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Effect of Material Properties 
in Certain Thermoelastic 
Contact Problems 
When two conforming bodies slide against each other, frictional heating and thermoe- 
lastic distortion generally causes the contacting surfaces to become convex and hence 
leads to a reduction in the size of the contact area. It is shown that, under such 
circumstances, the contact area is independent of the applied contact loads and the 
thermal and mechanical fields are linearly proportional to these loads. For two- 
dimensional problems involving a plane boundary, it is shown that there is a reduced 
dependence on material properties and in the case of a single material, the solution 
depends only on a single parameter which can be interpreted as a dimensionless 
sliding speed. These results extend to both steady-state and transient problems and 
therefore also characterize the critical sliding speed above which the system is unsta- 
ble. 

1 Introduction 
In an interesting series of papers, Dundurs and his co-workers 

(Dundurs and Stippes, 1970; Dundurs, 1975; Keer et al., 1972) 
established some unexpectedly simple results for receding uni- 
lateral frictionless contact problems; i.e., problems in which the 
extent of the contact area under load is contained within or 
identical to that in the unloaded state. In particular, they showed 
that the contact area may decrease discontinuously as soon as 
the load is applied, but that further increase of load causes no 
further change in the contact area. It then follows that the stress 
and displacement fields are proportional to the applied boundary 
tractions or displacements as long as these retain the same sign. 
Furthermore, in plane elasticity, if the boundary conditions are 
defined in terms of tractions, the stresses are independent of the 
elastic constants, iocluding Poisson's ratio and there is a reduced 
dependence on material properties for cases involving dissimilar 
materials. 

Recent numerical studies by the present authors of thermo- 
elastic contact problems involving frictional heating have exhib- 
ited a related reduced dependence on material properties. In the 
present paper, we shall establish the conditions under which 
such reduced dependence can be expected and draw some inter- 
esting conclusions for steady-state and transient thermoelastic 
contact and for thermoelastic contact stability. 

2 Problem Statement 
We consider the conforming contact problem of Fig. 1 (a) 

in which two plane elastic bodies make contact over an extended 
region Fo when there is no applied load. We now apply some 
boundary tractions, as shown in Fig. l (b ) ,  and allow relative 
sliding to occur between the bodies in the out-of-plane direction, 
resulting in an out-of-plane shear stress t Gn~ I = f P ,  where n 
is the local normal to the contact surface, p is the contact pres- 
sure, and f is the coefficient of friction. If the sliding velocity 
is V, heat will be generated at the interface according to the 
relation 
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q = f V p .  (1) 

The contact area may change as a result of the thermal and 
mechanical loading and the instantaneous value is denoted by 
Ft. Heat input to either body produces a locally convex thermo- 
elastic distortion (Dundurs, 1974) and hence the boundary con- 
dition (1) generally results in receding contact (Fc _c F0). 

Problems of this class are of importance because of the appli- 
cation to brakes, clutches, and seals. Burton et al. (1973) and 
Barber (1976) obtained steady-state solutions for the case of 
two sliding half-planes and related transient problems have been 
investigated numerically by Azarkhin and Barber (1986) and 
Zagrodzki (1990). If the sliding speed V is sufficiently high, 
both steady-state and transient solutions can be unstable in the 
sense that an arbitrarily small perturbation in the initial condi- 
tions can cause large changes in the subsequent behavior (Dow 
and Burton, 1972; Duet  al., 1997). This phenomenon is known 
as frictionally excited thermoelastic instability or TEI (Barber, 
1969). 

2.1 Thermal conditions. The temperature field T i in the 
bodies must satisfy the heat conduction equation 

1 0 T  i 
V2T i = -- - -  (2) 

ki O t '  

where i = 1, 2 denotes bodies I, 2, respectively, t is time, and 
ki is the thermal diffusivity of material i. 

In the contact region, Fc, we assume continuity of tempera- 
ture 

T 1= T 2 in Fc (3) 

and a heat balance yields 

OT l OT z 
q~ - qZ = -K l -~n  + K2--~n = f V  p in Fc, (4) 

from Eq. ( 1 ), where K~ is the thermal conductivity of material 
i and we have adopted the convention that the common normal 
n points into body 1. 

At the free boundaries of the body F - Fo, we assume that 
there is radiation to a medium at a reference temperature of 
zero and hence 

q, = _ K  i OT____~ = hT i in F - F0, (5) 
On 
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0 
Fig. 1 (a) 

Fig. 1 (b) 

Fig. 1 A reoeding contact problem. (a) With no applied tractions, the 
contact region is F0, (b) With applied tractions, ~-, the contact region is 
F~, and F~ c Fo. 

where h is a heat transfer coefficient. Finally, in the region Fo 
- F~ which loses contact as a result of thermoelastic distortion 
and loading, we assume there is heat transfer between the bodies 
through a heat transfer coefficient h0, i,e., 

-K10T1 -K2 0T2 
0----~= -~n = h ° ( T 2 -  TI) in F o - F ~ ,  (6) 

We note that by setting h = 0 or ha = 0 in (5) ,  (6) ,  we 
recover the thermally insulated boundary condition, while by 
setting h = ~ or h0 = ~ ,  we obtain the boundary conditions T 
= 0 and T ~ = T 2, respectively. 

2.2 Mechanical conditions. We assume that there are no 
body forces- - i .e . ,  that the bodies are loaded only on the bound- 
aries F - - i n  which case the stress field in both bodies must 
satisfy the equilibrium relations 

O0"xy O(~y x Oayy Ocr~ + = 0; + = 0 (7) 
Ox Oy ~ Oy 

and the resulting strains must satisfy the compatibility equation 

02exx ÷ 02eyy : 2 02e~ 
Oy 2 OX 2 OxOy (8) 

These quantities are related by the thermoelastic Hooke 's  law 

i 
eSx - a~x ( 3  - Ki)(o'irx + O'yy) + ~TiT i ( 9 )  

2//,i 8/zi 

i 
i -- O'xY ( 1 0 )  

exy - 2#--~ 

etc., where 

xi = (3 - 4ui ) ; ~i : ~ i  ( 1 ÷ ui ) for plane strain, (11 ) 

(3 - ui) 
Ki = - - ;  rli = Yi for plane stress (12) 

(1 + ui) 

and #~, u~, y~ are, respectively, the shear modulus, Poisson's 
ratio, and coefficient of thermal expansion 1 for material i. 

We assume traction boundary conditions on the free bound- 
aries, i.e,, 

or,,. = 7-.; or.,,. = 7-. in F - F0, (13) 

where n, s are Cartesian coordinates normal and tangential to 
the local boundary and 7-., 7-, are prescribed normal and tangen- 
tial tractions, respectively. 

In the contact region, there is no in-plane shear traction and 
the normal traction is continuous, so 

~ ,  = cr].---- - p ;  or.ks= a ~ =  0 in F~. (14) 

In addition, we have the kinematic contact condition 

u ¼ = u ]  in Fc (15) 

and the contact pressure is required to be non-negative; i.e., 

p - > 0  in F~. (16) 

Finally, the region that loses contact must be traction-free 

~r~,, = c r y , , = 0 ;  ~ r ~ =  a,~,= 0 in F 0 -  F~ (17) 

and the displacements must result in a non-negative gap, giving 

u. l -  u ] - - 0  in F 0 - F ~ .  (18) 

We restrict attention to the case where the two bodies are 
both simply connected a, in which case the above conditions 
completely define the problem of Fig. 1. 

3 Dimensionless Formulation 

In order to demonstrate the dependence of  the solution on 
material parameters, it is convenient to recast these conditions 
in terms of dimensionless quantities, normalized with respect 
to the applied tractions. For this purpose, we introduce a loading 
parameter S > 0 with units of  stress and define dimensionless 
tractions ~. ,  ~'s through the relations 

% = S~,; ~-s = S~s. (19) 

We also introduce a geometric length scale a which will enable 
us to expose simplifications resulting from geometric self-simi- 
larity. 

With these preliminaries, we now define dimensionless coor- 
dinates, stresses, displacements, etc., through the relations 

x = a2; y = a.~; n = are; s = ag; (20) 

aZ{ 
t = - -  ; (21) 

kl 

Notice that we here use the symbol y rather than the more familiar a for the 
coefficient of thermal expansion to avoid confusion with Dundurs bimaterial 
constant a which appears in Section 3. 

2 If either body is multiply connected, the compatibility condition must be 
supplemented a set of Cesam integrals around each hole (Love, 1927). 
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~7 = $3-; p = S/5; (22) 

u t =  aS(tel + 1)ui ; (23) 
#i 

Tt = S(Ki + 1)7`i', (24) 
~igli 

qi SK iOq  + 1)q* (25) 
a#irli 

We also define the alternate strain measure g through the 
relation 

e" S(K~ + l ) d  ~ (26) 

In this notation, the governing equations (2),  (7) - (10) take 
the simpler forms 

V 2 7 `  l = --07`1 ' V 2 7 `  2 = /~ 07`= ' (27) 
0f  ' Of ' 

O& X7 GQO-yx O0-yy 0&,.x + - = 0; + = 0; (28) 
0--7- o; -57 

where 

02evX 02Gy = 2 0 2 G Y "  

Off - - - Z +  02 - - - 7  0 2 0 ~ '  (29) 

^ i  
^ i  ( 3  --  K i ) ( ~  ~. + ~ y y )  + 7`i; ( 3 0 )  ^i ~ xx 

e x~ - 
2(K, + 1) 8(K~ + 1) 

^ i  
^i ffxy (31) 
e .  2(K~ + 1 ) '  

k = k-2. (32) 
k= 

A more convenient lbrm of the compatibility gq. (29) can 
be obtained by substituting for the strains using (30), (31 ) and 
using the equilibrium Eq. (28) to eliminate the shear stress 
terms. After cancelling a nonzero dimensionless parameter, we 
obtain 

2 ^ i  ^ i  V (c%~ + ayy + 87` ~) = 0. (33) 

The corresponding dimensionless forms of the boundarY con- 
ditions ( 3 ) - ( 6 ) ,  ( 1 3 ) - ( 1 8 )  are 

7̀ 1 = ~a~7`2; (34) 

M~ 07` = 0 7 " + _  9/5; (35) 
Oh R o~ 

~}m ^2  ^1 ~r2 ~,,,, ~ -/5; ..... = 0; (36) = (Yns -~ 

4), =/Qd~; (37) 

/5 _> o, (38) 

in Fc, 

017' 
: hT`~; _ 2÷o. = ~2h¢~;  

OrS &q 

3-,,,, = -~,,; G,, = ¢-,, 

in F - Fo and 

_ o j . ~  = a ~  07`  2 = h0(a/cfl, 2 _ 7"); 
0h R 0h 

^1 ^ 2  ^1 ^2  or,,,, o',., = 0; = 0; 

Journa l  of  Appl ied  M e c h a n i c s  

1̂ /Q~] ~ 0, (43)  Un -- 

in Fo - F~, where 

~ M #,.(K2 + 1) R K~ = - - ;  = ; = - - :  
rh #2(K, + 1) 1(2 

h = h.__a; ho hoa 
Ki K1 

and 

(44) 

I7= f V # l r l l a  (45) 
Kl(tq + 1) " 

Notice that M//can be defined in terms of Dundurs bimaterial 
parameter a through 

1 - a  
- (46) 

l + a  

It follows that in the dimensionless formulation, the problem 
depends on the material properties only through Ki and the 
dimensionless parameters defined in Eqs. (32), (44), (45). 

4 L i n e a r i t y  W i t h  L o a d i n g  P a r a m e t e r  

The loading parameter S does not appear in the dimensionless 
formulation of the problem as defined by the above equations. 
It follows immediately that the extent of the contact area Fc, 
which is determined by the inequalities (38), (43), is indepen- 
dent of S. Furthermore, since the only nonlinearity in the prob- 
lem is that associated with these inequalities and the possibility 
of the contact area varying with load, it then follows that the 
temperature, stress, and displacement fields are all linear with 
S. 

It must be emphasised that this result applies only for the 
case where S is positive, since in deriving the inequalities (38), 
(43) from (16), (18) we have cancelled a common factor S. 
However, this is not a serious restriction since with an appro- 
priate sign convention the case S < 0 will correspond to loading 
that would not support contact even without thermoelastic ef- 
fects. 

Notice that these results apply to transient as well as steady- 
state problems. Thus, if the bodies are initially at temperature 
T = 0 (for example) and sliding starts at time t = 0, we antici- 
pate that the contact area will start at some value F,.(0) ~_ F0 
and will get progressively smaller as thermal distortion occurs. 
The fact that the dimensionless formulation does not contain S 
demonstrates that the evolution of the contact area in time, 
F,.( t ) ,  is independent of S and that the instantaneous tempera- 
ture, displacement, and stress fields for different values of S 
will be linear scalings of each other for a particular value of 
i. 

The same argument applies if the dimensionless tractions 
45, 4s and/or the sliding speed V are functions of time. 

We have developed Eqs. ( 2 7 ) - ( 4 3 )  for the simpler two- 
dimensional case, but it is clear that a similar line of reasoning 
could be developed for the three-dimensional problem of Fig. 
2, in which a brake pad slides against a rotating annular disk. 

( 39 ) ~ ~ _ . _ . ~  C ~  

(40) 

(41) 
Fig. 2 A three-dimensional receding contact problem for a disk brake. 
As in the two-dimensional case, the contact area will be independent of 

( 42 )  the applied load. 
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In addition, the argument is readily extended to cases involving 
multiply connected regions and/or body force loading. To see 
this, suppose that a solution has been obtained for a particular 
value of S ( = S~ ), so that the dimensional temperature, displace- 
ment, and stress fields are all known and in particular that they 
satisfy the unilateral contact inequalities analogous to (16, 18) 
in F0 - F~(t) at all times t. We now postulate that the corre- 
sponding fields for a different but proportional loading scenario 
S = Sa will be $2/S~ times the original solution. Clearly all the 
linear governing equations and boundary conditions will be 
satisfied by this assumption and the new inequality constraints 
will simply be a positive multiplier of the old ones and hence 
will also still be satisfied. 

We conclude therefore that if a brake pad conforms to the 
disk at zero applied load, the evolution of the contact area due 
to combined elastic and thermoelastic effects will be indepen- 
dent of the loading parameter. 

This result leads to a remarkable conclusion in the case of 
mechanical seals. Burton et al. (1973) showed that if a seal 
between two elastic half-planes operates above the critical 
speed, the system will be unstable, but will tend to a stable 
nonuniform steady state in which there are regions of contact 
and separation, permitting leakage to occur through the separa- 
tion regions. If the applied load is increased in a misguided 
attempt to reestablish full contact, the extent of the separation 
areas will be unchanged, but all the thermal and mechanical 
fields will be increased, leading in particular to an increased 
gap and hence increased leakage. The original proof by Burton 
et al. (1973) was restricted to thei[ particular system, but it is 
clear from the arguments of this section that the result is of 
completely general application. 

Notice that the three-dimensional argument depends on the 
unloaded contact problem being conforming in all kinematic 
configurations. For this to occur, all parts of the contacting 
surfaces must have the same shape and this restricts the result 
to cases where the contacting surfaces are plane or (possibly 
incomplete) surfaces of revolution (e.g., a drum brake). No 
such restriction applies in the two-dimensional case, since the 
motion then occurs out-of-plane. 

Substituting for the strains from (30), we have 

A C ' -  2 ( ~ ' +  1) 0~- + 8(~'  + 1) \ 0h + 0r~ ] 

of '  d {  e~,. (3 - K') 
0r~ k2(K ~ + 1) 8(K ~ + 1) 

\ 
^i ^i ] in F0. (51) x (c~.s + ~r.,,) + ¢ '  

/ 

This expression can be simplified using the equilibrium equation 

^ i  

- -  - - ~r,,) (52)  
Oh Og 

(see, for example, Dundurs (1989), Eq. (21)). Substituting 
(52) into (51) and noting once more that Cr,s ^ ~ = 0 in F0, we 
obtain 

AC ~ _ 1 0 ~ ,  07 ~i 
8 0h 0h 

\ 8 K  } ( ~ + 1 )  

6 C o n t a c t  A l o n g  a S t r a i g h t  B o u n d a r y  

In general, the terms involving (.' in Eq. (53) will introduce 
a dependence on K ~ into the problem. However, for the special 
case where the initial contact boundary is straight, (7 = 0 and 
(53) reduces to 

A ~  i _ 02t2~___ 1 0 ~ s  O'i°~ in Fo. (54) 
og 2 8 0 ~  OrS 

We can therefore integrate along the straight line F0 to obtain 

oh oh j 

5 T h e  C o n t a c t  B o u n d a r y  C o n d i t i o n s  

We now return to the two-dimensional formulation of Eqs. 
(27) - (43) and consider in particular the contact boundary con- 
ditions (37), (43). Under certain circumstances Eq. (37) can 
be replaced by a relationship involving strains only. Dundurs 
(1989) showed that the change AC in the curvature of an inter- 
face can be written in terms of strains as 

AC = 2 0~,,, 0ds, Cdn,,, (47) 
Os On 

where the dimensionless curvature C is defined such that d'~ = 
- 0fi /0£.  Markenscoff and Wheeler (1996)  showed that the 
contact condition (37) implies that 

2x~ ~ -  A ~  z = C ' ( ~ -  ~ )  in F~. (48) 

They were also able to express this condition in terms of strains 
only in the form 

d (AC'~-,AC2~-= = es,~l _ espY2 in F~. (49) 
dg \ c / 

^ i and hence hi In the present problem, ~7,,~, e~, are zero throughout 
Fo, from (36), (42), so (47) simplifies to 

A C =  _ 0 ~ , , _  C~,, in Fo. (50) 
On 

[0¢' M0 2]) 
+ [ OrS + Oh J dsds (55) 

in F0. The integral in (55) will contain two arbitrary constants 
of integration corresponding to rigid-body translation and rota- 
tion. 

If we use (55) to substitute for t~), - /Od 2 in (37), (43), the 
entire problem of Fig. 1 can be stated in terms of the two 
functions T, 6 -i, using the boundary conditions ( 3 4 ) -  (43) and 
the governing Eqs. (27), (28), (33). It follows that the solution 
depends upon the material properties only through the dimen- 
sionless parameters ~/, ¢], K, k, h, he, V. In the steady-state 
problem, there is no dependence on k and if the thermal bound- 
ary conditions in F - F,. are all of the form q = 0 or T = 0, 
the dependence on material properties is further reduced to the 
set M, ~, K, V. 

6.1 Simi lar  Materials.  If the two materials are similar, 
we have .~/ = ¢1 = f/ = k = 1 and the problem depends only 
on h, hc, 1). Remarkably, this reduces to dependence on the 
single dimensionless group I? in the case where the thermal 
boundary conditions in F - F,, are all of the form q = 0 or T 
= 0. This remains true in the case of transient problems. 

6.2 One Material  a Rigid Nonconductor .  If material 2 
is a rigid nonconductor, we h a v e / f / =  0, 8/ = /~ = k = co and 

once  again the problem depends on the single parameter 17 for 
homogeneous temperature or heat flux boundary conditions in 
F - P c .  

892 / Vol. 65, DECEMBER 1998 Transactions of the ASME 

Downloaded 29 May 2009 to 141.212.141.77. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



6.3 Thermoelastic Contact Stability. Dow and Burton 
(1972) were the first to demonstrate that a problem defined by 
the frictional heating boundary condition ( 1 ) would be unstable 
if the sliding speed exceeded a certain critical value. They also 
pioneered a perturbation method for determining the critical 
speed V0 in which they examine the conditions under which a 
small perturbation in the stress and temperature fields can grow 
exponentially with time. This method has since been used exten- 
sively for determining critical speed in more complex systems, 
both in analytical and numerical implementations (see, for ex- 
ample, Lee and Barber, 1993; D u e t  al., 1997). 

Burton's perturbation method is essentially equivalent to a 
solution of the transient thermoelastic contact problem of Fig. 
l - - i ndeed ,  the general transient problem can in principle be 
written down as an eigenfunction expansion using the eigen- 
modes of Burton's solution. Thus, the above arguments carry 
over to the stability of any solutions obtained. In particular, we 
conclude that if two bodies of similar materials make contact 
at a plane boundary or one body makes contact with a rigid 
nonconducting plane surface, the stability of a given steady- 
state or transient solution can be defined in terms of a single 
dimensionless critical speed 

f 'o- fV°l~rla (56) 
K(K + 1) ' 

for homogeneous temperature or heat flux boundary conditions 
in F - Ft. 

This result is of significant value in the design of sliding 
systems against thermoelastic instability. In many cases, the 
design configuration is too complex to make a full numerical 
solution of the problem practicable, but using equation (56), 
we can conclude that the critical speed will be increased (and 
hence the system made more stable) by any changein material 
properties or dimensions that reduces the value of V0 for given 
Vo; i.e., that reduces 

f#~Ta 
K(~c+ 1) 

7 Conc lus ions  

We have demonstrated that the extent of the contact area F,  
in the thermoelastic contact problem of Fig. 1 remains invariant 
under proportional loading if Fc _c F0; i.e:, if the final contact 
area is included within that occurring at zero applied load. It 
then also follows that the temperature, stress, and displacement 
fields are all linear with the applied tractions. 

For the two-dimensional problem with sliding at a common 
straight boundary, we have established a reduction in the depen- 

dence of the solution on the properties of the materials. In 
particular, we find that for problems involving two similar mate- 
rials or the contact of a single deformable body against a rigid 
plane surface, the solution depends only on a single parameter, 
which is a dimensionless sliding speed V. The stability of the 
solution is also determined by this parameter. 

Since most practical problems of this class require numerical 
solution, these results extend the generality of such solutions 
and permit conclusions to be drawn about the effect of changes 
in material properties on stability behavior. 
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