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ABSTRACT: The paper elucidates the methods of estimating damping in ceramic
matrix composites (CMC) with matrix cracks. Unidirectional composites with
bridging matrix cracks and cross-ply laminates with tunneling cracks in transverse
layers and bridging cracks in longitudinal layers are considered. It is shown that
bridging matrix cracks dramatically increase damping in unidirectional CMC due to
a dissipation of energy along damaged sections of the fiber–matrix interface
(interfacial friction). Such friction is absent in the case of tunneling cracks in
transverse layers of cross-ply laminates where the changes in damping due to a
degradation of the stiffness remain small. However, damping in cross-ply laminates
abruptly increases, if bridging cracks appear in the longitudinal layers.

KEY WORDS: ceramic matrix composites, matrix cracks, damping.

INTRODUCTION

T
HE PRESENT PAPER deals with the effect of matrix cracks in unidirectional and cross-
ply CMC laminates on damping. As follows from experimental evidence [1–4],

damping in ceramic matrix composites and ceramics is quite small. Damping increases in
materials with damage and the problem that is addressed in this paper is related to a
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magnitude of this increase in unidirectional and cross-ply configurations. Note that the
present analysis is conducted by assumption that new cracks are not formed during the
motion (preexisting cracks).

It is useful to outline here a typical damage pattern in CMC. In the case of a
unidirectional CMC material subject to axial tensile load, matrix cracks propagate in the
planes perpendicular to the fibers [5]. These cracks may break the fiber, as they approach
the fiber–matrix interface, but usually they continue their propagation in the matrix
leaving behind the intact fiber and a section of the damaged fiber–matrix interface
adjacent to the crack plane (‘‘bridging cracks’’). In the case of a cross-ply laminate, initial
cracks appear in the transverse layers where they are parallel to the fibers (‘‘tunneling
cracks’’). As the load continues to increase, these cracks reach saturation, and
subsequently, bridging cracks appear in the longitudinal layers. Such sequence of cracking
in cross-ply CMC laminates was observed in numerous experiments [6,7]. Note that the
theoretical models for the damaged unidirectional and cross-ply CMC have been
developed by numerous investigators (see, review paper [8] for details).

Some of the sources of an increased damping in laminated composites with matrix
cracks are:

. Macromechanical stresses associated with the changes in stiffness due to cracking;

. Micromechanical stresses at the tips of the cracks;

. Energy dissipation due to thermomechanical coupling (see the review of this coupling
phenomenon in [9]).

In addition, energy is dissipated due to friction along the damaged sections of the fiber–
matrix interface adjacent to the matrix crack plane in unidirectional composites with
bridging cracks that are perpendicular to the fibers. The same phenomenon is encountered
in longitudinal layers of cross-ply laminates with bridging matrix cracks. Another source
of energy dissipation is friction between the faces of a crack during a part of the motion
cycle.

In the present paper, the emphasis is on the changes in damping associated with the
macromechanical stress problem and with the interfacial friction. It is obvious that other
sources will further increase the energy dissipation. Therefore, incorporating all involved
sources can only reinforce the conclusion that damping increases due to the presence of
matrix cracks. Accordingly, the results illustrated in the paper may serve as a lower limit
for the loss factor and other damping characteristics.

The solution obtained in the paper is based on monitoring the variations in the loss
factor of the material:

g ¼ Ud=2�U ð1Þ

where Ud is a density of energy dissipated per cycle of motion (energy per unit volume per
cycle) and U is the maximum strain energy density during the cycle.

Note that if the loss factor is found, such damping characteristics as the specific
damping capacity ( ), the logarithmic decrement (�), and the damping ratio (�) can be
determined from [10]:

 ¼ 2� ¼ 4�� ¼ 2�g ð2Þ
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The motion considered here represents reversed bending with the stress ratio R¼ 0.
Accordingly, the applied composite stress varies as

�c ¼ �ð1 þ sin!tÞ ð3Þ

where ! is the frequency of motion, and t is time. Compressive stresses are avoided in this
analysis since their effect may be disruptive for the damping study due to a possible fiber
microbuckling.

DAMPING IN UNIDIRECTIONAL CMC COMPONENTS WITH

BRIDGING MATRIX CRACKS

Maximum Strain Energy Density

In a one-dimensional problem where the composite stress is acting along the fiber
direction, the strain energy density is obtained from

U ¼ �2
c=2E ð4Þ

where E is the modulus of elasticity in the fiber direction. This modulus was derived for
the material with bridging cracks developed during lifetime by Pryce and Smith [11] as well
as by a number of other investigators (see review of Birman and Byrd [8] for a
comprehensive discussion). Byrd and Birman [12] modified the solution of Pryce and
Smith to account for the case where bridging cracks were formed during processing. In
the present work, we are concerned with the cracks formed during lifetime and employ
the Pryce and Smith solution. The average per-cycle modulus of elasticity of a
unidirectional brittle matrix material with bridging cracks undergoing cyclic loading is
given in [13], based on the Pryce and Smith model (Figure 1):

E ¼ �½�=EL þ ðr=4sÞð��=Ef ÞðVmEm=VfELÞ
2
�
�1

ð5Þ

In Equation (5), � is an interfacial shear stress, r is the fiber radius, s is the preexisting
matrix crack spacing, �� is the range of tensile stresses applied to the layer, EL is a

Figure 1. Bridging cracks in a unidirectional CMC material. The matrix cracks spacing (s) and the length of
the interfacial partial slip region (xo) are shown in the figure.
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longitudinal modulus of the intact material, Ef and Em are the moduli of fibers and matrix,
respectively, and Vf and Vm are the volume fractions of the fibers and matrix, respectively.

Residual thermal stresses do not affect the average modulus E, as can easily be shown
using the solution [11]. Note that the interfacial shear stress does not remain constant
during fatigue cycling. Rather, it decreases with cycling due to wear, as was shown by
Holmes and Cho [14]. Other factors, such as lubrication, strain rate, and temperature have
also been shown to affect this stress. However, during small-amplitude steady state
vibrations, the changes of the factors affecting the interfacial stress are slow. Accordingly,
the value of the interfacial stress during one cycle may be assumed constant.

Equation (5) was obtained by assumption of a partial slip along the fiber–matrix
interface during cycling. The limits of applicability of this equation are

E > VfEf =ð1 � VmEm=2ELÞ ð6Þ

If inequality (6) is violated, a partial-full slip occurs along the interface and Equation (5)
should be replaced with a different relationship [13]. However, this situation is not
considered here since a partial-full slip is unlikely in the case of small amplitude vibrations.

The maximum value of the strain energy density can be immediately obtained from
Equation (4) using �c¼��¼ 2�. Accordingly, in the case of a unidirectional material with
bridging matrix cracks

U ¼ ð2�2=�Þ½�=EL þ ðr=2sÞð�=Ef ÞðVmEm=VfELÞ
2
� ð7Þ

Damping in Intact Unidirectional CMC

The loss factor for a unidirectional composite without damage subject to axial loading
was derived by Chang and Bert [15] in the form

g ¼ ð
Vf gf þ VmgmÞ=ð
Vf þ VmÞ ð8Þ

where gf and gm are the loss factors for the fiber and matrix materials, respectively, and

¼Ef /Em. Note that in the present solution the loss factors of the fibers and matrix are
assumed independent of the stress amplitude. As is shown below, in the presence of
bridging cracks, the energy dissipation associated with interfacial friction is dominant, i.e.,
any inaccuracies due to the above-mentioned assumption should be negligible.

Modifying a recently suggested formula [16], the loss factor can also be written as

g ¼ ðVf gf Uf þ VmgmUmÞ=ðVfUf þ VmUmÞ ð9Þ

where Uf and Um are the strain energy densities of fibers ( f ) and matrix (m) at maximum
vibratory displacements. Note that it is also possible to incorporate the energy of the
interphase into Equation (9), although this contribution is neglected here for simplicity.
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Using

Uf ¼ �2
f =2Ef Um ¼ �2

m=2Em ð10Þ

and expressing the fiber and matrix stresses in terms of the maximum applied composite
stress �c¼ 2� we obtain

Uf ¼ 2Ef �
2=ðVfEf þ VmEmÞ

2

Um ¼ 2Em�
2=ðVfEf þ VmEmÞ

2
ð11Þ

Now the loss factor given by Equation (9) yields the same result as Equation (8). The
density of the energy dissipated per cycle of motion in the intact material is found as

U 0
d ¼ 2�gU ð12Þ

where g is obtained from Equation (8) and U is given by Equation (4) using the maximum
value of stress, i.e., �c¼ 2�, and the modulus of the intact material EL.

Energy Dissipation in Unidirectional CMC with Bridging Matrix Cracks

The energy dissipation mechanism considered in this paper accounts for two
contributions associated with matrix cracks, i.e., a modified amount of energy dissipation
in the material with a reduced elasticity modulus, without accounting for interfacial
friction, and the contribution associated with the friction along the damaged section of the
fiber–matrix interface. These two contributions are assumed independent and considered
separately.

The energy dissipation in a damaged material, without interfacial friction, can be
estimated from Equation (8), accounting for a reduced effective modulus of elasticity of
the matrix. In the case of vibrations of a damaged material, according to the rule of
mixtures,

E ¼ VfEf þ VmE
0
m ð13Þ

where is E0
m an effective matrix modulus.

Equating the modulus given by Equation (13) to that in Equation (5) yields an effective
matrix modulus:

E 0
m ¼ �VfEf =Vm þ ð�=VmÞ½�=EL þ ðr=4sÞð��=Ef ÞðVmEm=VfELÞ

2
�
�1

ð14Þ

This modulus should be used in the coefficient 
 in Equation (8), instead of the modulus
Em. Note that numerical examples presented below illustrate that the changes in damping
due to the shear-lag effect and a reduced matrix stiffness are small and they may even be
negligible, as compared to the changes associated with the interfacial friction.
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The energy dissipation in a damaged material as a result of the interfacial friction can be
estimated as follows. The frictional energy dissipation density per second due to the
interfacial friction is obtained according to Cho et al. [17] as

w, t ¼ ð fr=12sÞ½ð��Þ3=Ef ��ðVmEm=VfELÞ
2

ð15Þ

where f is the frequency of load (Hz). Accordingly, the energy dissipation density per cycle
is obtained as

U 00
d ¼ w, t=f ð16Þ

This yields

U 00
d ¼ ð2r�3=3sEf �ÞðVmEm=VfELÞ

2
ð17Þ

Note that in a recent work of Birman and Byrd [18], a similar result was obtained based on
the Pryce–Smith theory [11] and a simplified expression for a relative sliding between the
fibers and matrix:

U 00
d ¼ ð5r�3=6sEf �ÞðVmEm=VfELÞ

2
ð18Þ

The difference between the results obtained by Equations (17) and (18) is 20%, i.e., both
formulas yield qualitatively similar conclusions. Note that the dissipation energy (and the
corresponding loss factor) associated with the interfacial friction is proportional to the
third power of the stress amplitude.

The loss factor of the material with bridging matrix cracks can now be determined as

gb ¼ ðU 0
d þU

00
d Þ=2�U ¼ g0 þ g00 ð19Þ

where g0 is given by Equation (8) using Em¼Em
0 and g00 is obtained from Equations (1), (7)

and (17) or (18).
This accomplishes the theoretical part of the solution for a unidirectional CMC. It is

interesting to note that the loss factor determined above is independent of the frequency of
motion. However, it is clearly affected by the matrix crack spacing, interfacial shear
stresses, applied stress amplitude, and the residual thermal stress. Accordingly, although
there is not an explicit effect of frequency on damping in the solution presented above, the
frequency affects damping via the amplitude of stresses that vary, dependent on the
relationship between the driving and natural frequencies. Obviously, at resonance, the
amplitude of motion and the stress in the structure reach maximum, increasing damping.
At frequencies that are far from the natural frequencies of the structure the changes in the
vibration amplitude as a function of frequency remain small and the effect of frequency on
damping is weak. Notably, the conclusion of the negligible effect of vibration frequencies
on damping in ceramics was obtained in the experimental study [19].
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DAMPING IN CROSS-PLY CMC COMPONENTS WITH

TUNNELING CRACKS IN TRANSVERSE LAYERS

Intact Cross-Ply CMC Material

The loss factor in 0-layers, i.e., g0, can be evaluated from Equation (8). In transverse
layers, the energy contributions in the fibers and in the matrix are given by

Uf ¼ ð1=2ÞVf �f "f

Um ¼ ð1=2ÞVm�m"m
ð20Þ

where both the stresses and the strains are acting in the transverse direction relative to the
fibers.

According to the energy approach employed by Gibson [20], the transverse strains in the
fibers and in the matrix can be found as

"f ¼ a2"c "m ¼ b2"c ð21Þ

where the average transverse composite strain is "c. The values of coefficients in Equations
(21) can be found from [20]:

a2Vf þ b2Vm ¼ 1

ET ¼ a22Ef 2Vf þ b
2
2EmVm ð22Þ

In the above equations, Ef 2 is the fiber modulus of elasticity in the transverse direction and
ET is the transverse modulus of the composite material.

Substituting Equations (21) into (20) and using the formula for the loss factor of an
arbitrary system of linear viscoelastic elements suggested by Ungar and Kerwin [21] that is
reduced in the present case to Equation (9) one obtains

g90 ¼ ðgf Vf a
2
2Ef 2 þ gmVmb

2
2EmÞ=ðVf a

2
2Ef 2 þ Vmb

2
2EmÞ ð23Þ

Note that Equation (23) does not employ the assumption that the transverse stresses
in the fibers and matrix are equal to each other. As was shown in [20], this
assumption that is used in the mechanics of materials approach to micromechanics
of composite materials may lead to a noticeable inaccuracy in estimating transverse
properties.

Now it is possible to evaluate the loss factor for the intact cross-ply material denoted
here by gcp. Using the approach similar to that in the case of a 0-layer, one obtains

gcp ¼ ðg0EL þ g90ET Þ=ðEL þ ET Þ ð24Þ
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Stresses in Cross-ply CMC Laminates with Tunneling Matrix Cracks

in Transverse Layers

As indicated above, the analysis is conducted by assumption that the cracks have
already formed and new damage is not generated during motion. Therefore, the theory of
Hahn and his associates [22] used here has to be modified as follows.

According to the approach employed in [22], a crack in the transverse layer is modeled
through a superposition of the stresses in the laminate without a crack subject to a far-field
stress �c and the stresses in the laminate with the crack subject to the stresses applied to the
crack surfaces (Figure 2). The magnitude of the latter stresses is found based on the energy
release consideration, i.e., it refers to the process of cracking, rather than the analysis of
preexisting cracks. Contrary to the solution [22], in the present work, the cracks have
already been formed, i.e., the stresses applied to the crack surfaces have to be determined
from the analysis of the intact laminate and the requirement that the total stresses applied
at the surface of the crack are equal to zero. Other assumptions employed in [22] are
retained in the present analysis. Note that macromechanical thermal residual stresses
considered in [22] are due to a mismatch between thermal expansion coefficients of
longitudinal and transverse layers. As was shown in [23], these stresses are much smaller
than their micromechanical counterparts (residual stresses due to a mismatch between the
fiber and matrix materials), at least for the material considered in this paper. Accordingly,
they are not considered here.

The solution for the intact laminate subject to an applied stress �c is trivial. The stresses
in longitudinal and transverse layers of a balanced laminate (equal thickness of all layers)
are given by

�00 ¼ ðEL=EiÞ�c �090 ¼ ðET=EiÞ�c ð25Þ

where Ei¼ (ELþET)/2 is the modulus of the intact composite. Equation (25) is applicable
to composite beams. In the case of a plate, the moduli in Equation (25) and in the
subsequent transformations have to be replaced with the corresponding reduced
stiffnesses, i.e., the Poisson effect should be taken into consideration. However, this
correction does not alter the conclusions from the present study.

Figure 2. The modification of the theory [22]. The state of stresses in a cross-ply laminate is represented by a
superposition of the solution for the intact laminate and the perturbed solution based on the requirement of
stress-free crack surfaces. Notation: ‘‘Long’’¼ longitudinal layers, ‘‘Tran’’¼ transverse layer, �c¼ applied
stress. Coordinate axes x and y are used in the subsequent discussion.
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Consider now the perturbed state of stresses due to the stress applied on the crack
surfaces. The solution presented in [22] remains valid, except for the stress �090 that has
already been obtained for the intact laminate in Equation (25). The solution of the
governing differential equation for the perturbation stress in the 0-layers

�0,xx ¼ ð�=hÞ2�0 ð26Þ

has to be subject to the boundary conditions (Figure 3)

x ¼ 0 : u ¼ 0, �0 ¼ �090
x ¼ L : �0, x ¼ 0, u, y ¼ 0 ð27Þ

In Equations (26), (27), h is a layer half-thickness (note that it is assumed that all layers
have equal thickness), L is a half-spacing of the tunneling cracks, and u is a displacement
of the transverse layer in the x-direction defined in the theory [22] as a quadratic function
of the y-coordinate:

u ¼ f1ðxÞy
2 þ f2ðxÞ ð28Þ

where

f1, x ¼ F1�0 f2,x ¼ F2�0

F1 ¼ 3ðEL þ ET Þ=ð2ELETh
2Þ

F2 ¼ 1=EL � h
2F1

ð29Þ

Furthermore, the shear-lag parameter is given by

� ¼ ½3GT ðEL þ ET Þ=ðELET Þ�
1=2

ð30Þ

where GT is the layer shear modulus in the plane perpendicular to the fibers.

Figure 3. Geometry of a balanced cross-ply material with tunneling matrix cracks in transverse layers. Shown
are a transverse layer with cracks and halves of two adjacent longitudinal layers. Notation: 2L¼ crack spacing,
2h¼ layer thickness.
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The solution for the perturbation stresses is adopted from [22]:

�0 ¼ A�
0
90½exp ð��xnÞ þ exp ð�2�LnÞ exp ð�xnÞ�

�90 ¼ ETA�
0
90½exp ð��xnÞ þ exp ð�2�LnÞ exp ð�xnÞ�ðF1y

2 þ F2Þ ð31Þ

where

A ¼ ½1 þ exp ð�2�LnÞ�
�1

xn ¼ x=h Ln ¼ L=h ð32Þ

The total stress in the longitudinal and transverse layers can now be calculated as (�0þ �
0
0)

and (�90þ �
0
90), respectively.

Loss Factor in Cross-Ply Laminates with and without Transverse Matrix Cracks

The loss factor is calculated below based on a comparison between the per-cycle
dissipation energy and maximum strain energy. Both energy components are calculated
for a representative half-cell, i.e., within 0<x<L and 0<y<2h (see Figure 3). For the
intact material, the maximum strain energy per unit width of the cross-ply beam is

U ¼ U0 þU90 ¼ ðh=2Þ

Z L

0

½ð�00Þ
2=EL þ ð�090Þ

2=ET �dx ð33Þ

where U0 and U90 denote the contributions of longitudinal and transverse layers,
respectively, and the Poisson effect is neglected.

The same energy for the material with transverse cracks in the 90-layers is

U ¼ U0 þU90 ¼ ðh=2Þ

Z L

0

½ð�0 þ �
0
0Þ

2=ELdxþ ð1=2Þ

Z L

0

2

Z h

0

ð�90þ�
0
90Þ

2=ETdy

� �
dx ð34Þ

The composite loss factor can now be found from the formula that follows from the
analysis in [10], i.e.,

g ¼ ðg0U0 þ g90U90Þ=U ð35Þ

Note that in the case of the intact material, Equation (35) reduces to Equation (24).
In the presence of cracks, the substitution of Equations (25), (31) into the first integral in

the right side of Equation (34), integration and transformations yield

U0 ¼ ðh=2ELÞð�c=EiÞ
2LðE2

L þ 2AELET�1 þ A
2E2
T�2Þ ð36Þ
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where

�1 ¼ ½1 � exp ð�2�LnÞ�=ð�LnÞ

�2 ¼ 2 expð�2�LnÞ þ ½1 � expð�4�LnÞ�=ð2�LnÞ
ð37Þ

Similar transformations yield

U90 ¼ ðh=2ET Þð�cET=EiÞ
2Lð1 þ 2K1AET�1 þ K2A

2E2
T�2Þ ð38Þ

where

K1 ¼ F1h
2=3 þ F2

K2 ¼ ðF2
1=5Þh

4 þ ð2=3ÞF1F2h
2 þ F2

2

ð39Þ

The substitution of Equations (36), (38) into Equation (35) yields the following
expression for the loss factor of a cross-ply material with tunneling matrix cracks in
transverse layers:

gT ¼ ðg0P1 þ g90P2Þ=ðP1 þ P2Þ ð40Þ

where

P1 ¼ 1 þ 2AðET=ELÞ�1 þ A
2ðET=ELÞ

2�2

P2 ¼ ð1 þ 2K1AET�1 þ K2A
2E2
T�2ÞET=EL ð41Þ

LOSS FACTOR IN CROSS-PLY CMC LAMINATES WITH TUNNELING

MATRIX CRACKS IN TRANSVERSE LAYERS AND BRIDGING CRACKS IN

LONGITUDINAL LAYERS

According to the numerical results presented below, the contribution of tunneling
cracks in transverse layers to the change in damping can be disregarded. In this case, the
loss factor in CMC laminates with cracks in all layers can be calculated as

gLT ¼ ð0:5U 00
d þU

000
d Þ=2�U ð42Þ

where the first term in the numerator that represents the density of energy dissipation in
longitudinal layers due to interfacial friction has been defined by Equations (17) or (18)
and UFd is the density of energy dissipation in the cross-ply material obtained neglecting
friction. The factor 0.5 accounts for the fact that the volume of longitudinal layers is only
half the volume of the component. The contribution to damping associated with the
change in stiffness in the cross-ply material can be estimated from Equation (40) using the
values of the moduli of elasticity of longitudinal and transverse layers (EL

0 and ET
0) that
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take into account the presence of matrix cracks in all layers. The technique for calculation
of these moduli was outlined in [24].

As follows from the numerical results, an increase in the loss factor due to the change in
stiffness is quite limited, even if matrix cracks appear in longitudinal layers. Therefore, it is
possible to estimate the effect of matrix cracking using a simplified from of Equation (42):

gLT ¼ U 00
d=4�U þ gcp ð43Þ

where gcp is defined by Equation (24).
Note that although the dissipation energy density U 00

d can be adopted from Equations
(17) or (18) without changes, the stress that appears in these equations is the stress in the
longitudinal layers. This stress is related to the applied composite stress �c by

�long ¼ 2�cE
0
L=ðE

0
L þ E

0
T Þ ð44Þ

The maximum strain energy density for the cross-ply material with matrix cracks
subjected to the applied stress �c¼ 2� can be obtained as

U ¼ 4�2=ðE0
L þ E

0
T Þ ð45Þ

where the moduli are calculated at the stress �c¼ 2�.
Now the first term in the right side of Equation (43) can be calculated. Note that it may

be convenient to characterize the increase in damping in relative terms by introducing the
ratio Rg¼ gLT/gcp. This ratio characterizes an increase in damping due to the presence of
matrix cracks in all layers of a cross-ply CMC over damping in the intact material. The
above-mentioned ratio can be reduced to the simple formula:

Rg ¼ 1 þU 00
d ðE

0
L þ E

0
T Þ=16��

2gcp ð46Þ

The expressions for the density of the interfacial energy dissipation is

U 00
d ¼ 2�g00U0¼2�g00ð�2

0=2E
0
LÞ ð47Þ

where

�0 ¼ �cðE
0
L=E

0
cÞ ¼ 2�ðE0

L=E
0
cÞ ð48Þ

where E0
c is the modulus of elasticity of the laminate with cracks in both transverse and

longitudinal layers.
Substituting Equations (47) and (48) into Equation (46) yields

Rg ¼ 1 þ ðg00=2gÞðE 0
L=E

0
cÞ ð49Þ
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NUMERICAL EXAMPLES AND DISCUSSION

Numerical Examples for Unidirectional CMC with Bridging Matrix Cracks

The representative material considered in the present study was SiC/CAS with the
following properties [25]: Ef¼ 200GPa, Em¼ 97GPa, Vf¼ 0.35, r¼ 8	 10�6m, the
interfacial shear stress � varied in the range between 5 and 17MPa. Based on this data,
the longitudinal modulus of the intact material is equal to EL¼ 133GPa. The saturation
spacing of matrix cracks in this material is approximately 0.125mm [25].

The loss factors for the material considered in the paper were estimated based on
experimental data [1–4]. The loss factor for SiC fibers at room temperature reported in [1]
is gf¼ 0.002. The loss factor for CAS matrix could not be found in the open literature.
However, based on data in [3] and [4], this factor is estimated as gm¼ 0.001 (room
temperature). Note that as is shown in the following examples, the knowledge of exact
values of gf and gm is not very important for estimating the effect of bridging cracks on
damping.

Small-amplitude free vibrations considered in this paper result in relatively low stresses
in the composite material. These stresses in the examples were below the level that would
result in additional cracks (the matrix cracking stress recorded in [25] was equal to
285MPa). The additional limitation introduced in this paper is related to the assumption
of a partial slip between the fibers and matrix (this assumption could be lifted, if necessary,
using the solution for a damaged composite material corresponding to the partial-full slip).
Computations carried out using the slip length according to the Pryce–Smith theory [11]

x0 ¼ ðr=2�Þð�cVmEm=VfELÞ ð50Þ

and the partial-slip requirement xo<s/2 yield the maximum stress amplitude during the
cycle necessary to avoid full slip:

�c < 0:0923 	 106�s ð51Þ

If the interfacial shear stress �¼ 17MPa and the crack spacing is taken equal to the
saturation value s¼ 0.125mm, Equation (51) yields the maximum stress per cycle equal to
�c¼ 2�¼ 196MPa. With cycling, the interfacial shear stress decreases as a result of
‘‘smoothening’’ of the fiber–matrix interface. However, it remains quite high, so that the
assumption of the partial slip is acceptable in most cases considered below.

The following results are shown for two components of the loss factor, i.e., g0 obtained
from Equation (8) and g00 obtained from Equations (1), (7) and (18). Obviously, the former
loss factor represents a contribution associated with a decreased stiffness of the material
with cracks, while the latter factor is related to the effect of interfacial friction. Using
Equation (17), instead of Equation (18) would result in the loss factor g00 that is 20%
smaller than the values shown in the following figures (this does not alter the conclusions).
The results shown in Figure 4 for the loss factor g0 illustrate that this factor increases as a
result of both a higher range of applied composite stresses and due to a larger density of
matrix cracks. Both results are predictable. A larger density of cracks (smaller spacing s)
results in a more significant reduction of the matrix stiffness and accordingly, in a higher
ratio 
¼Ef/E

0
m and an increase of the loss factor obtained from Equation (8). Notably, a
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similar dependence of damping on the crack density was reported by Plunkett [26]. An
increase in damping as a result of a larger strain (and stress) range has been observed by
Schultz and Warwick [27] and Gibson and Plunkett [28]. For CMC, experimental data
reported in [11] results in a similar conclusion.

The interfacial shear stress is known to decline with the number of cycles [11]. A lower
interfacial stress results in a higher damping [11]. These results are reflected in Figure 5
obtained for a lower interfacial shear stress than that in Figure 4, although the changes
appear rather small. A much larger effect of the interfacial shear stress on damping is
found below for the component of the loss factor directly associated with the interfacial
shear.

The effects of the amplitude of the applied composite stress (�) and the crack spacing on
the loss factor g00 are shown in Figures 6, 7 and 8 for three different values of the interfacial
shear stress. These values cover the range of the interfacial shear stress reported for
the material considered in the paper. They vary from the highest value for the specimens
where the cracks have just appeared to the lowest value corresponding to the specimens
that have undergone fatigue loading. The conclusions from these figures coincide
with some of the previously discussed results from Figures 4 and 5. In particular, a larger
crack density (smaller spacing) results in an increase in damping. A decrease in the
interfacial shear stress also yields a higher damping, implying an increase in energy

Figure 4. Loss factor for a unidirectional CMC associated with the change in stiffness (g0) in the case
�¼ 17 MPa.

Figure 5. Loss factor for a unidirectional CMC associated with the change in stiffness (g0) in the case
�¼ 10 MPa.
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dissipation with fatigue cycling. The increase of damping with a higher stress level is in
agreement with experimental data reported in [11].

Finally, the effect of the interfacial shear stress on the loss factor g00 is explicitly
shown again in Figures 9 and 10 (note that the curve for the case where s¼ 0.125mm
and �¼ 5MPa in Figure 10 is reliable only for the stress amplitudes less than 58MPa, due
to the full slip at higher stresses). The previous conclusion of a significant rise in damping
with fatigue cycling (or with a decrease in the interfacial shear stress) is reflected in

Figure 7. Loss factor for a unidirectional CMC associated with the interfacial friction (g00) in the case
�¼ 10 MPa.

Figure 8. Loss factor for a unidirectional CMC associated with the interfacial friction (g00) in the case
�¼ 5 MPa.

Figure 6. Loss factor for a unidirectional CMC associated with the interfacial friction (g00) in the case
�¼ 17 MPa.
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these figures. In general, it is obvious from the results discussed above that the
contribution to the loss factor associated with the interfacial friction is dominant if the
stress amplitude is not too small (say, over 20MPa). Therefore, the knowledge of exact
values of the loss factors of the fibers and matrix that are necessary to estimate
the contribution due to a reduced material stiffness is not critical since this factor
is relatively small. This enables us to predict that in cross-ply CMC with tunneling matrix
cracks the changes in damping due to the presence of damage will be negligible, unless
the cracks penetrate into the longitudinal layers.

Numerical Examples for Cross-Ply CMC with Tunneling

Matrix Cracks in Transverse Layers

The loss factor for a balanced cross-ply CMC laminate manufactured from the material
described above was found equal to gcp¼ 0.001300. The loss factor for the material with
tunneling matrix cracks in transverse layers can be evaluated using the solution outlined
above as a function of the crack spacing. The saturation spacing equal to 0.125mm was
reported in [25] for cross-ply laminates considered here with the layer thickness of

Figure 9. Effect of the interfacial shear stress on the loss factor for a unidirectional CMC associated with the
interfacial friction (g00) in the case s¼0.250 mm.

Figure 10. Effect of the interfacial shear stress on the loss factor on the loss factor for a unidirectional CMC
associated with the interfacial friction (g00) in the case s¼ 0.125 mm.
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0.180mm. Using the saturation spacing in the calculations of the loss factor illustrated
that its deviation from the value corresponding to the intact cross-ply material was less
than 1%. Considering inaccuracy in measurements of a relatively small damping in CMC,
such minor variations can be disregarded, unless other sources of damping that are not
considered in this paper indicate otherwise. The reason for such small damping change is
obvious if we recall that even in unidirectional composites with bridging matrix cracks,
an increase in damping due to a degradation in stiffness was very small compared to the
counterpart attributed to the interfacial friction. In the case of tunneling cracks limited to
transverse layers such friction is absent and a degradation in stiffness due to cracking is
even smaller than a degradation in unidirectional components with bridging cracks.

Numerical Examples for Cross-Ply Laminates with Matrix Cracks in All Layers

As follow from Equation (49), the change in damping is affected by the ratio E0
L=E

0
c.

This ratio was evaluated as a function of the range of the applied composite stress in [24].
The analysis of this ratio illustrates that it remains nearly constant for a broad range of
applied stress, if the matrix crack spacing in longitudinal layers is equal to or larger than
0.250mm. Even if this spacing is quite small (0.125mm), variations of the ratio E 0

L=E
0
c

remain limited. For example this ratio decreases from 1.30 to 1.15 if the applied composite
stress range changes from zero to 100MPa and the transverse crack spacing is equal to
2L¼ 0.250mm. The corresponding decrease for the case where 2L¼ 0.500mm was from
1.19 to 1.11.

The following results are shown in Figure 11 for the ratios Rg and Rgu obtained as
functions of the applied composite stress. The former ratio is introduced above and it
reflects an increase in damping for a cross-ply material over damping in the intact
laminate. The latter ratio is the corresponding increase in damping in unidirectional CMC
with bridging matrix cracks of the same density. Several conclusions are available from
this figure. As expected, the increase in damping in cross-ply configurations is smaller than

Figure 11. The ratios of damping with and without matrix cracks in a cross-ply laminate (Rg) and in a
unidirectional material (Rgu). The interfacial shear stress �¼5 MPa. Matrix crack spacing in longitudinal layers
of the cross-ply laminate and in the unidirectional material is equal to 0.125 mm, matrix crack spacing in
transverse layers is equal to 0.250 mm.
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in unidirectional materials. This is explained by the presence of transverse layers that
experience a negligible change in damping. However, even in cross-ply laminates, the
increase in damping due to matrix cracks is quite dramatic, if the cracks appear in
longitudinal layers. The other interesting conclusion is that the ratio Rg/Rgu remains
stable, particularly if the applied stress amplitude is large. Indeed, this ratio was
approximately 0.74 for the entire range of stress amplitudes considered in Figure 11.

CONCLUSIONS

The paper outlines the analysis of damping in unidirectional and cross-ply ceramic
matrix composites with matrix cracks. Numerical results presented in the paper result in
the following conclusions.

Damping increases dramatically in unidirectional CMC with bridging matrix cracks, as
compared to intact materials. The principal contribution to this increase is a dissipation of
energy along the sections of the fiber–matrix interface damaged by bridging cracks. The
contribution associated with the change in the stiffness due to cracking is much smaller
and it may even be neglected compared to the interfacial energy dissipation. In this case
the loss factor is proportional to the third power of the applied stress amplitude.

Damping changes in cross-ply CMC with tunneling matrix cracks in transverse layers
are negligible. However, if the cracks appear in longitudinal layers, damping abruptly
increases, mainly due to the interfacial friction. This increase is less dramatic than the
changes in unidirectional materials. For example, in this paper the change in damping in a
cross-ply material with matrix cracks in all layers was 74% of the change in unidirectional
materials with the same spacing of bridging cracks.

Based on these results, it is possible to conclude that the changes in damping due to
variations in the stiffness associated with matrix cracking are small and considering the
fact that damping of ceramics and CMC is small, these changes are probably almost
impossible to detect. However, damping increases dramatically, if the cracks damage the
fiber–matrix interface. The associated increase in damping can easily be detected and
attributed to the presence of such cracks.
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