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A B S T R A C T   

The accuracy of the measurement system is vital for reliable process monitoring using statistical process control 
charts. The applied chart’s effectiveness depends on the measurement system’s performance. Measurement 
uncertainty can lead to incorrect decisions like unnecessary stops or failure to intervene. In this paper, we 
investigated the effect of measurement errors on the performance of four well-established combined charts for 
monitoring the mean of normally distributed processes: Shewhart-CUSUM, Shewhart-Crosier’s CUSUM, 
Shewhart-EWMA and Shewhart-GWMA charts. To deal with measurement errors we considered the additive 
measurement error model. Detailed run length profiles of these charts are studied in terms of average run length 
(ARL), extra quadratic loss, relative ARL, and performance comparison index through Monte Carlo simulations 
under different sizes of measurement errors. It was found that measurement errors significantly reduce the power 
of the combined charts. Thus, multiple measurements scheme is incorporated as a remedy to this effect. The 
Shewhart-Crosier’s CUSUM performed best of four charts, while the Shewhart-EWMA chart did worst. To 
demonstrate the effect of measurement uncertainty and highlight implications further, a simulated dataset with a 
shift in the process mean is considered.   

1. Introduction 

There are many tools in the Statistical Process Control (SPC) toolkit, 
which are extensively used in modern industries to monitor and control 
both manufacturing and service processes. SPC is a powerful collection 
of problem-solving tools for achieving process stability and improving 
capability by reducing variability (cf. Montgomery, 2012). The univar-
iate control chart is one of the essential SPC tools to detect process 
changes affecting the monitored entity, so called shifts, and it was 
developed by Shewhart (1924). 

Generally, we may classify charts into memory-less and memory- 
type. Shewhart-type charts are memory-less, and their main strength 
is to detect large shifts quickly. They are, however, less sensitive to small 
and moderate shifts in the process parameters (location and dispersion). 
As an improvement of the memory-less monitoring chart, the cumula-
tive sum (CUSUM) chart (Page, 1954) and the exponentially weighted 
moving average (EWMA) chart (Roberts, 1959) improved the detection 
power of small shifts. These memory-type charts use both past and 
current information, making them more sensitive to small and moderate 

shifts in the process parameters, at the expense of being slower to detect 
large shifts. Later on, improvements have been proposed to these two 
charts by Crosier (1986), such as Crosier’s CUSUM (CCUSUM) and Sheu 
& Lin (2003) suggested the generally weighted moving average 
(GWMA) charts. 

To combine the strengths and mitigate the weaknesses of memory- 
less and memory-type charts, Lucas (1982) proposed a combined chart 
known as Shewhart-CUSUM, enabling one chart to monitor both small- 
to-moderate and large size shifts. He discovered that the Shewhart- 
CUSUM chart outperformed the standard CUSUM and Shewhart (when 
shift < 3σ) charts in terms of average run-length (ARL). The CUSUM 
chart performed as well for small shifts (when shift < 1.5σ), but less 
efficiently for moderate-to-large shifts. When the shift size greater than 
3σ, the Shewhart chart was more efficient than the Shewhart-CUSUM 
chart. He advised that the Shewhart-CUSUM chart is not robust to out-
liers while being simple to implement. Similarly to Lucas (1982), Lucas 
& Saccucci (1990) proposed the Shewhart-EWMA chart to improve 
detection power of the EWMA chart. It was discovered that the 
Shewhart-EWMA was more sensitive than EWMA by itself. They also 
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suggested using Shewhart limits larger than in a standard Shewhart 
chart to avoid a large reduction in the IC ARL. Furthermore, they advised 
against using the Shewhart-EWMA chart whenever the process produces 
occasional outliers. 

More recently, Sheu & Lin (2003) proposed the Shewhart-GWMA 
chart for enhancing detection ability of the GWMA chart against large 
shifts. They recommended that this chart may be preferable if detecting 
small shifts in the process mean is more important than avoiding 
spending time or cost on false alarms identification. Later, Rehman et al. 
(2022) proposed the Shewhart-CCUSUM chart, following Lucas (1982), 
and revealed that this chart was slightly more effective for small shifts 
(< 0.50σ) than the Shewhart-CUSUM chart, while other held the same 
properties. However, in most practical process settings, predicting the 
exact size of shifts from the target value is difficult. Combined charts are 
considered powerful SPC tools for monitoring both small-to-moderate 
and moderate-to-large process shifts, while simple to implement by 
attaching the additional Shewhart limits to the memory-type charts 
without designing complex charting structures. 

Generally, in SPC, the standard assumption is that observations from 
the underlying process are recorded through a perfect measurement 
system. However, in a practical SPC application, this assumption is 
violated as numerous factors influence the characteristic(s) of interest 
when measuring observations, including environmental (e.g., tempera-
ture and light), human (e.g., improper operation and error collection), 
and even the measurement system itself. These factors are inevitable in 
measurement processes, and they introduce errors into true observations 
(cf., Maleki et al., 2017; Bennett, 1954). Measurement error is the dif-
ference between a characteristic’s recorded and true value. On a pro-
duction line, for instance, it is impossible to measure the exact volume of 
liquid contained in bottles; measurement errors usually occur during the 
generation and measurement of peak areas during mass-spectrometry 
analyses in analytical laboratories; likewise, analogue blood pressure 
machines used in medical settings might not always give accurate 
readings, (Riaz, 2014). This variation results in increased observed 
process variability and may result in adversarial effects through incor-
rect deductions and decisions. Therefore, an accurate measuring system 
with an observed mean close to the true value and high precision is 
important (International Organization for Standardization, 1994). 
Regarding charts, their statistical performance will also degrade with 
increasing measurement variation for a given process variation (Linna, 
& Woodall, 2001). Imprecise measurements increase the rate of false 
alarms in IC situations, and significantly reduce the charts’ abilities to 
detect out-of-control (OC) situations. 

Bennett (1954) was the pioneer to investigate the effect of mea-
surement errors on the X chart using an additive model Y = X + ε. This 
was followed by Abraham (1977) in the 1970s, and interest has 
increased particularly in the 2000s as computational scenarios have 
become more accessible and new techniques have been proposed. Early 
on, Kanazuka (1986) examined the chart’s power in the presence of 
measurement error for the process average and variance. The effect of 
measurement error on the performance of X and S2 charts was investi-
gated by Linna and Woodall (2001) using a linear covariate model. The 
loss of power in detecting parameter shifts in the underlying process 
variable is one of the effects of measurement error, and they found that 
multiple measurements for each item in a subgroup could be desirable, 
(Linna, & Woodall, 2001). 

In very recent research, Ayooub et al. (2020) proposed a coefficient 
of variations chart under measurement errors, while Nguyen et al. 
(2021) explored the impact of measurement error on EWMA chart 
performance for the ratio of two normally distributed variables. Than-
wane et al. (2021) studied the performance of the homogenously 
weighted moving average Xmonitoring chart under the measurement 
errors, and Umar et al. (2022) examined how measurement errors 
affected the effectiveness of the triple sampling (TS) Xchart. The per-
formance of the GWMA chart was investigated in Li et al. (2022) in the 

presence of measurement errors for monitoring two parameter expo-
nential distribution. Raiz et al. (2021) studied the impact of measure-
ment error on the joint monitoring of process mean and coefficient of 
variation. For monitoring the mean of a multivariate normally distrib-
uted processes in in Phase II, Yousefi et al. (2022) explored the effects of 
measurement system incapability on the sensitivity of multivariate ho-
mogeneously weighted moving average chart. In order to track the shifts 
in the process coefficient of variation parameter of the multivariate 
process under measurement error for Phase II, Hemmati et al. (2022) 
proposed a run sum chart. Their studies used the linear covariate error 
model for constant and linearly increasing variance. 

However, to the best of our knowledge, no previous research studies 
have investigated the effect of measurement errors on combined 
Shewhart-CUSUM, Shewhart-CCUSUM, Shewhart-EWMA, and 
Shewhart-GWMA charts, despite them being an appealing option for 
SPC practitioners as they depend on commonly known and available 
methods. Therefore, it is essentially important to improve the perfor-
mance of combined charts in the presence of measurement errors. This 
paper aims to complete this research gap by focusing on decision risks 
caused by measurement uncertainty on combined charts for the mean of 
normally distributed processes. Furthermore, we study a multiple 
measurement strategy to remedy the variation caused by measurement 
errors. 

The structure of the rest of this paper is as follows: Section 2 provides 
a brief review of four combined quality charts without measurement 
error. Section 3 introduces the same four quality charts, including 
measurement uncertainty. The results come from Monte Carlo simula-
tions, and Section 4 presents measurement uncertainty analysis on 
different charts. Section 5 provides an illustrative example based on a 
simulated real-life situation, and concluding remarks are in Section 6. 

2. A review of the four combined quality control charts 

This section gives a brief overview of some existing combined charts 
when the interest lies in rapidly detecting both large and small shifts in 
the process mean of a normally distributed process. 

Let {Yt ; t ≥ 1} be the underlying quality characteristic, distributed as 
N(μ, σ2) at time t ≥ 1. A random sample of size n : (Yt,1,Yt,2,⋯,Yt,n) is 
repeatedly drawn from the process, and the value of the sample mean 
Yt =

Yt,1+Yt,2+⋯+Yt,n
n at the time t is computed to monitor the changes in the 

process mean μ. In correspondence to the {Yt}, {Yt ; t ≥ 1}, Yt is a 
sequence of independently and identically normally distributed random 
variables with mean μY = μ and standard deviation σY = σ̅ ̅

n
√ .

We consider the process to be IC when the process mean μ = μ0 and 
has shifted to an OC state μ = μ1 = μ0 + Δ× σ̅ ̅

n
√ . Here Δ =

(μ1 − μ0)
̅̅
n

√

σ is the 
standardized shift leading to the new OC mean. 

2.1. The Shewhart-CUSUM chart 

Lucas (1982) integrated the Shewhart chart with the CUSUM chart 
into the Shewhart-CUSUM chart. The Shewhart-CUSUM chart works 
similarly to the classical CUSUM chart to monitor the process mean μ 
using the sequence {Yt}. The chart works with the two upward and 
downward CUSUM statistics, say A+

t and A−
t , respectively, along with 

the Shewhart chart, given by 

A+
t = max[0,A+

t− 1 + (Yt − μ0) − K]

A−
t = max[0,A−

t− 1 − (Yt − μ0) − K]

}

, (1) 

where K = kσ/
̅̅̅
n

√
is the slack value of the Shewhart-CUSUM chart. 

Here, a common choice of k is half of the magnitude of the shift δ of the 
process mean that one wishes to detect, i.e., k = δ/2 for the CUSUM 
parametric setting. 

The upper control limit (UCL) and the lower control limit (LCL) of 
the Shewhart chart based on Yt, are given by 
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UCL = μ0 + L1
σ̅
̅̅
n

√  and LCL = μ0-L1
σ
̅̅̅
n

√ (2) 

where L1 is an arbitrarily chosen constant selected to get the desired 
IC ARL. The two-sided Shewhart-CUSUM chart declares the OC process 
if Yt exceeds the control limits given in Eq. (2) in either direction, or 
either A+

t or A−
t exceeds the predetermined decision value H = hσ/

̅̅̅
n

√
. 

The values of h are also selected to get the desire IC ARL of the Shewhart- 
CUSUM chart. 

2.2. The Shewhart-Crosier CUSUM chart 

Crosier (1986) proposed a more sensitive CUSUM chart over the 
classical one by Page (1954), namely the CCUSUM chart. Based on this 
chart, Rehman et al. (2022) proposed the new two-sided Shewhart- 
CCUSUM chart for efficiently monitoring the process mean. This chart is 
based on the following statistics: 

Bt = 0, if Ct ≤ K
Bt = (Yt − μ0 + Bt− 1)(1 − K/Ct), if Ct > K

}

, (3) 

where Ct = |Yt − μ0 +Bt− 1| and B0 = 0. Here, the reference parameter 
K and the control limits H, LCL and UCL of the Shewhart-CCUSUM chart 
are similar to those of the Shewhart-CUSUM chart in Section 2.1. The 
two-sided Shewhart-CCUSUM chart triggers an OC signal whenever Bt >

H or Bt < − H and/or Yt < LCL or Yt > UCL. Unlike the Shewhart- 
CUSUM statistics (A+

t , A−
t ), the CUSUM statistic Bt is first updated 

with Yt, and then it is shrunk towards zero, which makes the chart more 
powerful for detecting small shifts. 

2.3. The Shewhart-EWMA chart 

To make the EWMA chart more sensitive to large shifts in the process 
target value, Lucas and Saccucci (1990) considered a combined 
Shewhart-EWMA chart. By using the sequence of {Yt}, let Dt be the 
ordinary EWMA statistic, defined as 

Dt = λYt +(1 − λ)Dt− 1, (4) 

where λ is the smoothing constant ranging between zero and one. 
The user usually chooses λ below 0.5 to make the chart more sensitive to 
small shifts. The mean and standard deviation of the statistic Dt are 
respectively: 

E(Dt) = μ (5) 

and 

Std(Dt) =
σ
̅̅̅
n

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λ

(2 − λ)
[1 − (1 − λ)2t

]

√

Here, the term [1 − (1 − λ)2t
] approaches unity as t increases. The 

asymptotic variance of the EWMA statistic Dt is given by: 

Std(Dt) =
σ
̅̅̅
n

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λ

(2 − λ)

√

(6) 

When the process is IC, the control limits of the EWMA chart based 
on the asymptotic variance of Dt are given by 

UCL = μ0 + L2
σ
̅̅̅
n

√

̅̅̅̅̅̅̅̅̅̅̅
λ

2 − λ

√

LCL = μ0 − L2
σ
̅̅̅
n

√

̅̅̅̅̅̅̅̅̅̅̅
λ

2 − λ

√

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (7) 

The Shewhart-EWMA chart triggers an OC signal when either Dt falls 
outside the EWMA control limits or Yt falls outside the Shewhart control 
limits in Eq. (2). Here, L2 and L1 are the design parameters of the 
Shewhart-EWMA chart, respectively, and their values depend on the 
choices of λ and the desired IC ARL. 

2.4. The Shewhart-GWMA chart 

Sheu and Lin (2003) proposed the GWMA chart as a more sensitive 
alternative to the EWMA. Furthermore, they suggested the combined 
Shewhart-GWMA chart as an improvement on the Shewhart-EWMA 
chart. Let α and q ∈ [0, 1] be the adjustment and design parameters of 
the Shewhart-GWMA chart. Then, based on {Yt}, let {Et} be a GWMA 
sequence, given by, 

Et = (q0α
− q1α

)Yt +(q1α
− q2α

)Yt− 1 +(q(t− 1)α
− qtα )Y1 + qtα μY (8) 

where t = 1,2,⋯ Since Et is a linear combination of Yt, Et is also a 
normal random variable with the mean µ and the variance Qtσ2, where 
Qt = (q0α

− q1α
)

2
+ (q1α

− q1α
)

2
+ ⋯ + (q(t− 1)α

− qtα
)

2, i.e., Et ∼ N(μ,
Qtσ2/n). The UCL and LCL of the GWMA chart in the combined 
Shewhart-GWMA chart at time t are, 

UCLt = μ0 + L3
σ̅
̅̅
n

√
̅̅̅̅̅
Qt

√

CLt = μ0

LCLt = μ0 − L3
σ
̅̅̅
n

√
̅̅̅̅̅
Qt

√

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (9) 

where the value of L3 is selected in conjunction with the value of L1 

such that the resulting IC ARL of the Shewhart-GWMA chart reaches the 
desired level, and CLt is the central line representing the expected mean 
of the chart. The chart gives an OC signal whenever either Et > UCLt or 
Et < LCL, or Yt falls beyond the limits in Eq. (2), respectively. The se-
lections of α and q depend on the chart’s RL performance. For detecting 
small size shifts, the GWMA chart outperforms the EWMA chart when 
q > 0.5 and 0.5 ≤ α ≤ 0.90. We note that when α = 1 and q = 1 − λ, the 
Shewhart-GWMA chart reduces to the Shewhart-EWMA chart, where λ ∈

(0, 1] is the smoothing constant of the EWMA statistic. Moreover, the 
GWMA chart in the Shewhart-GWMA chart reduces to the classical 
Shewhart chart when α = 1 and q = 0. 

3. Four combined quality control charts with a measurement 
uncertainty 

Next, we present how we treat the four control charts presented in 
Section 3, including measurement uncertainty. Let the consecutive ob-
servations of the quality characteristic Y, at the time t = 1,2,…, be 
{
Yt,1, Yt,2,⋯, Yt,n

}
. As stated in Section 3, we assume that the Yt,j’s are 

independent normal random variables with the nominal mean μ0 +Δσ 
and the standard-deviation σ, i.e., Yi,j N(μ0 + Δσ, σ). As suggested by 
Linna and Woodall (2001), we also assume that the quality character-
istic Yt,j is not directly observable, but can only be assessed from the 
results 

{
Xt,j,1, Xt,j,2,⋯ , Xt,j,m

}
of a set of m ≥ 1 measurement operations, 

with each Xi,j,k being equal to (so-called linearly covariate error model). 
In other words, 

Xt,j,k = A+BYt,j + εt,j,k (10)  

where A and B are two known constants while εt,j,k is a normal random 
error term due to the measurement inaccuracy, i.e. ε N(0, σM), which is 
also independent of Yt,j. The measurement error variance σM

2 can be a 
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constant independent of the nominal mean μ0 or, as mentioned in Linna 
and Woodall (2001), it can sometimes linearly depend on μ = μ0 +Δσ 
(say σM

2 = C + Dμ, where C and D are two constants). The measurement 
error may also include a constant misrepresentation, e.g., due to poor 
calibration. For simplicity, we only focus on the former case, i.e. the 
measurement error variance is a constant and is independent of the 
nominal mean, and the mean of the error is zero. We can apply similar 
methods to the linearly increasing measurement error case. 

Since we assume Xt,j,k comes from an imperfect measurement system, 
then it is standard practice to take multiple measurements per item (i.e., 
using an m-measurements strategy with m ≥ 1) as a remedial approach 
to reduce the measurement error effect, as suggested by Linna and 
Woodall (2001). Averaging several measurements per item reduces the 
error variance compared to measuring only once. However, practi-
tioners must choose the appropriate value of m to balance the extra costs 
and time associated with the multiple measurements and an acceptable 
level of measurement errors. 

At time t = 1, 2,⋯, as j = 1, 2,⋯, n and k = 1,2,⋯,m, we have m × n 
observations Xt,j,k and the sample mean Xt equals to 

Xt =
1

mn
∑n

j=1

∑m

k=1
Xt,j,k = A+

1
n

(

B
∑n

j=1
Yt,j +

1
m
∑n

j=1

∑m

k=1
εt,j,k

)

. (11) 

It can easily be proven that the expectation E(Xt) and the variance 
V(Xt) of Xt are equal to 

E(Xt) = A+B(μ0 +Δσ), (12) 

and 

V(Xt) =

(

B2σ2 +
σ2

M

m

)

, (13) 

or equivalently 

V(Xt) =
B2σ2

nC2
(n,m,γ)

(14) 

where 

C2 =
m

m + (σM/σ0)
2 =

m
m + γ2 

and γ = σM
σ0
(γ > 0) denotes the ratio of the measurement system 

variability to the process variability. 

3.1. The measurement uncertainty-based Shewhart-CUSUM chart 

By using the sequence of {Xt}, the two-sided Shewhart-CUSUM chart 
can be constructed for monitoring the process mean under the presence 
of measurement uncertainty. The Shewhart-CUSUM chart uses the 
plotting-statistics, say (D+

t ,D−
t and Xt) at the time t, 

D+
t = max[0,+(Xt − μX) − K + D+

t− 1]

D−
t = max[0, − (Xt − μX) − K + D−

t− 1]

}

. (15) 

The control limits for the Shewhart chart are 

LCL
UCL

= μX ∓ L1
σX
̅̅̅
n

√ , (16) 

where the initial values of D+
0 and D−

0 are set to be 0. K = kσX/
̅̅̅
n

√
(> 0) and H = hσX/

̅̅̅
n

√
(> 0) are the reference parameter and control 

limit of the CUSUM chart. The values of k, h and L1 are selected to 
maintain the IC ARL at a specific level. The OC signal initiated by the 
two-sided Shewhart-CUSUM chart whenever (D+

t and/or D−
t > H) and 

(Xt > UCL and/or Xt < LCL). 

3.2. The measurement uncertainty-based Shewhart-CCUSUM chart 

The two-sided Shewhart-CCUSUM chart considers the following 
plotting-statistics for monitoring the irregular changes in the process 
mean parameter when there is measurement uncertainty, based on the 
sequence.{Xt}

Et = 0, if Ft ≤ K
Et = (Xt − μX + Et− 1)(1 − K/Ft), if Ft > K

}

, (17)  

where E0 = 0 and Ft = |Xt − μX + Et− 1|. The reference sensitive param-
eter K = kσX/

̅̅̅
n

√
and H = hσX/

̅̅̅
n

√
is the decision interval of the 

Shewhart-CCUSUM chart. The values of K,H and L1 are chosen to reach 
a desired IC ARL. Whenever Et > H or Et < − H and/or Xt < LCL orXt >

UCL, the two-sided Shewhart-CCUSUM chart triggers an OC signal. 

3.3. The measurement uncertainty-based Shewhart-EWMA chart 

In the presence of measurement uncertainty, it is possible to design 
the Shewhart-EWMA chart using the sequence {Xt}, for monitoring 
shifts in the process location parameter μX. This chart considers the 
following plotting-statistics, say {Gt}, defined as: 

Gt = λXt +(1 − λ)Gt− 1. (18) 

Like the λ value of the Shewhart-EWMA chart, the λ for the 
uncertainty-based EWMA chart is usually set to a value less than 0.5 to 
improve small shift sensitivity. G0 = μX represents the starting value of 
the monitored response property. 

The mean and asymptotic variance of the statistic Gt are respectively: 

E(Gt) = μX (19) 

and 

V(Gt) =
σX
̅̅̅
n

√

̅̅̅̅̅̅̅̅̅̅̅
λ

2 − λ

√

. (20) 

In the Shewhart-EWMA chart, UCL and LCL of the EWMA chart based 
on the asymptotic variance of Gt are given by: 

UCL = μX + L2
σX
̅̅̅
n

√

̅̅̅̅̅̅̅̅̅̅̅
λ

2 − λ

√

CL = μX ,

LCL = μX − L2
σX
̅̅̅
n

√

̅̅̅̅̅̅̅̅̅̅̅
λ

2 − λ

√

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

. (21) 

The design parameters, L1 in Eq. (16) and L2 of the Shewhart-EWMA 
chart and their values are selected according to the choices of λ and the 
desired IC ARL. The process is considered OC when either Gt falls outside 
the EWMA control limits or Xt falls outside the Shewhart control limits in 
Eq. (16), triggering remedial action. 

3.4. The measurement uncertainty-based Shewhart-GWMA chart 

The Shewhart-GWMA chart can also be constructed for monitoring 
infrequent process mean changes in the presence of measurement un-
certainty. Based on {Xt}, this chart considers the following statistics: 

Ht =
(
q0α

− q1α)Xt +
(
q1α

− q2α)Xt− 1 +
(
q(t− 1)α

− qtα )X1 + qtα μX , (22) 

where Ht is a linear combination of Xt and it is a normal random 
variable with mean μX and variance QtσX

2 i.e., Ht ∼ N(μX,QtσX
2/n)

where Qt = (q0α
− q1α

)
2
+ (q1α

− q1α
)

2
+ ⋯ + (q(t− 1)α

− qtα
)

2, where, in 
turn, q ∈ [0, 1) is the design/smoothing parameter and α > 0 is the 
adjustment parameter determined by the practitioner. The UCL, CL and 
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LCL of the GWMA chart in the Shewhart-GWMA chart, at the time t, are: 

UCLt = μX + L3
σX
̅̅̅
n

√
̅̅̅̅̅
Qt

√

CLt = μX

LCLt = μX − L3
σX
̅̅̅
n

√
̅̅̅̅̅
Qt

√

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(23) 

The RL performance of the GWMA chart in the Shewhart-GWMA 
depends on the suitable choices of α and q. With q > 0.5 and 
0.5 ≤ α ≤ 0.90, the GWMA chart outperforms the EWMA chart when 
detecting small shifts. The GWMA chart reduces to the EWMA chart for 
α = 1 and q = 1 − λ, where λ ∈ (0, 1] is the smoothing constant of the 
EWMA statistic. Here, L1(> 0) in Eq. (16) and L3(> 0) are the control 
charting multiplier, and their values are selected so that the IC ARL of 
the Shewhart-GWMA chart reaches the desired level. Note that the UCL 
and LCLs are both time-varying. The Shewhart-GWMA chart issues an 
OC signal whenever Ht > UCLt or Ht < LCLt, or Xt > UCL or Xt < LCL. 

3.5. Monte Carlo simulations on the effect of measurement uncertainty 

Generally, there are three methods to compute the RL properties of 
control charts; the Integral Equation method, the Markov Chain method, 
and Monte Carlo simulation; see, for instance, Park et al. (2021). 
Considering the complexity of the charting schemes of the studied charts 
in this paper, we perform Monte Carlo simulations to evaluate the RL, 
especially ARL profiles of different charts with measurement uncer-
tainty. In addition, to evaluate the overall performance of the charts, 
extra quadratic loss (EQL), relative ARL (RARL) and performance 
comparison index (PCI) are used. The detailed procedure of the Monte 
Carlo simulation of the measurement uncertainty-based Shewhart- 
CUSUM chart is summarized as follows: 

(1) For a desired IC ARL, set the parameters (m,n,A,B) in the linear 
covariate model and choose the design parameters (L1,k,h) with the γ (0 
to 1) of the Shewhart-CUSUM chart. 

(2) Generate a random sample Xt from the normal distribution with 
mean in Eq. (12) and variance in Eq. (13) or (14). 

(3) If Xt falls outside the Shewhart control limits in Eq. (16), or the 
calculated D+

t (D−
t ) falls above the control limit H = hσX/

̅̅̅
n

√
, the process 

is deemed to be OC. 
(4) Record the RL from the monitoring to the time t. Otherwise, 

repeat Steps (2) and (3) until the chart issues an OC signal and record the 
corresponding RL. 

(5) Repeat Steps (2) to (4) 105 times and calculate the ARL, EQL, 
RARL, and PCI of these RL values. 

For the other three charts studied in this paper we use an identical 
approach, substituting the chart parameters and control limits of the 
corresponding chart in Steps (1) and (3). 

4. Analysis of the effect of measurement uncertainty on 
combined control charts 

This section investigates the sensitive performance of the four 
considered charts in the presence of measurement errors. Without loss of 
generality, we set the desired ARL0 (IC ARL) to be 370. Tables 1-4 
present the ARL1 (OC ARL) profiles of these charts for different values of 
measurement replications m ∈ {1,2,3,4}, ratios of measurement system 
variance to process variance γ ∈ {0.0,0.1,⋯,1.0} and shift size Δ ∈ {

0.25, 0.50,⋯, 5.00}. These parameters are selected to cover a range of 
different size of possible shifts e.g., small-to-moderate as well as 
moderate-to-large, in the process mean, measurement accuracy errors 
and repeat measurements of each item. Moreover, Figs. 1-4 give a visual 
display of the detection abilities of the charts and show how multiple 

measurement strategy can compensate their power. We chose the chart 
parameters used in the simulation of ARL to satisfy the desired ARL0 
(when Δ = 0.00) when no measurement error exists. From tables and 
figures, we can conclude the following: 

It can be observed from Tables 1-4 that the ARL1 values of the 
Shewhart-CUSUM, Shewhart-CCUSUM, Shewhart-EWMA and 
Shewhart-GWMA charts (at m = 1, 2, 3, and 4) decrease as the values of 
shift increase from 0.25 to 5.00. As expected, having fixed ARL0, the 
ARL1 is inversely proportional to the size of shift. For example, we may 
observe (δ, ARL1) at m = 1 from Table 1 as (0.25, 256.15), (1.00, 17.13) 
and so on (2.00, 4.85). It can be perceived from Tables 1-4 that ARL1 
values of Shewhart-CUSUM, Shewhart-CCUSUM, Shewhart-EWMA and 
Shewhart-GWMA charts (at m = 1, 2, 3, and 4) increase as the ratio γ 
increases from 0 (perfect case) to 1.0 (worst case). The ARL1 is directly 
proportional to the ratio γ, that is, more the measurement variation, 
higher the ARL1. For example, we may observe (γ, ARL1) from Table 1 as 
(0.00, 256.15), (0.30, 292.81), (0.60, 308.95), and so on (1.00, 319.48). 
With the increment of γ, the ARL1 curves, all and sundry, shift upwards 
to the right. From Figs. 1-4, the left bottom curve is for γ = 0 and the 
right top most curve is for γ = 1.0. 

The ARL1 performance for different size of measurement errors on 
the Shewhart-CUSUM, with repeated measurements (m ∈ {2,3,4}) can 
also be found in Table 1. As it can be seen, measuring each item several 
times can increase the measurement accuracy and reduce the negative 
effect of measurement uncertainty on the Shewhart-CUSUM, for 
example one may can observe (m, ARL1) when Δ= γ = 0.50 as, (1, 
166.50), (2, 139.05), (3, 129.33), and (4, 123.70). This improvement in 
detection ability of the other each chart has increase as the value of m 
increase from 1 to 4. Tables 3-4 demonstrate that the Shewhart- 
CCUSUM, Shewhart-EWMA and Shewhart-GWMA charts behave simi-
larly regarding the negative effect of measurement uncertainty on the 
chart’s performance respectively. Repeated measurements reduce this 
negative effect by performing as a remedial scheme. The tendency is 
supported by Figs. 1-4 as well. 

In order to compare the sensitivity of the Shewhart-CUSUM and 
Shewhart-CCUSUM, from Tables 1-2 as well as Figs. 1-2, can be observed 
when Δ = 0.5 at m = 1, both charts have the similar ARL1 performances 
when γ = 0. However, comparing ARL1 if γ increases up to 1, the former 
has ARL1 performance is 220.30, respectively while later is 170.54 
which show that the measurement uncertainty has a larger effect on 
Shewhart-CUSUM than on the Shewhart-CCUSUM chart. We can draw 
similar conclusions for the Shewhart-EWMA and Shewhart-GWMA 
charts as we drew for the Shewhart-CUSUM. Figs. 3-4 and Tables 3-4 
have similar ARL1 performance when γ = 0. If γ increases up to 1, ARL1 
= 281 of the Shewhart-EWMA are larger than the ARL1 = 219 of the 
Shewhart-GWMA chart. 

Table 5 gives the RARL, EQL, and PCI of these charts for different m ∈

{1,2,3, 4} and γ ∈ {0.0,0.1,⋯,1.0}. These measures are mathematically 
defined as follows: 

EQL =
1

s + 1
∑s

i=0
δi

2ARL(δi), (24)  

RARL =
1

s + 1
∑s

i=0

ARLc(δi)

ARLopt(δi)
(25) 

and 

PCI = EQL/EQLopt (26) 

where δi = a+i(b − a)/s and s is a given integer. Here, we considered 
the optimal classical two-sided CUSUM chart. The smaller the value of 
the EQL, the better the overall sensitivity of a chart will be. The RARL 
value is one for the optimal chart. Therefore, the more similar the given 
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Table 1 
ARL1 profile of the Two-sided Combined Shewhart-CUSUM Chart at m = 1, 2, 3, and 4 with ARLo = 370.         

γ      

Δ m 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0.25 1 256.15 272.00 284.79 292.81 297.83 303.19 308.95 312.15 315.81 319.64 319.48 
2 257.40 268.96 276.05 283.75 288.99 293.77 296.12 298.92 302.80 304.92 305.49 
3 258.32 267.15 275.34 279.76 285.42 290.60 292.83 293.50 296.87 295.89 299.50 
4 255.60 265.06 272.43 279.48 281.72 286.44 288.27 292.23 292.74 295.02 296.93 

0.50 1 80.87 96.76 114.74 132.49 150.95 166.50 179.81 194.08 204.86 212.96 220.30 
2 80.48 91.25 103.71 115.25 127.14 139.05 150.52 161.20 168.94 179.57 186.79 
3 80.77 90.16 98.84 109.03 119.34 129.33 138.29 147.73 156.34 163.64 170.80 
4 80.76 89.40 96.77 106.63 115.06 123.70 132.07 139.75 148.30 155.03 162.27 

0.75 1 30.38 35.67 41.66 48.22 55.58 63.60 71.99 81.56 91.21 101.15 112.08 
2 30.38 33.79 37.70 41.66 46.06 50.74 55.47 60.76 66.39 71.94 77.46 
3 30.38 33.20 36.36 39.52 42.96 46.54 50.52 54.38 58.74 63.00 67.53 
4 30.26 33.08 35.60 38.68 41.56 44.59 47.85 51.43 54.86 58.64 62.23 

1.00 1 17.13 19.71 22.52 25.48 28.83 32.47 36.27 40.52 45.19 49.69 54.82 
2 17.12 18.86 20.69 22.65 24.72 26.77 29.13 31.58 34.12 36.80 39.62 
3 17.19 18.53 20.06 21.66 23.31 25.05 26.84 28.80 30.85 32.80 35.02 
4 17.12 18.47 19.79 21.16 22.55 24.16 25.78 27.33 29.23 31.00 32.74 

1.25 1 11.54 13.08 14.78 16.63 18.57 20.74 22.98 25.43 27.93 30.67 33.42 
2 11.50 12.58 13.67 14.84 16.10 17.45 18.82 20.24 21.80 23.39 25.05 
3 11.51 12.35 13.31 14.22 15.32 16.35 17.44 18.60 19.76 21.04 22.18 
4 11.47 12.30 13.10 13.99 14.83 15.80 16.69 17.66 18.76 19.82 20.85 

1.50 1 8.35 9.47 10.65 11.89 13.27 14.71 16.17 17.80 19.47 21.29 23.22 
2 8.36 9.06 9.83 10.64 11.46 12.34 13.29 14.25 15.29 16.34 17.40 
3 8.35 8.93 9.58 10.16 10.87 11.58 12.30 13.04 13.85 14.58 15.46 
4 8.36 8.87 9.44 10.02 10.57 11.22 11.78 12.46 13.13 13.76 14.46 

1.75 1 6.31 7.14 8.01 8.96 9.93 10.96 12.05 13.21 14.40 15.73 17.09 
2 6.31 6.84 7.35 7.93 8.50 9.22 9.82 10.49 11.22 11.94 12.71 
3 6.30 6.72 7.17 7.61 8.07 8.56 9.06 9.58 10.12 10.68 11.23 
4 6.31 6.65 7.06 7.41 7.84 8.24 8.67 9.10 9.53 9.98 10.44 

2.00 1 4.85 5.49 6.16 6.89 7.62 8.43 9.25 10.10 11.05 11.96 12.99 
2 4.86 5.24 5.64 6.05 6.52 6.96 7.42 7.94 8.41 8.98 9.49 
3 4.86 5.14 5.45 5.80 6.10 6.45 6.80 7.16 7.55 7.91 8.30 
4 4.85 5.11 5.36 5.65 5.90 6.21 6.49 6.81 7.06 7.36 7.71 

2.25 1 3.81 4.30 4.81 5.38 5.98 6.58 7.18 7.91 8.59 9.29 10.10 
2 3.78 4.07 4.37 4.69 5.01 5.35 5.68 6.07 6.44 6.81 7.21 
3 3.78 4.00 4.23 4.44 4.68 4.94 5.19 5.45 5.69 5.95 6.23 
4 3.78 3.96 4.15 4.34 4.53 4.73 4.92 5.13 5.32 5.53 5.74 

2.50 1 2.99 3.38 3.78 4.22 4.69 5.18 5.66 6.19 6.74 7.33 7.93 
2 2.99 3.20 3.42 3.66 3.90 4.15 4.42 4.69 4.97 5.25 5.52 
3 3.00 3.14 3.29 3.48 3.64 3.82 3.98 4.17 4.36 4.55 4.73 
4 3.00 3.11 3.24 3.37 3.50 3.65 3.77 3.91 4.08 4.19 4.35 

2.75 1 2.41 2.71 3.04 3.37 3.74 4.11 4.51 4.93 5.37 5.80 6.26 
2 2.41 2.56 2.72 2.90 3.07 3.26 3.45 3.68 3.87 4.08 4.28 
3 2.41 2.52 2.63 2.75 2.86 3.00 3.12 3.25 3.39 3.52 3.66 
4 2.40 2.50 2.58 2.68 2.77 2.85 2.96 3.06 3.16 3.26 3.35 

3.00 1 1.97 2.20 2.46 2.73 2.99 3.29 3.63 3.93 4.29 4.64 5.00 
2 1.97 2.09 2.22 2.34 2.49 2.63 2.76 2.92 3.07 3.22 3.39 
3 1.97 2.05 2.13 2.22 2.30 2.40 2.48 2.58 2.69 2.79 2.89 
4 1.96 2.04 2.10 2.16 2.24 2.31 2.35 2.44 2.51 2.58 2.65 

3.50 1 1.45 1.58 1.73 1.89 2.06 2.23 2.44 2.63 2.84 3.07 3.28 
2 1.44 1.51 1.58 1.66 1.73 1.81 1.89 1.98 2.07 2.15 2.24 
3 1.44 1.49 1.53 1.58 1.63 1.68 1.73 1.79 1.85 1.90 1.95 
4 1.44 1.47 1.51 1.55 1.58 1.62 1.66 1.70 1.73 1.77 1.81 

4.00 1 1.19 1.26 1.35 1.44 1.54 1.65 1.77 1.90 2.03 2.17 2.30 
2 1.19 1.23 1.26 1.30 1.35 1.39 1.44 1.49 1.54 1.59 1.66 
3 1.19 1.21 1.24 1.26 1.29 1.32 1.35 1.38 1.41 1.44 1.47 
4 1.19 1.21 1.22 1.25 1.26 1.28 1.30 1.32 1.35 1.37 1.39 

5.00 1 1.02 1.04 1.06 1.09 1.12 1.16 1.21 1.25 1.30 1.36 1.42 
2 1.02 1.03 1.04 1.05 1.06 1.08 1.09 1.11 1.12 1.14 1.16 
3 1.02 1.03 1.03 1.04 1.05 1.05 1.06 1.07 1.08 1.09 1.10 
4 1.02 1.03 1.03 1.04 1.04 1.04 1.05 1.06 1.06 1.07 1.08  
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Table 2 
ARL1 profile of the Two-sided Combined Shewhart-CCUSUM Chart at m = 1, 2, 3, and 4 with ARLo = 370.         

γ      

Δ m 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0.25 1 255.41 264.36 271.65 278.20 286.24 291.26 296.93 299.60 303.60 307.07 311.76  
2 256.94 260.06 264.56 269.35 274.27 276.35 278.51 282.21 286.17 287.82 291.66  
3 255.78 257.69 263.05 264.06 267.27 270.15 273.64 276.66 276.65 281.36 283.85  
4 255.68 257.19 261.43 263.37 264.54 266.33 271.17 271.71 274.26 273.74 278.53 

0.50 1 79.86 90.15 100.00 109.97 119.25 129.01 137.81 146.37 154.22 161.98 170.54  
2 80.13 85.23 90.24 95.39 100.20 105.51 110.30 114.51 119.58 124.05 129.20  
3 80.37 83.14 86.66 89.83 93.55 96.50 100.25 103.53 106.64 109.61 113.04  
4 80.16 82.22 84.95 87.55 90.28 92.53 95.21 97.14 100.64 102.62 104.92 

0.75 1 29.97 33.52 36.99 40.36 44.31 48.22 52.19 55.99 60.51 64.96 69.10  
2 30.13 31.73 33.41 35.03 36.75 38.58 40.53 42.21 44.16 46.27 48.16  
3 30.02 31.14 32.30 33.46 34.52 35.74 36.94 37.98 39.23 40.50 41.65  
4 30.19 30.85 31.71 32.53 33.39 34.18 35.21 36.09 36.87 37.63 38.50 

1.00 1 16.90 18.51 20.07 21.76 23.42 25.11 26.93 28.69 30.53 32.37 34.13  
2 16.94 17.73 18.49 19.26 20.07 20.92 21.76 22.57 23.44 24.28 25.03  
3 16.94 17.45 17.96 18.50 19.07 19.57 20.16 20.60 21.19 21.73 22.36  
4 16.94 17.28 17.71 18.13 18.51 18.84 19.34 19.67 20.10 20.57 20.95 

1.25 1 11.35 12.38 13.35 14.29 15.35 16.27 17.31 18.37 19.36 20.38 21.41  
2 11.36 11.87 12.33 12.82 13.36 13.85 14.34 14.84 15.36 15.77 16.33  
3 11.34 11.71 12.02 12.34 12.68 13.00 13.35 13.71 14.01 14.31 14.67  
4 11.41 11.59 11.85 12.09 12.40 12.58 12.86 13.09 13.34 13.56 13.82 

1.50 1 8.25 8.97 9.69 10.38 11.10 11.81 12.45 13.16 13.81 14.52 15.23  
2 8.23 8.64 8.95 9.32 9.72 10.03 10.39 10.75 11.08 11.43 11.77  
3 8.23 8.48 8.72 8.96 9.24 9.46 9.71 9.92 10.15 10.39 10.63  
4 8.24 8.44 8.62 8.79 8.97 9.13 9.33 9.53 9.70 9.82 10.02 

1.75 1 6.24 6.81 7.37 7.92 8.47 8.96 9.52 10.00 10.51 11.02 11.54  
2 6.24 6.54 6.82 7.09 7.37 7.65 7.90 8.17 8.44 8.70 9.00  
3 6.23 6.45 6.62 6.83 7.00 7.20 7.38 7.58 7.76 7.92 8.09  
4 6.23 6.39 6.52 6.65 6.81 6.95 7.08 7.24 7.38 7.53 7.64 

2.00 1 4.81 5.29 5.74 6.22 6.66 7.10 7.52 7.91 8.34 8.76 9.17  
2 4.81 5.08 5.31 5.52 5.76 6.00 6.21 6.42 6.66 6.87 7.10  
3 4.81 4.98 5.13 5.31 5.46 5.61 5.76 5.93 6.06 6.23 6.36  
4 4.82 4.94 5.05 5.16 5.29 5.41 5.55 5.64 5.76 5.86 5.96 

2.25 1 3.77 4.19 4.56 4.94 5.32 5.69 6.06 6.40 6.75 7.11 7.43  
2 3.76 3.97 4.17 4.37 4.55 4.75 4.95 5.15 5.33 5.52 5.70  
3 3.76 3.92 4.03 4.17 4.29 4.44 4.56 4.70 4.81 4.96 5.07  
4 3.76 3.87 3.97 4.07 4.16 4.26 4.37 4.47 4.57 4.67 4.76 

2.50 1 2.98 3.31 3.65 3.97 4.31 4.61 4.93 5.23 5.53 5.82 6.13  
2 2.97 3.15 3.33 3.48 3.66 3.81 3.97 4.15 4.31 4.47 4.63  
3 2.98 3.08 3.21 3.32 3.43 3.55 3.64 3.76 3.87 3.98 4.09  
4 2.99 3.07 3.15 3.24 3.33 3.40 3.49 3.56 3.65 3.74 3.81 

2.75 1 2.40 2.68 2.96 3.22 3.51 3.78 4.06 4.31 4.59 4.83 5.10  
2 2.39 2.53 2.67 2.81 2.96 3.09 3.23 3.37 3.50 3.66 3.78  
3 2.40 2.49 2.57 2.69 2.76 2.86 2.95 3.04 3.14 3.23 3.33  
4 2.40 2.46 2.53 2.60 2.68 2.75 2.82 2.88 2.95 3.01 3.10 

3.00 1 1.97 2.20 2.42 2.66 2.89 3.12 3.35 3.58 3.82 4.04 4.27  
2 1.96 2.08 2.19 2.31 2.43 2.53 2.65 2.77 2.88 3.01 3.14  
3 1.97 2.04 2.11 2.19 2.26 2.35 2.42 2.50 2.57 2.65 2.74  
4 1.97 2.02 2.08 2.13 2.18 2.25 2.31 2.35 2.41 2.48 2.54 

3.50 1 1.45 1.57 1.73 1.87 2.03 2.20 2.36 2.54 2.70 2.88 3.05  
2 1.45 1.51 1.58 1.65 1.71 1.79 1.87 1.95 2.03 2.10 2.20  
3 1.44 1.49 1.53 1.57 1.62 1.68 1.72 1.77 1.82 1.87 1.93  
4 1.45 1.48 1.51 1.54 1.58 1.61 1.65 1.68 1.72 1.76 1.80 

4.00 1 1.19 1.26 1.35 1.44 1.54 1.65 1.77 1.87 2.00 2.12 2.25  
2 1.19 1.23 1.26 1.30 1.34 1.39 1.44 1.48 1.54 1.58 1.65  
3 1.19 1.21 1.24 1.26 1.29 1.31 1.34 1.37 1.41 1.44 1.47  
4 1.19 1.21 1.23 1.25 1.26 1.28 1.30 1.32 1.35 1.37 1.39 

5.00 1 1.02 1.04 1.06 1.09 1.12 1.16 1.21 1.25 1.31 1.37 1.42  
2 1.02 1.03 1.04 1.05 1.06 1.08 1.09 1.11 1.12 1.14 1.16  
3 1.02 1.03 1.03 1.04 1.05 1.05 1.06 1.07 1.08 1.09 1.10  
4 1.02 1.03 1.03 1.04 1.04 1.04 1.05 1.06 1.06 1.07 1.08  
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chart is to the optimum chart, the closer the RARL value is to unity. PCI 
is the ratio of a chart’s EQL to the EQL of the best chart under the same 
conditions. This index makes it easier to compare performances by 
completing ranking based on EQL. 

As Table 5 shows, the RARL, EQL and PCI of the four combined charts 
increases as the measurement error γ increases. By repeating measure-
ments, the RARL, EQL and PCI decrease when measurement error oc-
curs. The EQL values are interpreted similarly to ARL1. For instance, one 

Table 3 
ARL1 profile of the Two-sided Combined Shewhart-EWMA Chart at m = 1, 2, 3, and 4 with ARLo = 370.         

γ      

Δ m 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9 1 
0.25 1 280.28  294.06  304.22  312.36  317.19  324.46  330.32  335.78  337.73  340.88 343.05  

2 281.67  291.69  300.97  306.24  310.98  317.15  321.64  326.28  329.21  332.22 334.11  
3 281.87  287.87  297.26  303.66  308.21  314.85  317.55  322.95  327.12  330.46 329.63  
4 281.31  288.52  296.04  301.49  308.41  312.26  316.67  320.44  324.62  327.71 328.54 

0.50 1 155.74  174.71  192.21  207.13  221.54  235.82  245.93  257.59  265.21  275.51 280.56  
2 155.39  169.61  183.69  195.42  208.03  218.00  227.64  237.13  244.61  252.07 259.59  
3 155.41  168.42  180.78  192.41  201.20  212.13  220.51  228.03  235.84  244.19 249.90  
4 154.90  166.92  178.57  189.00  199.23  206.56  215.19  223.30  230.69  237.53 243.69 

0.75 1 80.74  96.90  111.93  126.99  142.53  155.97  168.72  180.43  191.24  202.46 212.28  
2 81.19  92.69  104.65  115.22  126.02  137.39  148.09  157.60  165.91  176.57 184.36  
3 81.13  91.63  101.74  111.53  121.55  130.82  139.32  147.80  156.34  163.58 172.55  
4 81.17  90.63  100.21  109.81  118.00  126.84  135.20  144.17  151.22  158.68 164.99 

1.00 1 43.95  54.58  65.58  76.72  89.02  101.02  111.81  123.73  133.94  144.84 154.87  
2 43.98  51.80  60.13  68.51  76.72  85.55  94.26  102.01  110.85  118.45 127.12  
3 44.15  50.95  58.17  65.54  72.53  80.13  87.36  94.19  101.97  108.82 115.30  
4 43.80  50.37  57.10  64.14  70.56  77.40  84.13  90.31  97.11  103.75 110.14 

1.25 1 24.90  32.01  39.98  48.31  57.21  65.56  75.04  84.58  93.55  103.00 111.81  
2 24.87  30.29  35.88  41.50  47.69  54.45  60.38  67.08  74.36  80.70 87.20  
3 24.93  29.53  34.37  39.45  44.53  49.73  55.67  60.83  66.48  72.76 78.44  
4 24.98  29.30  33.85  38.38  43.28  47.98  53.07  57.90  63.21  68.11 73.59 

1.50 1 14.94  19.61  24.99  30.90  37.16  43.86  50.78  58.69  66.04  73.13 80.84  
2 14.95  18.35  22.19  26.22  30.55  35.28  40.11  44.88  50.22  55.47 60.75  
3 14.96  17.98  21.35  24.70  28.36  32.08  36.38  40.41  44.56  49.01 53.39  
4 15.00  17.85  20.88  23.98  27.24  30.73  34.50  38.13  41.87  45.75 49.60 

1.75 1 9.44  12.58  16.14  20.46  24.81  29.72  35.26  41.00  46.89  53.28 59.28  
2 9.48  11.73  14.38  17.23  20.23  23.47  27.07  30.66  34.64  38.51 42.76  
3 9.46  11.46  13.61  16.00  18.57  21.26  24.37  27.24  30.41  33.77 37.23  
4 9.45  11.37  13.35  15.60  17.87  20.29  22.86  25.58  28.21  31.08 34.46 

2.00 1 6.30  8.46  10.96  13.96  17.22  20.85  24.91  29.30  34.06  38.76 43.88  
2 6.29  7.88  9.63  11.65  13.91  16.17  18.72  21.50  24.37  27.57 30.64  
3 6.32  7.68  9.19  10.81  12.71  14.75  16.85  18.95  21.31  23.90 26.40  
4 6.30  7.57  8.94  10.51  12.13  13.92  15.75  17.68  19.82  21.92 24.21 

2.25 1 4.43  5.89  7.68  9.77  12.29  15.05  17.95  21.35  24.99  28.85 32.77  
2 4.41  5.48  6.72  8.10  9.65  11.45  13.38  15.39  17.60  20.00 22.42  
3 4.42  5.37  6.41  7.57  8.90  10.30  11.80  13.55  15.20  17.17 19.12  
4 4.38  5.28  6.23  7.33  8.57  9.75  11.16  12.57  14.13  15.62 17.46 

2.50 1 3.24  4.30  5.59  7.10  8.90  10.96  13.31  15.76  18.66  21.68 24.97  
2 3.25  4.00  4.89  5.91  7.01  8.29  9.74  11.31  13.00  14.76 16.79  
3 3.24  3.90  4.67  5.51  6.45  7.51  8.64  9.83  11.18  12.60 14.06  
4 3.24  3.85  4.53  5.31  6.17  7.12  8.06  9.19  10.29  11.53 12.81 

2.75 1 2.48  3.25  4.17  5.33  6.65  8.22  9.96  11.99  14.18  16.57 19.14  
2 2.50  3.03  3.68  4.42  5.25  6.23  7.26  8.45  9.73  11.13 12.70  
3 2.49  2.96  3.51  4.13  4.83  5.59  6.45  7.36  8.37  9.40 10.67  
4 2.49  2.93  3.43  4.00  4.64  5.33  6.03  6.83  7.72  8.65 9.66 

3.00 1 2.00  2.54  3.24  4.10  5.12  6.29  7.68  9.23  10.99  12.91 14.93  
2 2.00  2.40  2.86  3.43  4.07  4.81  5.58  6.48  7.50  8.60 9.76  
3 2.01  2.35  2.75  3.22  3.72  4.31  4.95  5.66  6.41  7.24 8.13  
4 2.00  2.32  2.68  3.11  3.58  4.07  4.65  5.26  5.95  6.64 7.43 

3.50 1 1.45  1.75  2.14  2.64  3.26  3.96  4.82  5.77  6.86  8.09 9.51  
2 1.45  1.66  1.93  2.25  2.62  3.03  3.55  4.08  4.69  5.35 6.10  
3 1.45  1.63  1.87  2.12  2.43  2.78  3.14  3.58  4.05  4.57 5.14  
4 1.45  1.62  1.83  2.07  2.33  2.63  2.96  3.33  3.72  4.16 4.62 

4.00 1 1.19  1.35  1.59  1.88  2.25  2.71  3.25  3.85  4.57  5.35 6.33  
2 1.19  1.31  1.46  1.65  1.87  2.13  2.44  2.79  3.16  3.61 4.07  
3 1.19  1.30  1.42  1.57  1.76  1.96  2.20  2.47  2.76  3.08 3.44  
4 1.19  1.29  1.40  1.53  1.70  1.89  2.09  2.32  2.55  2.84 3.11 

5.00 1 1.02  1.06  1.14  1.25  1.40  1.58  1.82  2.10  2.42  2.80 3.24  
2 1.02  1.05  1.10  1.16  1.24  1.35  1.47  1.62  1.79  1.98 2.21  
3 1.02  1.05  1.08  1.13  1.20  1.28  1.37  1.48  1.61  1.75 1.91  
4 1.02  1.05  1.08  1.12  1.18  1.25  1.33  1.42  1.52  1.65 1.78  
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could see (γ, EQL), from Table 5 at m = 1 as, (0.00, 18.86), (0.30, 25.55), 
(0.60, 33.48) and so on (1.00, 45.76). It may also be noted that (at γ =
0.70, m = 1, 2, 3, 4) the respective EQL values for Shewhart-CUSUM are 
36.41, 29.09, 26.17, and 24.95; for Shewhart-CCUSUM, are 30.57, 
24.52, 22.58, and 21.59; for Shewhart-EWMA, are 87.83, 66.89, 60.12, 
and 56.88 for Shewhart-GWMA, are 40.54, 31.57, 28.75, and 26.74. 
This observation is similar with the other charts. 

Based on the simulations results, all the studied charts significantly 
damage their sensitivity for detecting a shift in the process mean. The 
Shewhart-CUSUM is worse than the Shewhart-CCUSUM’s, and the 
overall performance of the Shewhart-EWMA is worse than the Shewhart- 
GWMA’s. Sensitivity based preference, Shewhart-CCUSUM uniformly 
and substantially outperforms than followed by the charts in the pres-
ence of measurement uncertainty. 

Table 4 
ARL1 profile of the Two-sided Combined Shewhart-GWMA Chart at m = 1, 2, 3, and 4 with ARLo = 370.         

γ      

Δ m 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9 1 
0.25 1 277.54  284.55  291.91  295.77  300.09  304.23  308.65  311.02  312.60  315.46 320.37  

2 279.31  281.18  288.09  287.20  291.77  293.86  295.09  297.90  300.57  302.59 305.17  
3 280.70  281.80  283.19  286.01  287.12  290.29  291.43  291.31  295.30  297.75 298.11  
4 278.96  282.50  282.15  282.63  285.28  286.79  289.52  291.26  290.46  290.02 291.75 

0.50 1 147.30  158.76  167.42  175.77  183.73  191.53  197.62  202.74  208.72  214.66 219.14  
2 149.05  153.14  157.85  162.91  167.82  171.10  176.58  179.02  183.88  187.34 190.80  
3 148.34  151.27  154.77  158.68  160.74  164.72  166.47  170.44  172.94  176.08 178.74  
4 148.02  150.74  153.58  155.86  158.34  161.25  163.19  165.01  167.49  169.25 171.48 

0.75 1 70.40  78.43  85.69  93.25  99.83  106.55  112.87  119.19  124.67  130.74 134.91  
2 70.52  74.11  78.19  82.12  86.10  89.62  93.61  96.42  100.57  103.33 106.91  
3 70.50  73.05  75.58  78.14  80.85  83.17  86.11  88.71  90.48  93.21 95.15  
4 70.85  72.43  74.38  76.15  78.32  80.25  82.18  83.91  85.85  87.32 89.56 

1.00 1 34.40  38.97  43.85  48.48  53.39  58.23  62.71  67.23  71.91  75.81 80.44  
2 34.24  36.64  39.26  41.50  43.90  46.12  48.38  50.72  53.17  55.53 58.14  
3 34.30  35.86  37.45  38.72  40.67  42.09  43.46  45.46  46.82  48.20 49.93  
4 34.40  35.59  36.59  37.85  38.92  40.28  41.22  42.39  43.54  44.85 46.04 

1.25 1 18.53  21.12  23.75  26.60  29.67  32.53  35.37  38.09  41.41  44.44 47.45  
2 18.59  19.72  21.13  22.53  23.84  25.24  26.64  27.95  29.51  30.95 32.29  
3 18.46  19.38  20.18  21.13  22.06  22.85  23.83  24.74  25.60  26.75 27.67  
4 18.52  19.07  19.83  20.43  21.05  21.82  22.50  23.08  23.78  24.57 25.20 

1.50 1 11.18  12.70  14.36  16.06  17.83  19.61  21.40  23.33  25.16  27.19 29.29  
2 11.18  11.98  12.65  13.55  14.34  15.16  16.03  16.92  17.73  18.69 19.58  
3 11.17  11.70  12.23  12.74  13.29  13.83  14.32  14.94  15.47  16.10 16.62  
4 11.19  11.56  11.93  12.34  12.73  13.16  13.54  13.94  14.34  14.82 15.27 

1.75 1 7.39  8.37  9.44  10.51  11.57  12.78  13.88  15.10  16.40  17.65 19.06  
2 7.39  7.86  8.36  8.89  9.40  9.95  10.46  11.11  11.62  12.15 12.80  
3 7.41  7.72  8.05  8.36  8.72  9.06  9.42  9.78  10.19  10.51 10.86  
4 7.35  7.64  7.89  8.13  8.40  8.65  8.87  9.16  9.44  9.70 9.97 

2.00 1 5.21  5.90  6.61  7.33  8.07  8.87  9.69  10.45  11.37  12.27 13.10  
2 5.22  5.55  5.90  6.24  6.63  6.97  7.37  7.72  8.12  8.51 8.87  
3 5.22  5.44  5.66  5.91  6.12  6.36  6.59  6.83  7.13  7.33 7.57  
4 5.21  5.38  5.55  5.74  5.87  6.08  6.24  6.45  6.63  6.79 7.00 

2.25 1 3.85  4.35  4.87  5.38  5.95  6.49  7.08  7.67  8.30  8.92 9.54  
2 3.85  4.11  4.34  4.63  4.86  5.14  5.41  5.66  5.95  6.22 6.52  
3 3.86  4.00  4.19  4.34  4.52  4.68  4.87  5.04  5.21  5.38 5.57  
4 3.84  3.96  4.10  4.22  4.37  4.47  4.60  4.74  4.85  4.97 5.11 

2.50 1 2.96  3.34  3.72  4.10  4.55  4.96  5.36  5.80  6.24  6.72 7.21  
2 2.96  3.15  3.33  3.54  3.73  3.90  4.11  4.33  4.51  4.75 4.95  
3 2.96  3.09  3.20  3.33  3.45  3.58  3.72  3.86  3.98  4.11 4.25  
4 2.95  3.07  3.14  3.24  3.33  3.42  3.54  3.61  3.73  3.83 3.91 

2.75 1 2.37  2.65  2.93  3.25  3.56  3.88  4.21  4.55  4.88  5.24 5.60  
2 2.36  2.50  2.64  2.79  2.93  3.08  3.23  3.40  3.56  3.70 3.87  
3 2.36  2.46  2.55  2.64  2.75  2.85  2.95  3.03  3.14  3.24 3.33  
4 2.36  2.43  2.50  2.57  2.65  2.72  2.80  2.87  2.94  3.02 3.09 

3.00 1 1.94  2.17  2.38  2.62  2.87  3.11  3.37  3.64  3.92  4.20 4.49  
2 1.94  2.05  2.16  2.28  2.38  2.51  2.62  2.75  2.87  3.00 3.12  
3 1.94  2.02  2.08  2.16  2.23  2.32  2.38  2.47  2.55  2.61 2.71  
4 1.94  1.99  2.06  2.10  2.15  2.22  2.26  2.33  2.39  2.44 2.50 

3.25 1 1.64  1.81  1.99  2.19  2.37  2.57  2.78  2.99  3.22  3.44 3.66  
2 1.65  1.73  1.81  1.90  1.99  2.08  2.17  2.27  2.37  2.47 2.57  
3 1.64  1.70  1.76  1.81  1.87  1.93  1.99  2.05  2.11  2.17 2.24  
4 1.64  1.69  1.73  1.77  1.81  1.86  1.90  1.95  1.99  2.03 2.08 

3.50 1 1.44  1.57  1.70  1.84  2.01  2.17  2.32  2.51  2.68  2.85 3.04  
2 1.44  1.50  1.57  1.64  1.70  1.78  1.85  1.92  2.00  2.08 2.16  
3 1.44  1.48  1.52  1.56  1.61  1.65  1.70  1.75  1.80  1.85 1.89  
4 1.44  1.47  1.50  1.53  1.57  1.60  1.63  1.66  1.70  1.74 1.77 

4.00 1 1.18  1.26  1.34  1.43  1.53  1.63  1.74  1.86  1.96  2.10 2.22  
2 1.29  1.33  1.39  1.44  1.50  1.55  1.61  1.67  1.73  1.80 1.86  
3 1.19  1.21  1.23  1.26  1.29  1.31  1.34  1.37  1.40  1.43 1.46  
4 1.19  1.21  1.22  1.24  1.26  1.28  1.30  1.32  1.34  1.37 1.39 

5.00 1 1.02  1.04  1.06  1.09  1.12  1.16  1.20  1.25  1.30  1.36 1.42  
2 1.02  1.03  1.04  1.05  1.06  1.08  1.09  1.10  1.12  1.14 1.16  
3 1.02  1.03  1.03  1.04  1.05  1.05  1.06  1.07  1.08  1.09 1.10  
4 1.02  1.03  1.03  1.04  1.04  1.05  1.05  1.06  1.06  1.07 1.07  
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Fig. 1. Comparisons of the ARL curves of the Shewhart-CUSUM chart when m = 1,m = 2,m = 3 and m = 4  

Fig. 2. Comparisons of the ARL curves of the Shewhart-CCUSUM chart when m = 1,m = 2,m = 3 and m = 4.
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Fig. 3. Comparisons of the ARL curves of the Shewhart-EWMA chart whenm = 1,m = 2,m = 3and m = 4.

Fig. 4. Comparisons of the ARL curves of the Shewhart-GWMA chart when m = 1,m = 2,m = 3 and m = 4.
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Table 5 
RARL, EQL, and PCI performance comparisons of different charts at m = 1, 2, 3, and 4.  

m Chart γ→  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

1 SC RARL  1.53  1.71  1.90  2.10  2.32  2.54  2.76  3.00  3.25  3.50  3.75 
EQL  18.86  20.93  23.16  25.55  28.08  30.72  33.48  36.41  39.43  42.53  45.76 
PCI  1.34  1.48  1.64  1.81  1.99  2.18  2.37  2.58  2.80  3.02  3.25 

SCC RARL  1.52  1.65  1.78  1.92  2.05  2.19  2.33  2.46  2.60  2.73  2.87 
EQL  18.75  20.37  22.02  23.67  25.40  27.12  28.88  30.57  32.36  34.12  35.92 
PCI  1.33  1.44  1.56  1.68  1.80  1.92  2.05  2.17  2.30  2.42  2.55 

SE RARL  2.29  2.78  3.34  3.96  4.65  5.38  6.17  7.05  7.93  8.90  9.90 
EQL  26.21  32.12  38.98  46.82  55.68  65.36  75.72  87.83  99.84  113.69  127.89 
PCI  1.86  2.28  2.76  3.32  3.95  4.64  5.37  6.23  7.08  8.06  9.07 

SG RARL  2.01  2.21  2.41  2.62  2.82  3.03  3.24  3.44  3.66  3.87  4.08 
EQL  23.24  25.57  27.91  30.36  32.87  35.43  37.95  40.54  43.22  45.96  48.66 
PCI  1.65  1.81  1.98  2.15  2.33  2.51  2.69  2.88  3.07  3.26  3.45 

2 SC RARL  1.53  1.64  1.76  1.88  2.01  2.14  2.27  2.42  2.55  2.70  2.84 
EQL  18.85  20.12  21.46  22.87  24.33  25.88  27.42  29.09  30.72  32.45  34.19 
PCI  1.34  1.43  1.52  1.62  1.73  1.84  1.94  2.06  2.18  2.30  2.42 

SCC RARL  1.52  1.58  1.65  1.71  1.78  1.85  1.92  1.98  2.05  2.12  2.19 
EQL  18.75  19.57  20.37  21.17  22.01  22.84  23.69  24.52  25.40  26.24  27.16 
PCI  1.33  1.39  1.44  1.50  1.56  1.62  1.68  1.74  1.80  1.86  1.93 

SE RARL  2.29  2.65  3.05  3.47  3.93  4.43  4.95  5.50  6.08  6.69  7.32 
EQL  26.23  30.54  35.40  40.66  46.47  52.86  59.67  66.89  74.77  82.95  91.66 
PCI  1.86  2.17  2.51  2.88  3.30  3.75  4.23  4.74  5.30  5.88  6.50 

SG RARL  2.02  2.11  2.21  2.31  2.42  2.51  2.62  2.72  2.82  2.93  3.03 
EQL  23.28  24.38  25.56  26.77  27.94  29.13  30.36  31.57  32.87  34.11  35.41 
PCI  1.65  1.73  1.81  1.90  1.98  2.07  2.15  2.24  2.33  2.42  2.51 

3 SC RARL  1.53  1.61  1.70  1.80  1.89  1.99  2.09  2.19  2.29  2.39  2.50 
EQL  18.86  19.80  20.78  21.80  22.85  23.94  25.03  26.17  27.36  28.49  29.67 
PCI  1.34  1.40  1.47  1.55  1.62  1.70  1.78  1.86  1.94  2.02  2.10 

SCC RARL  1.52  1.56  1.60  1.65  1.69  1.74  1.78  1.83  1.87  1.92  1.97 
EQL  18.75  19.29  19.83  20.37  20.91  21.46  22.01  22.58  23.12  23.70  24.27 
PCI  1.33  1.37  1.41  1.44  1.48  1.52  1.56  1.60  1.64  1.68  1.72 

SE RARL  2.29  2.61  2.95  3.32  3.70  4.11  4.55  4.98  5.46  5.95  6.46 
EQL  26.25  30.03  34.18  38.66  43.51  48.74  54.36  60.12  66.35  72.98  79.88 
PCI  1.86  2.13  2.42  2.74  3.09  3.46  3.86  4.26  4.71  5.18  5.67 

SG RARL  2.02  2.08  2.15  2.21  2.28  2.35  2.41  2.48  2.55  2.62  2.68 
EQL  23.27  24.02  24.77  25.54  26.36  27.11  27.90  28.75  29.54  30.35  31.16 
PCI  1.65  1.70  1.76  1.81  1.87  1.92  1.98  2.04  2.10  2.15  2.21 

4 SC RARL  1.52  1.60  1.68  1.76  1.84  1.92  2.00  2.09  2.17  2.26  2.34 
EQL  18.84  19.69  20.48  21.38  22.21  23.12  24.00  24.95  25.90  26.84  27.79 
PCI  1.34  1.40  1.45  1.52  1.58  1.64  1.70  1.77  1.84  1.90  1.97 

SCC RARL  1.52  1.55  1.58  1.62  1.65  1.68  1.72  1.75  1.78  1.82  1.85 
EQL  18.78  19.16  19.56  19.96  20.37  20.75  21.20  21.59  22.02  22.42  22.84 
PCI  1.33  1.36  1.39  1.42  1.44  1.47  1.50  1.53  1.56  1.59  1.62 

SE RARL  2.29  2.58  2.90  3.24  3.59  3.95  4.34  4.74  5.15  5.58  6.03 
EQL  26.21  29.75  33.57  37.71  42.11  46.75  51.66  56.88  62.30  68.01  74.06 
PCI  1.86  2.11  2.38  2.67  2.99  3.32  3.66  4.03  4.42  4.82  5.25 

SG RARL  2.02  2.07  2.11  2.16  2.21  2.27  2.31  2.36  2.41  2.46  2.51 
EQL  23.26  23.84  24.41  24.97  25.55  26.18  26.74  27.33  27.92  28.51  29.13 
PCI  1.65  1.69  1.73  1.77  1.81  1.86  1.90  1.94  1.98  2.02  2.07 

Note: SC - Shewhart-CUSUM; SCC - Shewhart-CCUSUM; SE - Shewhart-EWMA; and SG - Shewhart-GWMA. 

T. Munir et al.                                                                                                                                                                                                                                   



Computers & Industrial Engineering 175 (2023) 108900

13

Table 6 
RARL, EQL, and PCI performance comparison for the covariate model with different values of B.  

Δ Chart No Error 1 2 3 4 5  

0.25 SC  256.15  319.48  224.62  143.79  90.55  57.95  
SCC  255.41  311.76  169.32  69.14  34.18  21.39  
SE  280.28  343.05  328.84  325.50  323.82  323.06  
SG  277.54  320.37  221.10  135.70  80.39  47.57  

0.50 SC  80.87  220.30  88.78  37.95  17.79  9.16  
SCC  79.86  170.54  34.27  15.23  9.16  6.11  
SE  155.74  280.56  244.11  232.99  229.69  227.76  
SG  147.30  219.14  80.54  29.19  13.10  7.19  

0.75 SC  30.38  112.08  37.41  12.59  5.25  2.76  
SCC  29.97  69.10  15.17  7.43  4.27  2.59  
SE  80.74  212.28  165.48  154.31  149.35  147.33  
SG  70.40  134.91  29.19  9.52  4.47  2.58  

1.00 SC  17.13  54.82  17.60  5.24  2.32  1.42  
SCC  16.90  34.13  9.15  4.26  2.25  1.42  
SE  43.95  154.87  110.60  99.32  95.63  94.18  
SG  34.40  80.44  13.14  4.49  2.21  1.41  

1.25 SC  11.54  33.42  9.15  2.76  1.42  1.09  
SCC  11.35  21.41  6.11  2.59  1.42  1.08  
SE  24.90  111.81  72.85  64.84  61.87  60.84  
SG  18.53  47.45  7.19  2.57  1.41  1.09  

1.50 SC  8.35  23.22  5.25  1.74  1.12  1.01  
SCC  8.25  15.23  4.29  1.73  1.12  1.01  
SE  14.94  80.84  49.37  43.31  41.19  39.95  
SG  11.18  29.29  4.48  1.72  1.12  1.01  

1.75 SC  6.31  17.09  3.33  1.31  1.03  1.00  
SCC  6.24  11.54  3.05  1.31  1.03  1.00  
SE  9.44  59.28  34.20  29.60  27.84  27.00  
SG  7.39  19.06  3.05  1.31  1.03  1.00  

2.00 SC  4.85  12.99  2.32  1.12  1.00  1.00  
SCC  4.81  9.17  2.25  1.12  1.00  1.00  
SE  6.30  43.88  24.12  20.59  19.28  18.81  
SG  5.21  13.10  2.22  1.12  1.00  1.00  

2.25 SC  3.81  10.10  1.75  1.04  1.00  1.00  
SCC  3.77  7.43  1.73  1.04  1.00  1.00  
SE  4.43  32.77  17.47  14.80  13.75  13.34  
SG  3.85  9.54  1.71  1.04  1.00  1.00  

2.50 SC  2.99  7.93  1.42  1.01  1.00  1.00  
SCC  2.98  6.13  1.42  1.01  1.00  1.00  
SE  3.24  24.97  12.83  10.86  10.10  9.72  
SG  2.96  7.21  1.41  1.01  1.00  1.00  

2.75 SC  2.41  6.26  1.23  1.00  1.00  1.00  
SCC  2.40  5.10  1.23  1.00  1.00  1.00  
SE  2.48  19.14  9.69  8.07  7.52  7.31  
SG  2.37  5.60  1.23  1.00  1.00  1.00  

3.00 SC  1.97  5.00  1.12  1.00  1.00  1.00  
SCC  1.97  4.27  1.12  1.00  1.00  1.00  
SE  2.00  14.93  7.38  6.18  5.75  5.62  
SG  1.94  4.49  1.12  1.00  1.00  1.00  

3.50 SC  1.45  3.28  1.03  1.00  1.00  1.00  
SCC  1.45  3.05  1.03  1.00  1.00  1.00  
SE  1.45  9.51  4.65  3.90  3.64  3.53  
SG  1.44  3.04  1.03  1.00  1.00  1.00  

4.00 SC  1.19  2.30  1.00  1.00  1.00  1.00  
SCC  1.19  2.25  1.00  1.00  1.00  1.00  
SE  1.19  6.33  3.13  2.66  2.51  2.45  
SG  1.18  2.22  1.00  1.00  1.00  1.00  

5.00 SC  1.02  1.42  1.00  1.00  1.00  1.00  
SCC  1.02  1.42  1.00  1.00  1.00  1.00  
SE  1.02  3.24  1.78  1.57  1.50  1.47  
SG  1.02  1.42  1.00  1.00  1.00  1.00 

Note: SC - Shewhart-CUSUM; SCC - Shewhart-CCUSUM; SE - Shewhart-EWMA; and SG - Shewhart-GWMA. 
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4.1. Effect of A and B on the performance of different combined control 
charts 

Following the procedure shown by Maravelakis (2012), the ARL, 
RARL, EQL, and PCI values for the covariate model in Eq. (10) for 
different values B are presented in Tables 6-7. These ARL1 profiles are 
computed with the same parameters of all the charts as in Table 5. We 

observe that as the value of B increases, the power of the combined 
charts to detect shift in the process mean increases. For instance, for the 
Shewhart-CUSUM chart, when B increases from 1 up to 3, the RARL, 
EQL, PCI decrease down to a large extent, from 3.75, 45.76, 3.25 to 0.71, 
9.65, 0.68. When B increases from 3 up to 5, these measures decrease 
down to a small extent, from 0.71, 9.65, 0.68 to 0.51, 8.11, 0.58. 
Moreover, it has to state also that A does not affect the ARL performance 
of the combined charts in this study. This result is in accordance with 
Maravelakis (2012) and Linna & Woodall (2001). 

5. A simulated example 

In this section, we considered a simulated dataset to demonstrate the 
implementation of the combined charts with and without measurement 
errors when detecting a shift in the process mean. 

Suppose that the underlying process {Xt} is normally distributed for 
t > 1. We assume that this process remains in the IC state for t ≤ t0 with 
the process parameters {µ = 0, σ = 1 with γ = 0.0}. A process in sta-
tistical control generates the first thirty observations, and the next 
twenty observations are generated from a process with an upward 
process shift (t0 = 30, 20), respectively, with δ = 0.25 when t > t0. These 
data are then plotted in the two-sided combined charts. For the sake of 
concision, we only discuss the following three possible measurement 
error scenarios: no errors (γ = 0), error variation equal to 40% of the 
process variation (γ = 0.4), and equal to 90% error variation in the 
process (γ = 0.9), respectively. 

Table 7 
RARL, EQL, and PCI performance comparison for the covariate model with 
different values of B.  

Chart B→ No Error 1 2 3 4 5 

SC RARL  3.75  1.53  1.20  0.71  0.57  0.51  
EQL  45.76  18.86  14.27  9.65  8.52  8.11  
PCI  3.25  1.34  1.01  0.68  0.60  0.58 

SCC RARL  1.52  2.87  0.89  0.59  0.50  0.47  
EQL  18.75  35.92  11.70  8.85  8.17  7.93  
PCI  1.33  2.55  0.83  0.63  0.58  0.56 

SE RARL  2.29  9.90  6.03  5.32  5.06  4.96  
EQL  26.21  127.89  74.00  64.54  61.16  59.71  
PCI  1.86  9.07  5.25  4.58  4.34  4.23 

SG RARL  2.01  4.08  1.10  0.67  0.55  0.50  
EQL  23.24  48.66  13.29  9.35  8.38  8.04  
PCI  1.65  3.45  0.94  0.66  0.59  0.57 

Note: SC - Shewhart-CUSUM; SCC - Shewhart-CCUSUM; SE - Shewhart-EWMA; 
and SG - Shewhart-GWMA. 

Fig. 5. The control charts applied to the simulated dataset at γ = 0.
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The chart parameters for Shewhart-CUSUM, Shewhart-CCUSUM, 
Shewhart-EWMA and Shewhart-GWMA are: (k = 0.5; h = 9.9; L1 = 3), 
(k = 0.5; h = 9.7; L1 = 3), (λ = 0.5; L2 = 4; L1 = 3) and (α = 0.5; q =

0.5; L3 = 3.7; L1 = 3), respectively. These parameters ensure an ARL of 
370 of the corresponding charts for IC processes. Figs. 5-7 show the 
charts. 

The above figures show how the statistical power of the charts de-
teriorates as measurement error increases. When there is no measure-
ment error variation, the Shewhart-CUSUM, Shewhart-CCUSUM, 
Shewhart-EWMA and Shewhart-GWMA charts initiate the first OC 
signal at sample numbers (32, 32, 33, and 33). With γ = 0.4, the OC 
signals appear at (38, 38, 40, and 39), while with γ = 0.9 they appear at 
observations (43, 42, 46, and 46), respectively. These findings support 
the results of Section 5 that measurement error significantly impacts the 
performance of the combined charts. 

6. Conclusion 

In this study, we have investigated the performance of the well- 
established combined control charts for monitoring the normally 
distributed process mean parameter in the presence of measurement 

uncertainty, namely the Shewhart-CUSUM, Shewhart-CCUSUM, 
Shewhart-EWMA, and Shewhart-GWMA charts. A detailed run length 
profiles in terms of ARL, EQL, RARL and PCI, of these charts, have been 
computed using the Monte Carlo simulation method under different 
magnitudes of measurement errors. We found that while all charts were 
significantly impacted by measurement error, the Shewhart-CCUSUM 
had a better overall performance than the others, while Shewhart- 
EWMA performed the worst chart. We also note that taking multiple 
measurements per item in each sample can compensate for the negative 
effect of measurement inaccuracy. When measurement errors are inev-
itable, we recommend that practitioners use measurement uncertainty- 
based combined charts. 

For future research, combined charts can be designed to combinedly 
deal with violating assumption of normality and perfect measurement 
data, on the lines of Rahlm (1985). This study can also be extended 
under the combined effect of measurement uncertainty and autocorre-
lation on the lines of Costa & Castagliola (2011). Additionally, the 
combined charts could be developed for profile monitoring in the 
presence of measurement errors, continuing the work by Noorossana & 
Zerehsaz (2015). 

Fig. 6. The control charts applied to the simulated dataset at γ = 0.4.
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