressure distri-
bution. .Later, the wave like portion 6f’the dynamic pressure at large
values of s will be shown to have ‘little effect on the droplet shape,
however. |

In 25 mflliseconds the solute had spread 0.8 centimeter over the
negative-beta drop and 1.2 centimeters over the posi tive-beta drop.' It
should be noted that the arc length of the positive-beta drop is about 0.8
.centimetervfrom apex to base, but the distribution was calculated on the
basis that the extént of the interface was infinite. Again, the most
significant fluctuations are those near the apex, so small errors in DP
near the base should have little effect on the shape of either drop.

The total change in the value of the interfacial tension was assumed

to be constant throughout the whole time interval. Evidence verifying the.
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assumption comes from two sources. As shown in Appendix i the spreading
rate is nearly independent of the volume of solute; the spreading rate
depends only on the solute concentration for the experiments performed.
The graphs in Appendix | show fhe rate of apex movement to be nearly inde-
pendent of the volume of solute. Thg 0.2 microliters of solute musf surely
be able to hold the concentration cbnstant for a longe} time than the 0.1
microliters of solute, but both produce the same response. This tends to
justify the assumption that the concentration remained constant at its
initial value at the apex over the 25 millisecond time interval.

ance the interfacial tension change is approximately the same for
both drops, the magnitude of DP at the origin differs for the two drops due
to differences in curvature. The'positive-beta drop, having the greater
curvature, also tends to have a more rapid decrease in DP with arc length.
However, the higher rate of épreading found in fhe posi tive-beta system
tends to counteract the effect of different curvatures when the two drops
are compared at the same time.

The distributions were calculated at 5, 10, 15, 20, and 25 milli~-
seconds for each drop.. These intervals along with the corresponding droplet
heights are given in Table 1. Then the droplet profiles were calculated
at each.time -interval. The procedure involved a nested iteration to solve
for the parameters b and @¢. A value of @ was assumed; then b was adjusted
"to satisfy the droplet height and base diameter boundary conditions. The
resulting volume of revolution was calculated and plotted against @ as
shown in Figures 16 and 17. The iﬁtersection of this plbtted curve with

the line representing the actual droplet volume determined the value of Q.
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The lack of smoothness of the plotted points is due tOJthe‘large tolefance
uéed when satisfying the boundary conditions in keeping with the inte-
gration step size. The values of & and b are also given in Table 1.

Alpha.fncreases from zero as the arop leaves its static shape.
Actually, d has no meaning for the original static drop, but if dynamic
pressures were présent, a would be zero and the external force required to
hold the drop in its present positioh would be zero. At a later timé, the
magni tude of the force to hold the drop in its present position would be
gi ven by

S . F = J'd DPdS
: s

Table 1. Dynamic droplet parameters

Elapsed time,. , Droplet height,

Drop No. seconds cme. b, cm. A alpha
DD-15.2 0.0 . Y WAT 128 -
Cyclohexane - 0. 005 ‘ 0.419 .76 0.184
water 0.010 0.430 .+70 0.209
0.015 " 0.439 .62 0.265
0. 020 , 0.4h9 .59 ' 0.265
0. 025 0.456 0.60 0..276
pD-18.2 0.0 | 0.458 66 -
Carbon 0.005 - 0.4675 43 0..196
tetrachloride= g g1 | 0.4755 42 0.243
water ' , :
0.015 o 0.482 .38 0.303
0.020 0.L865 .36 n.531

0. 025 0.492 +32 0.575
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To understand the effect of the dynamic pressure distribution on the
shape of the calculated profile, the différential equation which describes
the profile can’'be examined:

dg
ds

2 sin & Ap9z a (DP-DP_)
b X c . a

The rate of change of thelslope of the plotfed droplet profile is a measure
-of_aé/ds, the curvature of the profile. Consider first the negative-beta
drop (DD-15.2). Figure 18 shows the measured dynamic drop compared to the
static drop and'the calculated dynamic'drop. The radius of curvature at
the apex decreases as the drop increases in heijht.. In order for the
boundary conditlons at the base to be met, d@/ds must decrease at a faster
rate than would a static drop.

The second term on the right dominates in the beginning of the calcu-
lation when z = 0 and DP = DPo’ but as tHe calculation proceeds the third
term quickly dominates. Both terms are negative, however, and tend to
decrease the curvature. Now the fourth term determines how the drop will
deviate from a static drop and its magnitude must be large enough to be
non-negligible compared to the other terms.

The fourth térm in equatibn (29) has the same effect in the posi tive-
beta drop as it does in the negétive-beta drop except it must oppose the
third term which is positive and twice as Iarée in magnitude for the
systems used in this work. Figure 18 compares the calculated brofile at
25 milliseconds to the measured brofile at the same time. The deviation

of the calculated and measured profiles in Figures 18 and 19 will be
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discussed in reference'tb the effect of DP and a.

Figure 15 shows that the value of DP at s = O(DPO) is fhe greatest
value of DP; therefore thg foufth term begins at zero and is negative at
~all other values of s. ‘At the basé of the positiye-beta drop, the numerator
of the secohd term in Equation (29) has a valuéAéf about 400 dynes/cm.z, and
'fiﬁctuéfions»in the numerator of the fourfhvterm decrease quité rapfd]y'
guch that if has_negiigibie effect on the droplet shape near the base of
the drop (s = 0.8 cm.) even thodgh the magnitude of the fourth term is
large.

The rate of change of the fourth term is not large enough in either
drop since the slope of the calculated profile does not decrease rapidly
enough to allow a smaller value of b. An increase in  would satisfy
thfs change in shape by the increase in &DP, but the boundary conditions
wou{d not be satisfieds The only alternative would be to change the
pressure distribution to have a_mofe répfd initial slope such as it had,
for example, at.5 milliseconds. This shows, then, the error in the
pressure distribution and how it should be changed or what changes a
better model would provide.

The importance of having thé proper pressure distribution was
established by trying a linear distribution and finding that no values of
b and @ would safisfy the boundary.conditions for the negative-beta drop.
Similarly, for the positive-beta drop the comparison to the data in Figure
20 was not as good as the comparison in Figure 19 where the dynamic pressure
distribution was predicted by the model.

Both the relative distribution of DP and the value of & influence the
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Figure 20. Positive~beta dynamic drop after 25 milliseconds compared
to a drop with a hypothetical dynamic pressure-
distribution. ' :
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rate at which the curvature decreasés relafive to the static drop. From
the spring ahalogy one reasons that @ should increase as droplet height
increases,#nd that its maximum value.would be 2.0 if the system were un-
damped. As time increased, the pressure distribution tended to change less
rapidly with arc length, but the description of a dynamic drop required thé'
6pposite tfend in aDP. ‘Therefpre, @ was forced to increase so the fourfh
term Would have increasing effect as the droplet height increased. Alpha
ﬁay have increased faster in the beginning of movement since, unlike the
spring, there are two ways for dynamic pressure to be absorbed into the
system, by an increase in curvature and by an increase in hydrostatic
-pressure. |

In both drops, & increased while b decreased, but the value of b
became almost invariant and may even have shown a tendency to increase for
the negafive-beta drop at 25 milliseconds. Some of the dynamic pressure
absorbed by an increase iﬁ curvature ma* have been converted to hydrostatic
pressure and as @ increased, b also increased._'The curvature at the apex

_of a separating drop also goes through a ﬁinimum.

Turning again td Figure 14, the velocity at the apex of all the
positive-beta drops tends to decrease quite rapidly compared to the
velocities of the four negative-beta drops represented by straight lines.
This difference inh behavior must be due to the different density character-
istics, since the pressure change at the apex is less for the negative-beta
drops than for the positive-beta drops. The decrease in interfacial tension
makes an increase in heiéht the eésiest reaction for the negative-beta drop

whereas a great deal of force is required to lift the heavy organic of the
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positive-beta drop. Figures 18 and 19 indicate that the model holds equally
well in both systems, however,

The density difference is also reflectedAin the static'curvatﬁres.

The curvature of a positive-beta drop inéreases as a function of s, whereas
the curvaturé'of a negative-beta drop decreases as a function of s and will
even become negative before the base of the drop is reached. Thé pressure
change associated with a given interfacial tension change depends on the
value of the curvature. : So, after solute has spread to the side of the
posi tive-beta drop where the curvature is larger than at the apex, the
pressure change is greater and the horizontal force becomes greater than
the vertical force and the drop will stop rising and begin to flatten. The
negative-beta drop behaves in an opposi te mannér'in that the negative
curvature near the base wiil produce a negative velocity when an inter-
facial tension change occurs. Thus the original upward movement of the
apex is reinforced.

In comparing the movement of the positive-beté drop to the negative-
beta drop, Table 1 shows that the value of @ at 25 milliseconds is greater
in the po;itive-beta system. The positivejbeta drop has attained a large
fraction of its maximum height in 25 milliseconds as shown in Figure 14 on
curve DD-18.2. In constrast, over the same time interval, the negative-
beta drop shown by curve DD-15.2 has not approached its maximum value of 0.6
centimeters. Because of viscous damping, & remained considerably less than
2,0 for both drops.

The model applies equally well for both droplet systems, but the

calculated profiles deviate slightly from the measured droplet profiles.
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These deviations come primarily from the approximations used for three
significaﬁt effects: |

1) the use of a surface wave to approximate dynamic bressures

2) the assumed interfacial tension distribution

3) exclusion of viscosity effects.
The dynamic préssure was suﬁstituted for thg.decrease in the abflity of a
perturbed interface to hold its static shape. The additional dynamic
pressure arising from the propagating wave was opposed by the original
interfacial tension. This part of the dynamic pressure.should have been
opposed‘sy smaller interfacial forces §ince the interfacial tension had
'significaﬁtly decreased in the neighborhood of the apex.’

The wave tsed in the model was a simple oscillatory wave, but a
propaga;ing wave produced by a varying impulse would have been used
if a solution were available. A proﬁagating wave would have a steeper
slopé‘at the origin and a smaller, but longer negative deviation from
the original surface. However, both waves'adhére'to the'restri;tion of
constant volume. The propagating wave would give a more rapid variation
of DP with s near the apex. |

’A more rapid variatioﬁ in inteffacia] tension would élso improve the
dynamic pressure distribution. The anélysis in Appendi x Il shows that the
distribution of interfacial teﬁsion is at least quadrédic, but it may even
be greater.

The effects pf viscosity Have not been explicitly included in thi§
investigation. However, viécosity would be expected to greatly affect the

rate of droplet movement, especially at the apex where the velocity is
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greatest. The movement of the apex was measured and used as a boundary
condition, thus avoiding the major viscous effects. However, the effects

of viscosity on the dynamic pressure distribution or on the propagating

wave were not considered.
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CONCLUSIONS

Bgéause of the compjexity of the problem, a complete degcription of
- a dynamic drop will require much additional work, but some of the basic
_ mechanismsvinVolved have Seen duflined and studied in this work.

A non-uniform iﬁterfacialltension imposed on a drop wflI ;ause it to
seek a new équilibrium shape. At any time during the initial motion, the
drop may be considered a static drop with a dynaﬁic pressure distribution
impqsed on it 'This is made possible by adding the boundary condition of
droélet height and solving for @, the fraction of the initial pressure.
impulse needed to hold the drop-at the known height. The two most sfgnif}-
cant'factoré taken into account in calculating a dynamic pressure distri-
bution are: |

1) the change of interfacial tension with time and arc length

| 2) the formation of a wave propagating from the apex.
The calcu]a;ed values of a and the favorable comparison of calculated
droplet profiles to actual drops show that these two factors are signifi-
cant. The model ‘could be improved in both areas, and the improvements
were shown to be such that the description of the droplet profile would be
improved. ‘

The model app}oaches its limit of applicability at 25 milliseconds
since @ is becoming to§ large and additional mechanisms will begin to
appear. The interfacial tension change at the origin will decay and the
entire distriBution of interfacial tension will change. The direction of

apex movement will change and the droplet will begin to oscillate.
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Experimentally, it was found that'an increase in solute concentration
for the systems used increased the distance and time of spreading signifi-
cantly, whereas'an increased volume of solute had only a small effect. The.
movement of the apex under dynamic conditions for a negative-beta drop was
nearly linear with time. .The positive-beta drop showed definite decelera-
tion.at the apex.‘ The differende~was.dqe to the greater effectvof hyaro-
static pressure effect in the positive-beta syétem. The volume of solute,
agaiﬁ as in spreading, had little effecz on droplet motion while the chaﬁge»

in solute concentration had a sighfficant effect.



" RECOMMENDATIONS

An attempt has been made in this wbrk to simplify the analysis of -the
préblem as much as possible énd only pressures considered sithfi;anq have
 been includéd.. If the cbrrgct dynamic pressure distribution and height
-were known exactly, then.the previous analysfs would enable tHe calculation__
of the actual shape of the dyhamic drop. Toward this end, the two majér

phenomena of solute spreading and apex movement should be isola;ed and
studied'in‘detail.

1) A two dimensional model could be developed to describe the motion
of solute spreading on a flat‘interface between two liquids. The model
shauld relate the interfacial vélocity to the interfacial tension at any
poinf along the radius of spreading. Then one might study an interface
that has solute transferring across it. A measurement of interfacial -
velocity fluctuatibﬁs could be related to interfacial tension and concen-
tration fluctuations that might occur in large scale mass transfer
equipment.

- 2) " The movement of the apex should be predicted from the knowledge
of the interfacial tension change and the curvature. The predictions
should also be based on the physical properties such as the densities and
viscosities of the two phases. The initial approach should be an impirical
correlation of apex velocities for several systems having a wide variation
in physical properfies{ Then.perhaps a mathematical model_could be
developed that would consider the:éffect of the interf;cial resistance to"

motion caused by a change in interfacial tensian.
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A description of the wave propagating from the apex could be found
by solvfng the wave equation with the condition of a prescribed impulse
that varies in magnitude along various portions of the drop. The resulting

pressure change could be calculated from equations describing the wave.
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NOMENCLATURE

. 2
vertical area component, cm..

cross sectional area of drop at z = h, cm.?

cross sectional area at z = 0, cm. 2
radius of curvature at origin, cm.
wave amplitude, cm.

wave amplitude_ét origin at a-given time, cm.
dynami; pressure, dynes/cm.2 |

net vertical force on drop, dynes.

force vector, dynes |

bouyaht force, dyﬁes

ex;ernal force impqsed on drop, dynes

total force on a portion of a drop, dynes

gravitational constant, cm./sec.2

vertical distance from apex to an arbitrary point on drop, cm.

spring constanf, gm./sec.2

total curvature, 1/cm.

wave number, 1/cm.

unit normal vector to'surface, S.

pressure at origin (odtside drpp), dynes/cm.2
pressure at origin (inside drop), dynes/cm.2
inside droplet pressure,.dynes/cm.2

outside droplet pressure, dynes/cm.2

radius of curvature of sphere, cm.

radius of curvature in plane of paper, cm.
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ho

.density of continuous .phase, gm./cm.
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radius of curvature revolves around center line, cm.
radius of curvature of drop in partition A, cm.
radius -of curvature of drop in pa?tition B, cm.
radius of curvature at z =0, ém. |

arc length, cm..

surface area, cm;z.

tiﬁe, sec.

spreading velocity, cm./sec.

weight, dynesA

horizontal coordinate, cm.

horizontal coordinate at z = h, cm.

1
o

A
O
3
.

horizontal coordinate at z =

vertical coordinate, cm.

dimensionless coefficient, fraction of total force used from

that available from initial impulse on static drop.
frequency, 1/sec.

. 2
pressure drop across interface, dynes/cm.

. 2
average pressure drop across element of interface, dynes/cm.

change in interfacial tension, dynes/cm.
phase angle, radians

viséosity, poise

vertical displacement, cm.

density of drop, gm./cm.3'

3

interfacial tension, dynes/cm.
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interfacial tension between two liquids in partition A,

A
dynes/cm.

o ‘interfacial tension between two liquids in partition B,
dynes/cm.

) " angular coordinate, radians

3 ' angular coordinate at z = h, radians

3 éhgular coordinate at z = 0, radians

& wave displacement, cm.

negative-beta carbon tetraéhloride drop in water

positive=-beta cyclohexane drop in.water
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12.

13.
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APPENDIX |

Soluté spreading data reported hére were used to determine the inter-
facial tension distribution over the surface of a liquid drop. All the
data were téken on a flat interface, since the camera could focus only on
a‘sinéle plane. .The dafa on thé flat interface was then assumed to be
valid on a curved in;erface, since the cdrvature was small compared to fhe :
thickness of the interface. Eccospﬁeres--hollow gléss spheres of small
diameter--which had densities between the densities of the two liquids
were assumed to mer'at tﬁe interfacial velocity even though they were
preferentially wetted by water. The 6nly measurement that could be ob~
tained from the movement of these particles was position at various times;
this enabled the calculation of interfacial velocity which in turn was
assumed to be related to the interfacial tension.

The tendéncy for a solute to spread is determined by the free'energy
change associated with the spreading. For example, consider a lens of
benzene floating on a water surface. Whether the benzene will spread or
.not depends on the free energy change aﬁsociatéd with the formation of an
air-benzene ;nd,a water~benzene interface and the free energy change

associated with the elimination of an air-water interface.

de = ( EAAE_ YAy * (_S?\G__ JdAgy * (;/a\'g._—)dAAB
AW _ BW “AB
where
G . i; free energy
A is area of air-water interface

AW
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ABw _is area of benzené-water interface
AAB ~'i5 area of air-benzene interface
dABW' = -dAAw = dAAB

G :
- (_B_) =5
aABW B/W

where SB/W is the spreading coefficient of benzene on water.

positive, the spreading will occur spontaneously.

)

B/W

%A " %a " %%w

i f SB/W is

where interfacial tensions are substituted for free energy per unit area.

From the development by Scriven (18), one finds that the rate of

spreading depends on the surface tension gradient and the viscous resis-

tance of thelfluids adjacent to the interface. The drag force is equal to

the surface tension gradient times the area.

With the aid of some simplifying assumptions, the drag force may be

related to the interfacial velocity. The assUmbtions are:

1) The surface of the drop may be approximated by a flat surface.

2) The interface is made up of several circular flat plates as

shown in Figure 21.

direction without change in surface area.

These move a short distance in the radial

3) The development by Blasius in (6) for the drag on a constant

velocity, flat plate immersed in a liquid may be applied. He

gives the drag on one side of a flat plate to be

b= 2xs (0. 664) .VsHpAS
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"DIRECTION OF
PLATE VELOCITY

em(s+dY —
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T 1 4

omzcﬂpn OF PLATE VELOCITY

Figure 21. Model used to calculate drag force from interfacial
velocities. o



where

Fd is
S is

) is
S

u is
p is

The surface'

Therefore,
Ag
AS

For a given

Ac
AS
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drag force

distance.from center of spreading

sﬁrface vélocity in the s direction

viscosity | |

density

stress can be expressed as 1 = ﬁf— = FD/ZnsAs.

= 0.664 | "2 Bz_ ]

A

system and equal increments of As, then:

~ V 3/2 .

S ;

Only the interfacial tension at the origin and at the edge of spread-

ing is known: At the origin, the interfacial tension is determined by the

concentration of

solute imposed there. Since the value of g varies little

at high concentrations it was assumed constant for the initial movements.

(The values of ¢

versus concentration shown in Figure 22 are equilibrium

values measured with the ring tensiometer.) At the edge of spreading the

velocity is zero, then dg/ds = 0 and the interfacial tension is the same as

the initial static value. The next problem, then, is to 'find the values

of ¢ between the
When solute

the origin, thus

two end points.
spread, . it cleared all the eccospheres from the area of

forming a radius of spreading as shown in Figure 13.
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Since there were no‘particlesAwithin this radius, no velocity measure-
ments could be made for the time interval and position where no particles
are present. The small Quantity of solute (0.2 mfcroliters) and small
diameter needle made it imp&ssiEIeAto inject particles along with the
solute. However'in separate experiments, particles were added to a
propionic acid solute injected by a glass tube with a diameter of approxi-
mately 0.1 centimeters to a carbon tetrachloride-water interface. Figure
23 shows typical results. The initial increase in Vg indicates an
acceleration from the origin where VS = 0. |If Vs werevcbnstant over a
large range of s, dd/ds could be assumed constant, i.e., g would vary
linearly with s. This is not the case and since VS versus s showed a non--
linear decrease in Vs’ one may conclude that the variation of g with s is

2/3

less than s or perhaps's]/Z.A This may be a good approximation since in
spreading, the area covered by the sblute increases as 52. Actually, the
variatioﬁ may be greater due to the non-linearity of g as a function of
concentration. The dissolution of solute into the bulk liquid where the
rate of dissolution will depena on the concentration would also be a
factér, The quadradic distribution will give a good approximation since
the end points are known and the direction of the deviation from linearity
is known. A

To coincide with the conditions on the dynamic drops, the experimental
conditions outlined in Table 2 were imposed on a flat infefface. The data

taken from the conditions of Table 2 are shown as the radius of spreading

versus time in Figures 24 and 25.
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Figure 24. solute spreading for the negative-beta system.
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Figure 25. Solute spreading for the positive-beta system.
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Table 2. Experimental conditions that were imposed on a flat interface

. Volume of . Solute “QOrganic g at end’
Code solute microliters concentration phase of run
S % -cyclohexanol

$5-26.2 0.1 10 Cyclohexane )
$$-26.3 0.2 : 10 Cyclohexane L2.1
$5~27.2 © 0.1 20 Cyclohexane

$S-27.4 - 0.2 ' 20 Cyclohexane 41.5
$5-28.2 ool 10 cely,

$$-28.3 - 0.2 10 ccl,, 43.3
$5-29.2 0.2 20 ccl,, 42.9

The graphs in Figures 24 and 25 show that the amount of solute used
has little effect on the sprea&ing rate, but the larger volume of solute
will»spread further and for a longer period of time. Initially the
spreading is quite rapid but tapefs off as time increases. This is
probably due to the deplethn of>soTute at larger values of radius from
dis#olution and increase in'area proportional to 52. The initial solute
concentration has a greater effect on the rate of spreading than an

increased volume of solute.
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APPENDIX 11

Droplet Data

This sectiénlépntains'SOme of the measurements made on aynamic and
static drop profiles. All measurements Qere made from the projeétion of
fifm on white paper. Four negative-beta and threé‘positive-beta drop§
wereAfilmed. The static droplefjproffles were measured before géch applf-
cafion of solute. The aver age é and b values were used in fhe aescription
of the static drop. The b and g values Qere found from a two-parameter fit.
to each drOpIef profile. The last distinguishable point at the base of the
drop was also meaSuFéd so that droplet height and diameter could be used as

boundary conditions. The data for static drops are given in Tables 3 and 4.

Table 3. Statf; droplet daté

. Volume b c Height Baée System initial apex
Label cm.3 cm. dynes/ -cme diameter Organic pressure change,
' oo cm. - cm. dynes/cm.
DD- ' : : Cyclo-
13.1 . 983 0.89 37.0 .525 1.37 hexane 63.0
DD- _ S Cyclo-
4.1 .67 - 1.85 42.9 .289.  1.43 hexane 36.7
DD- ' : Cyclo-
]50] -9] - ]-28 430] oll’]l" I.LI»O hexane 53.2
DD- : Cyclo- :
16,1 .97 1.20 41.8 4ko 1.46 hexane 54.6
DD=- ‘ A ,
DD- . :
18.1 211 © 0.66 40.3 458 T 342 CClh 95.0
DD- '

19.1  .054%  0.29 L47.1  .360 .17 ccty, < 262.0
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Table L. Experimental cohditiqnsAimposed on the static drops

Volume of - Solute ' Corresponding
sol ute, concentration spreading
Label microliters"’ % cyclohexanol - data
DD-13.2 0.1 10 $5-26.2
DD-I303 ' . 0-2 ]0 SS-26~3
DD-13.4 0.1 10 $5-26.2
DD-]L"OZ 0- l 20 55-2702
DD-]L‘HB 0.2 : 20 : Ss"27ol+
DD—IL}.L} 002 ' 20 S$-27Ql+
“DD-15.2 0.1 | 20 $5-27.2
DD-15.3 0.2 20 $5-27.3
DD-15.4 0.2 A 20 $S-27.3
DD-]6¢2 0.] ' : ]0 SS-26.2
DD-'603 0.2 . '0 55-2603
DD"]60L|’ 0.2 ]0 SS-2603
DD-]702 0. ] ‘0 55-28.2
DD-17.3 0.2 ' 10 $5-28.3
DD-]7OL" 0. I IO SS-2802
“Dp-18.2 0.1 . 20 $5-29. 1
DD-18.3 0.2 20 - $5-29,2
DD-IBOL} 00 ] 20 SS-29- ]
DD"'1902 0- ] ’ ’ ]0 55-28-2
DD-) 9.3 0.2 10 $5-28.3
DD']90’+ 0- ] : - ]0 55-2802

“Used for comparison to dynamic model
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The abex movement for all the conditions in Table 4 are plotted in
Figures 26 through 32. As would be expected from sbreading data, each
drop behaved fHe same for 0.1 and 0.2 microliters of solute. However, fhe
concentration probably has an effect, although the quantity of data is
insufficient to make such a conclusion. The movement of tﬁg épex is to
some extent related to the initial apex pressuré change, but a dfkect
correlation is iﬁpossibie since it is also influenced by such factors as

viscosity, drop volume, curvature, and mass resistance to motion.
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Figure 26. Change of droplet height for negative-beta drop, DD-13.
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Figure 27. Change of droplet height for negative-beta drop, DD-Ik.
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Figure 28. Change of droplet height for negative-beta drop,

DD-15.
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Figure 29. Change of droplet height for negative~beta drop, bD-l6.
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Figure 30. Change of droplet height for positive-beta drop, DD-17.
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Figure 32. Change of droplet height for positive-beta drop, DD-19.



