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2018.—Melatonin is a natural hormone involved in the regulation of
circadian rhythm, immunity, and cardiovascular function. In the
present study, we focused on the mechanism of melatonin in the
regulation of vascular permeability. We found that melatonin could
inhibit both VEGF- and EGF-induced monolayer permeability of
human umbilical vein endothelial cells (HUVECs) and change the
tyrosine phosphorylation of vascular-endothelial (VE-)cadherin,
which was related to endothelial barrier function. In addition, phos-
pho-AKT (Ser*”?) and phospho-ERK(1/2) played significant roles in
the regulation of VE-cadherin phosphorylation. Both the phosphati-
dylinositol 3-kinase/AKT inhibitor LY49002 and MEK/ERK inhibitor
U0126 could inhibit the permeability of HUVECsS, but with different
effects on tyrosine phosphorylation of VE-cadherin. Melatonin can
influence the two growth factor-induced phosphorylation of AKT
(Ser*”?) but not ERK(1/2). Our results show that melatonin can inhibit
growth factor-induced monolayer permeability of HUVECs by influ-
encing the phosphorylation of AKT and VE-cadherin. Melatonin can
be a potential treatment for diseases associated with abnormal vascu-
lar permeability.

NEW & NOTEWORTHY We found that melatonin could inhibit
both EGF- and VEGF-induced monolayer permeability of human
umbilical vein endothelial cells, which is related to phosphoryla-
tion of vascular-endothelial cadherin. Blockade of phosphatidyl-
inositol 3-kinase/AKT and MEK/ERK pathways could inhibit the
permeability of human umbilical vein endothelial cells, and phos-
phorylation of AKT (Ser*’?) might be a critical event in the
changing of monolayer permeability and likely has cross-talk with
the MEK/ERK pathway.
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INTRODUCTION

Permeability is an important determinant of vascular
function, which is determined by transendothelial channels
and tight junctions of vascular endothelial cells (ECs) (15).
As the familiar structure between ECs, the tight junction is
regulated by extracellular stimuli such as hypoxia, cyto-
kines, nutrients, and immune cells (11, 30, 40, 44). Increas-
ing tight junction permeability can weaken vascular endo-
thelial barrier function, which contributes to many types of
vascular disease (38, 58, 64).

Vascular-endothelial (VE-)cadherin is the major tight junc-
tion protein in vascular ECs and is required to maintain the
vascular endothelial barrier (48, 59). The regulation of VE-
cadherin expression typically involves transcription and post-
translational modification. Posttranslational modification usu-
ally comprises ubiquitination and phosphorylation (42, 53, 57).
The phosphorylation of VE-cadherin has been investigated
extensively and is thought to affect endothelial permeability
(16). When vascular ECs are stimulated by particular cytokines
and inflammatory factors, VE-cadherin is phosphorylated and
will lead to a change in permeability. Therefore, VEGF could
induce VE-cadherin tyrosine phosphorylation, which, in turn,
mediates increased vascular permeability (16, 19). In addition,
EGF has been indicated to contribute to the permeability of
ECs and vascular tube formation, in particular, inducing endo-
thelial cadherin tyrosine phosphorylation (6, 13, 60, 68). Fur-
thermore, both EGF and VEGF belong to the class of plasma
growth factors; the expression of EGF and VEGF or their
receptors is closely associated with atherosclerotic or other
vascular diseases (2, 47, 72). It has also been reported that
VEGF could upregulate the expression of EGF receptors
(EGFRs); many inhibitors could block both EGFRs and VEGF
receptors (VEGFRs), and there appears to be cross-talk be-
tween EGFR and VEGFR pathways (24, 31, 36, 41, 51, 65).
Therefore, we used both VEGF and EGF to stimulate human
umbilical vein ECs (HUVECs) to investigate their effect on
VE-cadherin phosphorylation to explain the potential mecha-
nism of increased permeability of vascular diseases.

Recently, there has been an increase in research interest in
melatonin maintaining homeostasis in the human body.
Lack of melatonin might lead to many diseases such as
circadian rhythm sleep disorders as well as neurodegenera-
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tive and cardiovascular diseases (17, 49, 55, 75). Our
research focused on the effect of melatonin on cardiovas-
cular disease. It has been previously reported that melatonin
takes part in the regulation of epithelial cell permeability,
such as the blood-brain barrier, intestinal epithelium, and
aortic epithelium. However, the molecular mechanism of
this regulation of vascular endothelial permeability by mel-
atonin is still unclear (34, 56, 61, 70). In the present
investigation, we established a relationship among melato-
nin, EGF, and VEGF, as they both regulated phosphoryla-
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tion of the same target protein (VE-cadherin), which con-
tributes to vascular endothelial permeability.

METHODS

Cell and plasmids. HUVECs were obtained from the American Type
Culture Collection (Rockville, MD) and cultured in DMEM (high glu-
cose, Hyclone, ThermoFisher Scientific, Waltham, MA) supplemented
with 10% (vol/vol) FBS (Hyclone) and antibiotics (100 U/ml streptomy-
cin and 100 wg/ml penicillin, Invitrogen) in a humidified incubator at
37°C with 5% CO,. The ERK2(WT) plasmid and ERK2(TAYF) plasmid
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were constructed as previously described (62), and the empty pEGFP-N1
vector was obtained from Clontech Laboratories (Palo Alto, CA). Cells
were seeded in six-well plates, cultured to 80-90% confluence, and then
transiently transfected with those plasmids using FuGENE HD Transfec-
tion Reagent (Promega, Madison, WI) in serum-free OPTI-MEM accord-
ing to the manufacturer’s instructions.

MTT assay. HUVECs were seeded at a density of 8 X 10% cells/
well into a 96-well plate and made quiescent by serum starvation for
12 h. Cells were then treated with EGF (R&D Systems, Minneapolis,
MN), VEGF (R&D Systems), and melatonin (Sigma-Aldrich, St.
Louis, MO) for the indicated times, and cell proliferation was mea-
sured by the MTT assay as previously described (73).

Permeability assay. HUVECs (2 X 10° cells) were seeded in 150
wl medium on the membrane of each 3-wm Millicell Hanging Cell
Culture insert (Millipore, Bedford, MA), and the 24-well plates

were filled with 600 wl medium. After HUVECs were fully
confluent (to ensure the formation of cell-cell junctions and a good
endothelial barrier), EGF, VEGF, melatonin, 10 puM LY49002
(Sigma), or 10 pM UO0126 (Alexis, Lausen, Switzerland) were
added to the medium according to the following different combi-
nations of treatment: control, EGF, VEGF, control + melatonin,
EGF + melatonin, VEGF + melatonin, control + 1LY49002,
EGF + LY49002, VEGF + LY49002, control + U0126, EGF +
U0126, and VEGF + U0126. Horseradish peroxidase was added to
the medium of the top chambers at the indicated times, and 20 .l
of media from the lower chamber were transferred to a new 96-well
plate after incubation for 30 min. The media reacted with TMB
substrate (CWBio, Beijing, China), and the optical density (OD)
value of 450 nm was measured by a microplate reader according to
the manufacturer’s instructions. After aspirating the medium of the
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inserts, the cell monolayers were fixed with 4% polyoxymethylene
and stained with 0.1% crystal violet. A phase-contrast microscope
was used to take images, and ImagelJ software was used to measure
the intercellular space volume. The data of the OD value and
intercellular space volume were analyzed to reflect the change in
cell permeability.

Western blot analysis. Sample protein extraction and concentration
determination of whole cells were performed as previously described

(18). Briefly, equal amounts of protein were run on SDS-polyacrylamide
gels and transferred to a nitrocellulose membrane. The resulting blots
were blocked with 5% nonfat dry milk and probed with antibodies. The
following antibodies were used: GAPDH, ERK, phospho-ERK, EGFR
(Cell Signaling Technology, Danvers, MA), VE-cadherin, phospho-VE-
cadherin (Tyr®®, Abcam, Cambridge, MA), phospho-VE-cadherin
(Tyr”3"), phospho-VE-cadherin (Tyr®8, ThermoFisher Scientific), and
VEGFR2 (Santa Cruz Biotechnology). Protein bands were detected by
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incubation with horseradish peroxidase-conjugated antibodies (Jackson
ImmunoResearch, West Grove, PA) and visualized with ECL reagent
(Millipore, Billerica, MA).

Quantitative RT-PCR. Total RNA was isolated with TRIzol reagent
(ThermoFisher Scientific). Equal amounts of RNA (1 ng) from each
sample were used for cDNA synthesis using HiScriptQ RT SuperMix
for quantitative PCR (Vazyme, Nanjing, China). Quantitative RT-
PCR was performed on the ABI StepOne Real-Time PCR System
(Applied Biosystems, Foster City, CA) using HiScript Q RT Super-
Mix for quantitative PCR (Vazymea) and analyzed using StepOne
software (v2.1, Applied Biosystems). The 2~“°T method (where Cr is
threshold cycle) was used to calculate gene expression levels. For
the sample loading control, GAPDH was tested. Primers sequences
were as follows: VEGFR2, forward 5'-GGCCCAATAATCAGA-
GTGGCA-3" and reverse 5'-CCAGTGTCATTTCCGATCACTTT-
3'; EGFR, forward 5'-AGGCACGAGTAACAAGCTCAC-3’ and re-
verse 5'-ATGAGGACATAACCAGCCACC-3'; and GAPDH, for-

ward 5'-CATCAGCAATGCCTCCTGCAC-3’" and reverse 5'-TGA-
GTCCTTCCACGATACCAAAGTT-3'.

Statistical analysis. SPSS statistical software (version 19.0, SPSS,
Chicago, IL) was used to perform all statistical analyses. Data were
analyzed by repeated-measures or standard two-way ANOVA and a
Student’s #-test (32). P values of <0.05 were considered significant
(two tailed). Data are presented as means * SE.

RESULTS

Melatonin inhibits EGF- and VEGF-induced monolayer
permeability of HUVECs. We found that the monolayer per-
meability of HUVECs was increased significantly with increas-
ing doses of EGF or VEGF (Fig. 1, A and C), reaching peak
permeability at 24—48 h (Fig. 1, B and D) with 60 ng/ml EGF
or 4 ng/ml VEGF. To preclude the possibility that HUVEC
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proliferation would be associated with permeability, MTT tests
were performed after cells were treated for 24 h. The results
showed that stimulation of the two growth factors did not affect
the proliferation of HUVECs within 24 h (Fig. 1, E and F). We
then examined whether melatonin could affect the monolayer
permeability of HUVECs induced by EGF and VEGF by
stimulating HUVECs with 100 wM melatonin combined with
EGF or VEGF. The permeability test results indicated that
melatonin inhibited EGF- and VEGF-induced monolayer per-

o

meability of HUVECS (Fig. 1G), and proliferation of HUVECs
was not affected by melatonin within 24 h (Fig. 1H). Taken
together, these data suggest that melatonin could suppress the
increasing monolayer permeability of HUVECs induced by
EGF and VEGF.

Effect of EGF, VEGF, and melatonin on signal transduction
of HUVECs. To investigate the mechanism of the two growth
factors and melatonin affecting the permeability of HUVECsS,
we focused on the phosphatidylinositol 3-kinase (PI3K)/AKT
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We then tested the effect of melatonin on EGF-induced protein
phosphorylation, and the results suggested that melatonin sup-

: n[lﬂ“

20 p-ERK1/2
1.5 * # &
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i &&
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pressed VE-cadherin (Tyr®®, Tyr®®5, and Tyr’?!) and AKT
(Thr3%®) phosphorylation compared with EGF but did not
influence ERK phosphorylation. Interestingly, the duration of
AKT (Ser*’®) phosphorylation was extended but weakened
compared with EGF (Fig. 2, B and C). To further determine
whether melatonin inhibited EGF-induced protein phosphory-
lation in a time-dependent manner, we treated HUVECs with
EGF and melatonin for a longer time (48 h). Melatonin in-
creased phosphorylation of VE-cadherin (Tyr®®), AKT (Thr03
and Ser*’?), and ERK(1/2) compared with EGF, and the inhi-
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bition of phosphorylation of VE-cadherin (Tyr®®> and Tyr
continued for 48 h (Fig. 2, D and E). Taken together, these
results demonstrate that melatonin disturbs EGF signal trans-
duction, resulting in inhibition of VE-cadherin (Tyr®® and
Tyr’3!) phosphorylation, prolongation of AKT and ERK phos-
phorylation, and reversal of VE-cadherin (Tyr%®) phosphory-
lation.

We also investigated how melatonin influenced VEGF sig-
nal transduction. As shown in Fig. 3, A—C, melatonin inhibited
VEGF-induced VE-cadherin (Tyr®® and Tyr’®') and AKT
(Thr*®® and Ser*’®) phosphorylation but did not affect phos-
pho-VE-cadherin (Tyr®®) or phospho-ERK within 120 min.
Similarly, we treated HUVECs with VEGF and melatonin for
48 h, and the Western blot analysis showed differences with
the EGF-treated group. Although melatonin suppressed VEGF-
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Fig. 4. Continued
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induced VE-cadherin (Tyr’3') phosphorylation equally to the
EGF-treated group but enhanced phosphorylation of VE-cad-
herin (Tyr®), melatonin also delayed the time to peak phos-
phorylation of phospho-AKT (Ser*’?) and phospho-ERK(1/2)
but had no correlation with VEGF-induced phospho-VE-cad-
herin (Tyr®®) or phospho-AKT (Thr*“®; Fig. 3, D and E).

Melatonin could alter EGF and VEGF signaling by modu-
lating phosphorylation of AKT, ERK, and VE-cadherin, which
would then contribute to the monolayer permeability of HU-
VECs.

Both inhibition of PI3K/AKT and MEK/ERK signal path-
ways suppressed monolayer permeability of HUVECs. To
evaluate the role of PI3K/AKT and MEK/ERK signal path-
ways in the regulation of HUVEC permeability, two inhibitors
were applied under EGF or VEGF conditions (alone or in
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A

Fig. 5. Effect of wild-type and mutant ERK2 on AKT,
ERK, vascular-endothelial (VE-)cadherin phosphoryla-
tion, and human umbilical vein endothelial cell (HUVEC)
permeability. A: Western blot analysis of VE-cadherin
(Tyr®®, Tyr®®, and Tyr’3!), AKT (Thr*°® and Ser*’3),
and ERK(1/2) phosphorylation in HUVECs transferred
with ERK?2 plasmid. B: permeability tests were performed
after HUVECs were transferred with ERK?2 plasmid. WT,
wild-type sequence containing the nuclear location se-
quence; TAYF, phosphorylation site mutant containing
the nuclear location sequence; ns, not significant; OD,
optical density.
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combination with other agents). After 24 h of treatment, the
PI3K/AKT inhibitor LY49002 significantly reduced the acti-
vation of AKT (Thr*%® and Ser*’®) but increased the phosphor-
ylation of VE-cadherin (Tyr®®); in addition, the MEK/ERK
inhibitor UQ126 obviously suppressed the activation of
ERK(1/2) but enhanced VE-cadherin (Tyr’") phosphorylation.
It was noteworthy that LY49002 could increase ERK(1/2)
phosphorylation and U0126 could enhance the activation of
AKT (Ser*’3; Fig. 4, A and B). There is possibly an inve-
rse relationship between phospho-ERK and phospho-AKT
(Ser*’®), and VE-cadherin phosphorylation was regulated by
both PI3K/AKT and MEK/ERK signal pathways. Further per-
meability tests indicated that both LY49002 and U0126 could
inhibit the monolayer permeability of HUVECs induced by
EGF and VEGF (Fig. 4, C and D). Together, PI3K/AKT and
MEK/ERK signal pathways play an important roles in the
regulation of HUVEC permeability, and there is potential
cross-talk between these two pathways.

Effect of ERK2 and melatonin on AKT, ERK, VE-cadherin
phosphorylation, and HUVEC permeability. Activated ERK2,
a transcription factor that is one of the two isoforms of ERK,
could regulate gene expression, which can affect many aspects
of cellular function. We transferred ERK2 and control plas-
mids into the cells to evaluate its effect on HUVEC permea-
bility. As shown in Fig. 5, A and B, both wild-type and mutant
ERK?2 did not affect the monolayer permeability of HUVECs
or phosphorylation of AKT, ERK, and VE-cadherin compared
with control plasmid. The ERK?2 plasmids all contained a

PEGFP-N1

=
=3
N
X
74
U
o
L
0]
[1N]
o

pEGFP-ERK2(TAYF)

nuclear location sequence; therefore, the phosphorylation of
ERK might be more effective on HUVEC permeability rather
than location.

To exclude the influence of FBS, two groups of HUVECs
were incubated in the medium with and without FBS, respec-
tively. As shown in Fig. 6, A-D, treatment of the two groups of
cells with melatonin had a weaker effect on phosphorylation of
both those proteins compared with any combination with EGF
or VEGF.

Effect of melatonin on EGFR and VEGFR expression. As
melatonin could regulate the expression of genes (4), we
investigated whether melatonin could influence the expression
of EGFR and VEGFR2. The quantitative PCR and Western
blot results showed that melatonin could inhibit the expression
of both EGFR and VEGFR2, which could partly influence EGF
and VEGF signaling transduction (Fig. 7, A-H).

In summary, melatonin inhibits EGF- and VEGF-induced
HUVEC permeability by influencing the phosphorylation of
AKT, ERK, and VE-cadherin in a time-dependent manner.
Gene regulation by ERK?2 and FBS in medium did not play an
apparent role in the process, and expression of EGFR and
VEGFR?2 is involved in the regulation of signaling transduc-
tion.

DISCUSSION

Vascular endothelial permeability represents the endothelial
barrier function of blood vessels, which has a clear relationship
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phosphorylation in human umbilical vein endothe-
lial cells (HUVECS) treated with melatonin (with
or without FBS) within 60 min. C and D: Western
blot analysis of VE-cadherin (Tyr®®, Tyr®>, and
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with many cardiovascular diseases, including atherosclerosis
(10, 15, 58). As the cardiovascular disease is often accompa-
nied by loss of tight junctions between the vascular ECs and
changes of cytokines in the serum, we aimed to determine the
effect of VEGF and EGF on vascular endothelial permeability
in the present study (11, 38, 40). The data shown in Fig. 1,
A-D, suggest that both EGF and VEGF could induce the
permeability of HUVECs, consistent with previous reports (6,
29, 37).

One of the most important junction proteins of vessel ECs,
VE-cadherin, was detected in our study (8). As shown in Figs.
1-6, the permeability of HUVECs was induced by EGF and

Melatonin(with FBS)

VEGF, but VE-cadherin expression did not change signifi-
cantly. We then considered the role of VE-cadheirn phosphor-
ylation in the regulation of HUVEC permeability, which could
affect the function of VE-cadherin but not the expression at the
indicated time (67). Previous studies have demonstrated that
phosphorylation of VE-cadherin contributes to the regulation
of vascular EC permeability (33, 39, 42, 54). Tyrosine phos-
phorylation of VE-cadherin was associated with weak junc-
tions and impaired barrier function, and Tyr®8, Tyr®, and
Tyr”3! phosphorylation of VE-cadherin was shown to be re-
lated to the permeability of vessel ECs (16, 66). In our study,
melatonin inhibited both EGF and VEGF-induced Tyr®®> and
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Tyr’3! phosphorylation of VE-cadherin in 2 h, and Tyr’3!

phosphorylation of VE-cadherin was also suppressed in 48 h
(Figs. 2 and 3), consistent with previous studies (34, 61). The
puzzling aspect of this phenomenon is the opposite trend of
Tyr%® and Tyr®® phosphorylation of VE-cadherin was ob-
served in 48 h, and melatonin showed different effects on
phosphorylation of these two tyrosines (Fig. 2, D-F, and Fig.

3, D-F). Possible reasons for this discrepancy are: Tyr’?!
phosphorylation of VE-cadherin played an important role in
the regulation of HUVEC permeability from the beginning to
48 h; Tyr®® and Tyr®®> phosphorylation of VE-cadherin con-
tributed to the internalization and ubiquitination of VE-cad-
herin (42), which often needs a longer time of action; melato-
nin stabilized the existence of VE-cadherin by balancing phos-
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phorylation of Tyr*® and Tyr®®’; and the tyrosine site was
determined by different stimulation or signal pathways. These
possibilities warrant exploration in future studies. Addition-
ally, the role of phosphorylation of Tyr®3, Tyr’33, and Ser®®’
of VE-cadherin should also be discussed, which have been
mentioned in previous studies and could be related to leukocyte
adhesion and permeability (3, 16).

It has been reported that melatonin could influence G pro-
tein-related, NF-kB and hypoxia signaling pathways, which
could be related to blood-brain barrier damage and retinal
disease (23, 28). The MAPK/ERK and PI3K/AKT pathways
were also influenced by melatonin, which are involved in many
important physiological processes (35, 45). To explain the
mechanism of melatonin inhibiting EGF- and VEGF-induced
HUVEC permeability further, we detected the phosphorylation
of AKT and ERK, common downstream proteins of EGF and
VEGEF, which are related to the permeability of vascular ECs
(9, 26, 27). As shown in Figs. 2 and 3, melatonin inhibited the
phosphorylation of AKT (Ser*’®) induced by both EGF and
VEGF at 2 h but prolonged the phosphorylation of AKT
(Ser*”?) and ERK(1/2) or delayed signaling transduction at 48
h. As the phosphorylation cascade determines signaling trans-
duction, melatonin might suppress the EGF- and VEGF-in-
duced permeability of HUVECs by disturbing AKT signaling
transduction. When the PI3K/AKT inhibitor LY49002 and
MEK/ERK inhibitor U0126 were used to block the phosphor-
ylation of AKT and ERK, the permeability of HUVECs in-
duced by EGF and VEGF was also inhibited, confirming that
phospho-AKT and phospho-ERK contribute to EGF- and
VEGF-induced permeability of HUVECs (Fig. 4, C and D).
Our results are similar to a previous report (14) that described
that blockade of MAPK activation could prevent endothelial
hyperpermeability, although the method of inhibition was dif-
ferent. Figure 4, A and B, shows that Tyr®®> and Tyr’3!
phosphorylation of VE-cadherin was increased by LY49002
and UO0126, respectively. Of note, LY49002 blocked phospho-
AKT but increased phospho-ERK, and U0126 blocked phos-
pho-ERK but remarkably increased phospho-AKT (Ser*’?).
This suggested that there was feedback between phospho-AKT
and phospho-ERK or that there was a phosphorylation balance
between the two proteins. This balance has also been reported
in many other proteins (7, 20, 25, 50). In summary, phospho-
AKT (Ser*’3) might contribute to the phosphorylation of VE-
cadherin (Tyr’3"), and phospho-ERK was related to the phos-
phorylation of VE-cadherin (Tyr%®) in a longer time period
(24—-48 h). In addition, there was cross-talk between PI3K/
AKT and MEK/ERK pathways in HUVECs.

We also detected an effect of melatonin on the expression of
EGFR and VEGFR?2 related to the permeability of the blood-
brain barrier and other vessels (12, 74). In our results, mela-
tonin obviously inhibited the expression of the two receptors,
which would thus delay signaling transduction or phosphor-
transfer.

As ERK2 could play a role as a transcription factor in many
cell biological processes, and FBS might influence cell state
(22, 26, 73), we determined the effect of ERK2 and FBS on the
regulation of VE-cadherin phosphorylation (Figs. 5 and 6).
Consequently, ERK2 and FBS did not significantly influence
the phosphorylation of VE-cadherin.

This study had some limitations, as we did not study the role
of Src, Rho GTPase, or other proteins related to VE-cadherin

HI1189

phosphorylation. However, previous work has already de-
scribed the mechanism clearly (1, 16, 21, 71). Calmodulin has
been previously reported to have an interaction with melatonin,
and it influences cGMP production and regulates cell mem-
brane permeability and endothelial barrier function (43, 46, 52,
63, 69); however, its structure was flexible and can bind to lots
of target proteins (5). Thus, new research should confirm its
role in a long-term experiment.

In conclusion, we found that melatonin could inhibit EGF-
and VEGF-induced permeability of HUVECs by influencing
the phosphorylation of VE-cadherin; phospho-AKT (Ser*’?)
might be the key protein regulating Tyr’3! phosphorylation of
VE-cadherin. Furthermore, the phosphorylation cascade of
AKT (Ser*’®) might be a time switch in the signaling trans-
duction of HUVECs, which encompasses the phosphorylation
balance with phospho-ERK. Melatonin plays an important role
in the regulation of the phosphorylation cascade. Future re-
search is needed to study the role of melatonin in vascular
diseases in vivo.
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